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Abstract 

In this work, the solutions of Volterra- Fredholm integral equations of the first and 

second kind in one, two and three dimensional are obtained in the space L2 (Ω) × 

C [0,T] , T < 1. The Fredholm integral term is measured with respect to position, 

where Ω is the domain of integration; while Volterra integral is measured with 

respect to time. The solutions are obtained, using two different methods. For the 

first method, we have a Volterra integral equation, while for the second method, 

we obtain a linear system of Fredholm integral equation. Several spectral 

relationships are obtained when the kernel of position takes a logarithmic form, 

Carleman function, elliptic integral form, potential function, generalized potential 

function, Macdonald kernel, and other interesting cases are discussed. 
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1 Introduction 

Many problems in mathematical physics, theory of elasticity, viscodynamics 

fluid and mixed problems of mechanics of continuous media reduce to an integral 

equation of the second kind, in different dimensions, with continuous or 

discontinuous; see [1-6]. For these applications, the authors have established many 

different analytic and numeric methods for solving the different kinds of integral 

equations with different kernels; see [7-11].  

One of the important methods for solving the singular integral equations is 

the orthogonal polynomials method. Using this method, the authors can obtain the 

spectral relationships for the integral equations of the first kind. Then, using the 

results in solving the singular Fredholm integral equations of the second kind. 

More information for the spectral relations can be found in Refs.[12-17], and for 

the orthogonal polynomials in [ 18-21] 

Consider the V-FIE of the second kind 

[ ]*
0

( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )
t

x t F t k x y y dy d t t x f x f x tµ τ τ τ γ β
Ω

Φ − Φ = + − =∫ ∫  (1.1)      

1 2 3 1 2 3( ( , , ) , ( , , ) ; ( , ) , [0, ], 1)x x x x x y y y y x y t T T
− −

= = ∈Ω ∈ <  

under the conditions 

( , ) ( ), ( , ) ( ),x t dx N t x x t dx M t
Ω Ω

Φ = Φ =∫ ∫    (1.2)           

The integral equation (1.1) can be investigated from the contact problem of a 

rigid surface (G, υ) having an elastic material occupying the domain Ω, where 

*( )f x  describing the surface of the stamp. This stamp is impressed into an elastic 

layer surface (plane) by a variable known force N(t) whose eccentricity of 

application e(t), and a variable known moment M(t), [0, ],t T∈  1T < ; that case 

rigid displacements γ(t) and β(t) respectively. Here G is the displacement 

magnitude,υ is Poisson’s coefficient, µ is a given finite constant defines the kind 

of integral equation. In addition, γ(t), β(t) and  ( , )F t τ are given continuous 
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functions belong to the class C[0,T], [0, ], 1.t T T∈ <   The given function  

( , )f x t belongs to L2 (Ω) x C [0,T], where Ω is the domain integration. The 

discontinuous kernel of position ( , ),k x y  1 2 3 1 2 3( ( , , ) , ( , , ) )x x x x x y y y y
− −

= =  is 

known function, where its formula depends on the surface used, and the contact 

domain of integration, while ( , )F t τ is the continuous kernel of Volterra integral 

term in time represents the resistance force of the contact domain. The unknown 

function ( , )x tΦ , will be obtained, under certain conditions, in the space L2 (Ω) x 

C [0, T].                                            

We must realize that, the generalized potential and Macdonald kernels are 

obtained, if the modules of elasticity is changing in the layer surface according to 

the power law 10,3,2,1,0 <≤== υεσ υ ik ii , where σi and εi are the stress and strain 

rate intensities respectively, while k0 and υ are constants depending on the 

physical properties of the elastic layer; see [22-23]. 

In order to guarantee the existence of unique solution of (1.1), we assume the 

following conditions 

(i) The kernel of position, in general, satsfies the discontinuity condition 

.Ddxdy)y,x(k
2/1

2 =











∫ ∫
Ω

(D-constant) ,where   Ω  is the domain of 

integration. 

(ii)The positive continuous function ( ), ([0, ] [0, ])F t C T X Tτ ∈  and satisfies 

( ),F t Eτ < ,E< (E-constant), for  τ∈ [0,T]. 

(iii) The given continuous functions γ(t) , β(t) belong to the class C[0,T] , while            

f* (x)∈L2 (Ω). This leads that, the continuous function ( , )f x t ∈ L2 (Ω) × C [0,T]. 

