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Abstract

The most often used non-uniform distribution in applications in-
volving simulations is the Gaussian distribution, popularly referred to
as the Normal distribution. This study examines performances of differ-
ent Gaussian variate generators over small, moderate and large samples
with respect to statistical accuracy of the parameter estimates produced
and computational complexity. Results showed that in statistical accu-
racy, the Marsaglia-Bray’s algorithm performed best in small, moder-
ate and large samples with a maximum absolute error of 1.08; while in
computational efficiency, the Box-Muller’s algorithm took a bit longer
to compute the normal variate Z compared to the other algorithms
considered.
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1 Introduction

Simulation of data is an integral component of data analysis methodologies.

As real datasets that satisfy all the required assumptions for a particular study

are usually hard to obtain, synthetic datasets are employed in simulation stud-

ies to verify theoretical results, large sample properties of statistical methods,

estimators, and test statistics. The most often used non-uniform distribution

in simulation applications is the Normal (Gaussian) family.

Definition 1.1. A continuous random variable X has the normal distribu-

tion (or is normally distributed) with mean µ and variance σ2 if for x ∈ X the

probability density function f(x) is written as

f(x) =
1

σ
√

2π
exp

(
− 1

2

(
x− µ

σ

)2)
, −∞ < x < ∞ (1)

This implies that X is normally distributed with mean µ and variance σ2;

X ∼ N(µ, σ2).

It is easy to establish that the moment generating function of X ∼ N(µ, σ2)

is

Mx(t) = exp

(
µt +

1

2
σ2t2

)
. (2)

So that the first four moments are given by

E[X] =
dMx(t)

dt

∣∣∣∣∣
t=0

= M
′

x(0) = µ, (3)

E
[
X2
]

=
d2Mx(t)

dt2

∣∣∣∣∣
t=0

= M
′′

x (0) = µ2 + σ2, (4)

E
[
X3
]

=
d3Mx(t)

dt3

∣∣∣∣∣
t=0

= M
′′′

x (0) = µ3 + 3σ2µ, and (5)

E
[
X4
]

=
d4Mx(t)

dt4

∣∣∣∣∣
t=0

= M iv
x (0) = µ4 + 6µ2σ2 + 3σ4. (6)

Definition 1.2. A continuous random variable Z has the standard normal

distribution if for z ∈ Z the probability density function f(z) is given as

f(z) =
1√
2π

exp

(
−1

2
z2

)
, −∞ < z < ∞. (7)
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Variable z = x−µ
σ
∼ N(0, 1).

Univariate normality can be assessed by examining the skewness (β1) and

the kurtosis (β2) coefficients. Skewness is the third standardized moment and

is defined by

β1 =
µ
′
3(

µ
′
2

) 3
2

. (8)

Kurtosis is the fourth standardized moment and is defined by

β2 =
µ
′
4(

µ
′
2

)2 ; (9)

where µk is the kth moment about the mean.

For a normally distributed variable, β1 = 0 and β2 = 3. Typically, re-

searchers adjust the kurtosis coefficient by subtracting 3, so that a normally

distributed variable has kurtosis coefficient equal to zero. (Please, note that

some texts refer to kurtosis after adjustment as excess kurtosis.) A non-zero

kurtosis coefficient indicates a nonnormal distribution. A leptokurtic distribu-

tion, β2 > 3, is taller and thinner than a normal distribution; it is denoted with

a positive kurtosis coefficient. A platykurtic distribution, β2 < 3, is shorter

and wider than a normal distribution; accordingly, it corresponds to a negative

kurtosis (Henson [1]). Similarly, a skewness coefficient of zero denotes a per-

fectly symmetrical distribution; β1 > 0 indicates a positive skew while β1 < 0

indicates a negative skew.

Algorithms to generate normal random numbers can be broadly classified

into four categories; they include the acceptance-rejection, inversion based,

Box-Muller and Wallace approaches. To select an appropriate algorithm for

use may be fuzzy as compromises must be made among some basic desirable

properties such as (i) the tolerance level of the variation between the param-

eter and the estimated values; (ii) the mathematical simplicity; and (iii) the

computational efficiency of an algorithm. For instance, since no closed form

expression is available for the normal cdf, the statistical accuracy of inversion

based methods depends heavily on how closely the normal cummulative dis-

tribution function (cdf) can be approximated; however, these methods may

exploit the symmetry of F−1(·) to generate suitable normal variate without

the need to implement trigonometric functions. On the other hand, due to
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advances in technology, trigonometric functions, such as sine and cosine, can

be easily implemented relatively and accurately. Thus one may choose the

Box-Muller’s algorithm and implement efficiently, along with trigonometric

functions, to increase the output sample rate. Further, due to conditional if-

then-else assignment instructions, the output rate for the acceptance-rejection

method is not constant. Wallace method generates normal variates by apply-

ing linear transformations to a pool of Gaussian samples. However, due to the

inherent feedback in the method, unwanted correlations can occur between

successive transformations (Lee [2]). Thus in a comparative analysis, no single

simulation method may be declared the winner with respect to all desirable

properties.

Some other forms of classification may be achieved by considering the math-

ematical simplicity of the algorithms. The derivations for most recent algo-

rithms are mathematically elegant but complicated, in a practitioner’s view.

For instance, Ziggurat’s algorithm, which uses the acceptance-rejection ap-

proach, has been adjugded the fastest in the literature (Doornik [3]). However,

its derivations are complicated (Marsaglia and Tsang [4]). This explains why

old methods such as the Box-Muller’s and Marsaglia-Bray’s algorithms remain

practitioners’ favourite despite their flaws. We also note that these two algo-

rithms are usually employed in common statistical packages like, SAS, IMSL,

SPSS, S-Plus, etc.

The present study designs experiment to examine the performance of commonly-

used guassian variate simulators over varying sample sizes. Previously in the

literature, (see Roy [5]) authors would generate a large sample size (say 1000)

then compare the performance of normal variate simulators based on some met-

rics. However, this study acknowledges that in practice, simulation of data are

required in various sizes - small, moderate and large samples. Thus a compar-

ative study as described earlier does not provide detailed information on which

of these guassian variate generators would provide good random numbers viz-

a-viz the three cardinal properties earlier discussed. In this light, the present

study examines the statistical accuracy of the parameter estimates generated

by these simulators with respect to (i) sample sizes; and (ii) computational

complexity.

One major contribution of the study is that it provides detailed information

especially to practitioners on the performance level of normal variate gener-
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ators for varying sample sizes. Such information is very vital as applications

in the literature include samples in small, moderate and large sizes. Further,

it updates the literature as the study reviews and compares old and recent

commonly-used generators. That is, the Box-Muller’s [6], Marsaglia-Bray’s [7]

and the recent Rao et. al ’s [8] methods. And, lastly, it compares these meth-

ods with respect to their computational complexities. Thus a practitioner has

access to comprehensive information on these generators and may easily choose

the most suitable for application purposes.

The rest of the paper is organized as follows: Section 2 reviews the various

methods for simulating normal variate. Section 3 describes the methodology

of commonly-used algorithms. The next section presents the numerical exper-

iment and observations therefrom. Section 5 contains the conclusion.

2 Literature Review

Algorithms for generating normal variate are mostly based on transforma-

tions from the uniform distribution. The first and oldest method uses the

central limit theorem (CLT) on a uniformly distributed random variable U to

provide a close approximation of normal random variate. That is, for a uni-

form random variable U in the range (0, 1), the mean and variance are given

by 1 and 1
12

, respectively. Hence, the standard normal random variable Z may

be approximated as (Wetheril [9])

Z =

n∑
i=1

Ui −
n

2√
n
12

. (10)

for a sufficiently large sample size n. Further, choosing n = 6 leads to the simple

form, Z =
n∑

i=1

Ui − 6. A major limitation of this method is that it requires

n uniformly distributed variates to compute one normal variate! Hence, with

the introduction of more computationally efficient methods, it has received less

attention in recent times.

The Box-Muller algorithm was developed by Box and Muller [6]. The

inputs to this algorithm are two independent uniformly-distributed random
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numbers U1 and U2. The outputs are two independent samples Z1 and Z2

with N(0, 1) distribution. The algorithm involves taking the product of the

logarithm and the trigonometric functions. Note that this method requires

only two random numbers from the uniform distribution as opposed to the

central limit theorem method which requires n. However, a major drawback

identified then was the computation of sine and cosine functions which used

to be computationally expensive. Implementations of logarithm, square root,

and trigonometric functions have been investigated extensively over the last

three decades (Ercegovac and Lang [10]).

Another class of generators, the acceptance-rejection, began with the Polar

method of Marsaglia and Bray [4]. In contrast to the Box-Muler’s, it avoided

the computation of sine and cosine, thus it is more computationally efficient.

However, due to conditional if-then-else statement involved, the output rate of

this method is not constant. A notable member of this class is the Ziggurat’s [4]

algorithm.