(iv) The unknown function ( , )x tΦ satisfies Hölder condition with respect to time 

and Lipschitz condition with respect to position. 
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      Theorem1 (without Proof): The V-FIE (1.1) has a unique solution, under the 

condition , max. .TDE t Tµ > =  

 

In the remainder part of this paper, the solutions ]of the V-FIE, in one, two and 

three dimensional of the first and second kind ,in the space L2 (Ω) x C [0,T], will 

obtain. Where, we use a series polynomials method to separate the variables and 

obtain three integral equations of Volterra integral equations of the second kind 

with continuous kernel. Then, a quadratic numerical method will use to obtain 

linear system of FIEs with discontinuous kernel, where the solution can obtain, 

under certain conditions.  

 

 

2 Method of separation of variables 

The importance of this method comes from its wide applications in 

mathematical physics problems, where the eigenvalues and eigenfunctions of the 

problems can be discussed and studied. Therefore, we state without proof the 

following: 

The principal theorem 2 : (see [17] and [18] ) 

For a symmetric and positive kernel of position ( , )k x y , the integral operator   

∫
Ω

ψ=ψ dy)y()y,x(kK ,                                             (2.1) 

through the time intervel 0 ≤ t ≤ T < 1, is compact and self-adjoint operator. So, 

we can write (2.1) in the following form  αn Kψ = ψn ,where αn and ψn are the 

eigenvalues and eigenfunctions of the integral operator respectively. 

 

 In view of Theorem 2, we will seek the solution of equation (1.1), in the 

following form  
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( , )x tΦ = 0 ( , )x tΦ + 1 ( , )x tΦ                           

(2.2) 

where 0 ( , )x tΦ ), 1 ( , )x tΦ represent, respectively the complementary and 

particularly solution of (1.1).  

Using (2.2) in (1.1), we have  

[ ]*
0

( , ) ( , ) ( , ) ( , ) ( ) ( ) ( )
t

j j jx t F t k x y y dyd t t x f xµ τ τ τ δ γ β
Ω

Φ − Φ = + −∫ ∫            

(2.3) 

Where, δ0 = 0 at j=0,  and δ1 =1at j=1.  

For  t = 0 , the formula (1.1) becomes  

[ ]*( ,0) (0) (0) ( )x x f xµ γ βΦ = + −                                  

(2.4) 

Using (2.2) in (2.4) and substracting the result from (2.3), we have  

( )
0

( , ) ( ,0) ( , ) ( , ) ( , ) )

( ) (0) ( ) (0))

t

j j j

j

x t x F t k x y y dyd

t t x

µ τ ϕ τ τ

δ γ γ β β
Ω

 Φ −Φ − 

 = − + − 

∫ ∫           (2.5)            

Under the conditions (1.2), assume the unknown function ( , )x tΦ of (2.3) in the 

following form. 

2 2 2 1 2 1

( ) ( )

1
( , ) ( ) ( ) ( ) ( )

k k k k

j j
j

k
x t A t x A t xψ ψ

− −

∞

=

 Φ = + ∑    (2.6)           

Hence, Eq. (2.5), after using (2.6), becomes 

( ) ( )2 2 2 2 1 2 1 2 1

2 2 2 1 2 1

( ) ( ) ( ) ( )

( ) ( )

0

( ) (0) ( ) ( ) (0) ( )

( , ) ( , ) ( ) ( ) ( ) ( ) )

k k k k k k

k k k k

j j j j

t
j j

A t A x A t A x

F t k x y A y A y dy d

µ ψ ψ

τ τ ψ τ ψ τ

− − −

− −

Ω

 − + − 

 − − ∫ ∫
  

( )( ) (0) ( ) (0) ; 0,1,...,j t x t kδ γ γ β β = − + − = ∞     (2.7)           

In view of principle theorem2 and the conditions of (1. 2) we can write Eq. (2.7) 

as  
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(0) (0) (0)

0

( ) ( , ) ( ) (0) , 1
k k k

t

nA t F t A d A kµ α τ τ τ µ− = ≥∫              (2.8) 

[ ](1) (1)
2 2 2 2 2

0

( ) ( , ) ( ) ( ) (0)
t

k k k k kA t F t A d b tµ α τ τ τ α γ γ− = −∫              

(2.9) 