The inversion based method transforms uniform random variate U ∈ (0, 1)

into normal variate Z by approximating the inverse of the normal cummulative

distribution function (CDF) as Z = F−1(U). Since there is no closed-form

expression for F−1(·), several approximations have been employed (Odeh and

Evans [11]). The most recent of course is Rao et.al [8] who employed the

logistic approximation of normal CDF given in Bowling et al. [12]. Bowling’s

attempt represent a very simple and the closest [12] approximation to the

normal cdf, with the maximum error of less than 0.014% (See Figure 1).

Wallace [13] deviated from common practices: Without transforming uni-

form variates, it generated a sequence of standard normal variates by by ap-

plying linear transformations to a pool of normal samples. Lee [2] noted that

owing to the inherent feedback in this method, unwanted correlations may

occur between successive transformations using recurrence equation. A com-

prehensive list of various normal variate generating algorithms can be found

in Johnson et.al [14].

3 Algorithms

This section presents algorithms for the commonly-used normal variate
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generators, namely, the Box-Muller’s, Marsaglia-Bray’s and Rao et.al ’s algo-

rithms. We note that a random variable from the standard normal distribution,

N(0, 1) can easily be transformed so as to have N(µ, σ2) distribution. Hence,

the following discussion focusses on generating variates from N(0, 1).

3.1 The Box-Muller’s Algorithm

Denote U(0, 1) the uniform distribution in the range (0, 1). The Box-Muller [6]

algorithm proceeds as follows:

(i) generate two independent random numbers U1 and U2 from U(0, 1); and

(ii) return Z =
√
−2 log(U1) cos(2πU2) and Z =

√
−2 log(U1) sin(2πU2).

Of course, Z ∼ N(0, 1).

3.2 The Marsaglia-Bray’s Algorithm

The Marsaglia-Bray’s [7] algorithm developed using the polar method also

employs two uniformly distributed variates Ui, i = 1, 2; however it does not

require trigonometric functions for implementation:

(i) generate two independent random numbers U1 and U2 from U(0, 1); and

(ii) set V1 = 2U1 − 1, V2 = 2U2 − 1. S = V 2
1 + V 2

2 ; V1, V2 ∼ U(−1, 1);

(iii) if S > 1, go to step (i) otherwise, go to (iv);

(iv) return the independent standard normal variables Z =
√
−2 log(S)

S
V1 and

Z =
√
−2 log(S)

S
V2.

3.3 Rao et.al ’s Algorithm

Rao et.al ’s [8] algorithm is based on inverse transform. It uses the logistic

approximation of normal CDF given in Bowling et al. [12]: F (z) ≈ 1
1+e−1.702z .

The method improves on the earlier ones as it only requires a single random

number U from Uniform(0, 1). The algorithm is described in what follows.
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(i) generate U from U(0, 1); and

(ii) return Z =
− log( 1

u
−1)

1.702
.

4 Main Results

A Normal distribution N(µ, σ2) is completely defined by its parameters -

mean (µ) and variance (σ2). Further, univariate normality is usually assessed

by examining the skewness (β1) and kurtosis (β2) coefficient values. Therefore,

a measure of performance would naturally include the mean, variance, skewness

and kurtosis obtained for each of the simulations under varying samples. Since

the exact values of µ, σ2, β1 and β2 for the normal distribution are known, that

is, µ = 0, σ2 = 1, β1 = 0 and β2 = 3, the deviations of the parameter estimates

(from these exact values) obtained for each of the simulations can be computed

and analyzed for differences.

For the three methods under consideration, gaussian random variates were

generated using the algorithms described in section 3 for sample sizes (i) small

- 10, 20, 30; (ii) moderate - 40, 50, 100; and (iii) large - 200, 500, 1000. Each

trial is replicated 1000 times and the average values of the statistics µ̂, σ̂2, β̂1

and β̂2 recorded in Table 1. Parameter estimates were computed using Maple

12.

4.1 Observations from the Parameter Estimates

The absolute deviation (in percentage) of the estimates from the exact

parameter values were displayed in Figures 2 to 5. We observe as follows:

(i) Statistical accuracy:

For µ, Marsaglia-Bray’s algorithm reproduced µ = 0 with the least

error in small and large samples, while Box-Muller’s and Rao et.al ’s did

better at moderate samples.
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For σ2, Rao et.al ’s is the preferred choice in small, moderate and large

samples followed by Marsaglia-Bray’s, then Box-Muller’s.