[ ](1) (1)
2 1 2 1 2 1 2 1 2 1

0

( ) ( , ) ( ) ( ) (0)
t

k k k k kA t F t A d b tµ α τ τ τ α β β− − − − −− = −∫              (2.10) 

where 

∑∑
∞

=
−−

∞

=
=ψ=ψ

1k
1k21k2

1k
k2k2 xb,1b      (2.11)         

Equations (2.8)-(2.10) represent VIEs of the second kind that have the same 

continuous kernel F(t, τ) ∈ C ( [0,T] × [0 , T])and each of them has a unique 

solution in the class C[0,T]. The value of )0(A0
k  can be obtained, directly from 

(2.3) and (2.4) in the form of   )0()0(A k
0
k γα= . Different methods in [24, 25] 

have been discussed to obtain the general solution of VIEs of the first and second 

kind.  

In view of Eqs (2.8)-(2.10) the general solution of Eq. (1.1) under the conditions 

(1.2) can be adapted in the form 

0 ( )

1
( , ) ( ) ( )

n
t

n k k k
k

x t A t A xψ
=

 Φ = + ∑      (2.12)         

where )t(A )0(
k  and )t(A )1(

k  must satisfy the inequality  

)Tt0,1,n(,)t(A)t(A
2/1n

1k

2)0(
k

)0(
k ≤≤<δ∞→δ<












+∑

=
                 (2.13)

          

from the above discussion, we can state the following: 
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Theorem 3: The inequality (3.13) tells us that, the series (2.12) is uniformly 

convergent in the space L2 (Ω) × C [0 , T] , T< 1, n → ∞.  Therefore,  the solution 

of        V- FIE of (1.1) can be obtained in a series from of (2.12). 

Theorem 4: Under the conditions (i)-(iv) and equation (2.13), we have 

( , ) ( , ) 0nx t x t as nΦ −Φ → →∞  where ( , )x tΦ  represents the unique 

solution of (1.1), and its approximate solution ( , )n x tΦ is given by (2.12). 

Theorem 5: The error of the  approximate method used can be calculated as  

( , ) ( , ) , [0, ]n nE x t x t t T= Φ −Φ ∈ , where  En → 0  as  n → ∞. 

 

 

3 System of Fredholm integral equations 

In this section, we use quadratic method, see [8,10 ], to transform the V-FIE 

to SFIEs.  The importance of this method comes from its wide applications in the 

applied sciences especially in the theory of elasticity, mixed problems in 

mechanics and in contact problems. For this,  we divide the interval [0 ,T], 0 ≤ t ≤ 

T < 1 as: 

0 = t0 < t1 < t2 <… < t


 = T, when t = tk , k = 0, 1, ….. .  

Hence, the integral term of (1.1), in this case, becomes 

~

0

~
1

0

1
0

( , ) ( , ) ( , )

( , ) ( , ) ( , ) 0( ) ( 0 , 0)

( , )

t

k
p

j k j j k k
j

k j j j j
j k

k x y F t y dy d

u F t t k x y y t dy h h p

h ma x h h t t

τ τ τ
Ω

+

= Ω

+
≤ ≤

Φ =

= Φ + → >

= = −

∫ ∫

∑ ∫        (3.1) 

The values of ju  and the constant 
~

p depend on the number of derivatives of F(t, τ) 

with respect to t, for all values of τ for example,  if F(t, τ)∈ C4 ([0,T] × [0, T]) 

then, 
~

p = 4 , 
~

p = k and .3,2,1i,hu,h
2
1u,h

2
1u ii4400 ====  More 
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information for the characteristic points and quadrature coefficients are found in 

[8, 10]. 

 Using (31) in (1.1), we have  

,
0

( ) ( , ) ( ) ( )
k

k j j k j k
j

x u F k x y y dy f xµ
= Ω

Φ − Φ =∑ ∫     (3.2)          

where, we used the notations  ,( , ) ( ), ( , ) , ( , ) ( ).k k k j k j k kx t x F t F f x t f xτΦ = Φ = =   

In addition, the boundary conditions (1.2) become  

( ) , ( )k k k kx dx N x x dx M
Ω Ω

Φ = Φ =∫ ∫        (3.3)           

The formula (3.2) represents linear SFIEs of the second kind. When µ = 0, in Eq. 

(3.2), we have linear SFIEs of the first kind. 

 

 

4 Spectral relations of SFIEs of the first kind 

Our attention now, is obtaining the spectral relations for the following 

equation 

,
0

( , ) ( ) ( )
k

j j k j k
j

u F k x y y dy f x
= Ω

Φ =∑ ∫                                         (4.1) 

 

 

4.1 One Dimensional Integral Equation  

(1) Let, in (4.1) k y,x( )=ln ]1,1[,yx −=Ω−  then, we have  SFIEs of the first 

kind  with logarithmic kernel.  
1

,
0 1

ln ( ) ( )
k

j j k j k
j

u F x y y dy f x
= −

− Φ =∑ ∫                                           (4.2) 

For obtaining the spectral relations of (4.2),we use the orthogonal polynomial 

method. For this, Let 1( ) cos( cos ) ,  [ 1,1] , 0.nT x n x x n−= ∈ − ≥  denotes the 
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Chebyshev polynomials of the first kind, while
1

1

sin[( 1)cos ] ( ) ,  0
sin(cos )n
n xU x n

x

−

−

+
= ≥ , 

denotes the Chebyshev polynomials of the second kind. It is well known that 

{ ( )}nT x  form an orthogonal sequence of functions with respect to the weight 

function
1

2 2 (1 )x
−

− , while  { ( )}nU x  form an orthogonal sequence of functions 

with respect to the weight function
1

2 2 (1 )x− . It appears reasonable to attempt a 

series expansion to ( )xΦ


 in Eq. (4.2) in terms of Chebyshev polynomials of the 

first kind. This choice is not arbitrary since one can identity a portion of the 

integral as the weight function associated with ( )nT x .   For convenience, we use 

the orthogonal polynomials method with some well-known algebraic and integral 

relations associated with Chebyshev polynomials see [12,18]. Thus, in this aim, 

we represent   ( )xΦ


,  ( )f x


  in the following forms 

 
2

0

1( ) ( )
1

n n
n

x a T x
x

∞

=

Φ =
−

∑
 





,  n n

2

f  T (x) 
 ( x )   

 1 - x
f = ∑  



  (4.3)        

Hence, after substituting (4.3) in (4.2), and using the orthogonal polynomial of 

Chebyshev polynomials, the following spectral relationships, from (4.2), can be 

obtained  



























≥













π

=π

=
−

−

∑

∑
∫∑

=

−= 1n),x(T
n
F

u

0nFu2ln

dy)y(T
y1

yxln
Fu

jjn

k

0j j

k,j
j

k

j
k,jj

1

1
n2k,j

k

0j
j j

           (4.4)           

where Tn(x) is the Chebyshev polynomial of the first type. 

Differentiating Eq. (4.4) with respect to x, we have the spectral relations of SFIEs 

of the first kind with Cauchy kernel, in the form 

),1n(UFu
y1)yx(

dy)y(T
Fu j

)x(
1jnk,j

k

0J
j

1

1
2

jn
k,j

k

0j
j ≥π=

−−
−

=−=
∑∫∑   (4.5)           

where Un(x) is the Chebyshev polynomial of the second type. 
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(2) If we let, in Eq. (4.1), k (x,y) = 0 1; [ 1,1]x y υ υ−− ≤ < Ω= − , we have SFIEs 

with Carleman kernel. The importance of Carleman kernel came from the work of      

Artiunians [26], who has shown that, the contact problem of the nonlinear theory 

of plasticity, in its first approximation reduces to FIE of the first kind with 

Carleman kernel. Hence, we have  

1x,)x(fdy)y(yxFu kj

1

1
k,j

k

0j
j ≤=φ−∫∑

−

υ−

=
    (4.6)           

To obtain the solution of the formula (3.14), we represent the unknown and known 

functions, respectively in the following form, see [27,28] 

  2
1

2
2( )2

0

1( ) ( ),
(1 )

v

v kk nk n
n

x a C x
x

−

∞

=

Φ =
−

∑   2
1

2
2( )2

0

1( )  ( ).
(1 )

v

v kn n
n

f x f C x
x

−

∞

=

=
−

∑
 

      (4.7)                

Here, ( )2
v

nC x  are Gegenbauer polynomials, nka  are the unknown coefficients and 

nf


 are the known coefficients. The term 
1

2( )2(1 )
v

x
−−−  is called the weight 

function of the Gegenbauer polynomials.  