For β1, the order of performance is Marsaglia-Bray’s, Rao et.al ’s and

Marsaglia-Bray’s in small, moderate and large samples, respectively.

For β2, Marsaglia-Bray’s consistently reproduced the exact value β2 = 3

in all the sample sizes with maximum absolute error of 1.08. Rao et.al ’s

seemed to converge gradually to the true value in small samples however,

it diverged in moderate and large samples with maximum absolute error

of 1.24. Box-Muller’s performed better than Rao et.al ’s in moderate and

large samples.

(ii) Computational efficiency:

While it took Maple relatively longer time to compute Z in Box-Muller’s

algorithm, the two remaining ones took the same length of time.

By and large, if accuracy and computational efficiency are the factors to

consider, the Marsaglia-Bray’s algorithm performed best in small, mod-

erate and large samples.

A sample of data generated using this algorithm is presented in Figure 6.
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4.2 Labels of figures and tables

Figure 1: Bowling et.al ’s Logistic Approximation to the Normal CDF

Table 1: Comparison of Parameter Estimates by Algo-

rithms and Sample Sizes

Parameter n BM MB Rao

µ 10 0.3852679277 −0.1210553931 0.4994526626

20 0.1530559464 0.05938518416 0.5685006210

30 -0.1711577598 −0.03219852653 0.4423425123

40 -0.1025890069 −0.1105125905 0.2241438738

50 -0.06042986998 −0.1244057323 0.2116342935

100 0.05341244793 0.04334166353 0.09259172339

200 0.006810130982 −0.01134162105 −0.002962201220

500 0.01461458568 −0.04042268704 −0.01316400225

1000 -0.03155605161 −0.009887328423 −0.03362373709
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Table 1 – continued from previous page

Parameter n BM MB Rao

σ2 10 0.7583552986 0.4955298249 1.270017879

20 0.2924112883 1.319749522 1.255646148

30 0.4927864257 0.5588455569 1.169638420

40 0.7029520909 0.9443556275 1.411535526

50 0.9724703041 1.025347988 1.183864639

100 0.9168788486 1.302479199 1.036933513

200 1.006706325 1.084268791 1.036544876

500 0.9527794149 0.9448396269 0.9943776765

1000 1.024660083 1.015294830 1.009768230

β1 10 −0.03638007471 0.03638007471 −0.2604077477

20 0.2681373644 0.1442345186 −0.2633442454

30 −0.6833597724 −0.1262205408 −0.3193734708

40 −0.7084262298 −0.05183990151 −0.2783085868

50 −0.2516039355 0.3822682571 −0.2756509750

100 0.08443817482 −0.5312760633 −0.1379078623

200 -0.1535864642 −0.06374827217 0.003636854938

500 −0.0007671139 0.06904418311 0.05149050392

1000 0.07745211045 −0.0015602177 0.1052810439

β2 10 2.546301583 1.917140303 1.757473681

20 2.315706749 3.065605848 1.759005157

30 3.053434416 2.655525419 2.163981726

40 4.495485168 1.983169263 2.046479304

50 3.123586229 2.769640192 2.330969832

100 2.696534384 3.175074447 2.568168816

200 2.925932477 2.656824734 3.007444693

500 2.642092057 3.032191831 3.892802974

1000 2.843932783 3.143422786 4.063858257

BM: Box-Muller, MB: Marsaglia-Bray, Rao: Rao et.al
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Figure 2: Plot of Absolute Deviation (in %) of µ̂ from µ by Algorithms

Figure 3: Plot of Absolute Deviation (in %) of σ̂2 from σ2 by Algorithms
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Figure 4: Plot of Absolute Deviation (in %) of β̂1 from β1 by Algorithms

Figure 5: Plot of Absolute Deviation (in %) of β̂2 from β2 by Algorithms
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Figure 6: A histogram plot of Z ∼ N(0, 1) and n = 1000 with a corresponding

Normal curve superimposed on it.

5 Conclusion

The performance of the normal variate generators were examined with re-

spect to statistical accuracy and computational efficiency in small, moderate

and large sample sizes. In particular, Box-Muller’s, Marsaglia-Bray’s and Rao

et.al ’s algorithms were compared. The study concluded that, by and large, the

Marsaglia-Bray’s algorithm performed better than the other two algorithms

with absolute maximum errors of 0.12, 0.50, 0.38 and 1.08 for mean, variance,

skewness and kurtosis, respectively. In addition, Marsaglia-Bray’s and Rao

et.al ’s are a bit more computationally efficient than the Box-Muller’s.
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