Using the orthogonal polynomial method  [18-19], and the following relations [28] 

1. 1 1
1 2 ( ) 2 [   ( ) ( )],v v v

n n nn C x v x C x C x+ +
− −= −  

2. ( ) ( ) ( )
( ) ( ) ( )
1
2

1
2

 1 ( 1) 22 22
2 1 1

2 2

 1    2 1 Re 0
vv

v v
n nv

x C x dx C x v
π−

−

Γ
− = − >

Γ +∫  

3. ( ) ( ) ( )
( ) ( )

1
2

1 2
 1 2 2

2 1

 2   2  11   ; ( Re )
2!      

v
v v

n

v n
x C x dx v

n n v v

π −
−

−

Γ +
 − = > −   + Γ 

∫  

where ( )xΓ  is the Gamma function,  we arrive to the following spectral 

relationships 
/21

/2
, ,2

0 01

( )
( ) ( );

(1 ) ( ).cos
2

1( 0 , ; 1)
2

j

j

k k
m

j j k j j k j m
j J

C y dy
u F u F m C x

x y y

m x

υ
υ

υ ω

π υυπυ

υω

= =−

= Γ +
− − Γ

−
≥ = ≤

∑ ∑∫
        (4.8)       
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4.2 Two and three Dimensional Integral Equations with finite 

domain 

(3) If the modules of elasticity is changing in the layer surface according to the 

power law 0 , 1, 2,3, 0.5i ik iυσ ε υ= = = . In this case, the kernel of Eq. (4.1) takes a 

potential function form, and the contact domain Ω is represented as Ω = {(x, y, z) 

∈ Ω: 0z,ayx 22 =≤+ } , hence we have  

, 2 2
0

( , )
( , )

( ) ( )

k
j

j j k k
j

d d
u F f x y

x y

ξ η ξ η

ξ η= Ω

Φ
=

− + −
∑ ∫ ∫                             (4.9) 

The formula (4.9) represents SFIEs with potential kernel. 

Following the same way of [16], on noting the difference in notation, we arrive to 

the following 

)r(gd)(),r(WFu k

k

0J
j

1

0
nk,jj =ρρψρ∑ ∫

=
               (4.10) 

where, we used the notations of polar coordinates and we represent Wn(r,ρ) as a 

formula of Weber-Sonien integral,   

0

( , ) ( ) ( ) ;n n nW r r J u r J u duρ ρ ρ
∞

= ∫   (Jn (x) is a Bessel function of order n) (4.11)          

The general solution of Eq. (4.11) leads us to obtain  

Assume the solution of (4.10) in the form 

( ) ( ) ( )( ) ( ) ( ) 2
22

0

1     1  ,  0,  1,  2, ,  
 1 k k

k

m m m
k n n

n
Z r a P r k

r

∞

=

= − =
−

∑               (4.12)       

where 2 (  )nP y  is the Legendre polynomial and 2 1 r− is called the weight 

function of the Legendre polynomial. Then, using orthogonal polynomials method 

[18.19], we obtain the following spectral relationships: 
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( ) ( )2)
2
1,n(

mk,jj

k

0J
m

n
1

0
2

2)
2
1,n(

mn
k,j

k

0j
j x21PFux

y1

dyy21P)y,x(W
Fu

jj

j

j −λ=
−

− −

=

−

=
∑∫∑ (4.13) 

where  ( ) ( )nm1!m2

m
2
1

jj

j
2

m j ++Γ







 +Γ

=λ   and )x(P ),(
m

βα is a Jacobi polynomial. 

(4) If the modules of elasticity is changing in the layer surface according to the 

power law 0 , 1, 2,3,0 1.i ik iυσ ε υ= = ≤ <  In this case, the kernel of Eq. (4.1) takes a 

generalized potential function form, and the following contact domain   {Ω = {x, 

y, z) ∈ Ω : 0z,ayx 22 =≤+ }.  Hence, we have  

( ) ( )
, 2 20

( , )
( , ) , (0 1)

k
j

j j k k
j

d d
u F f x y

x y
υ

ξ η ξ η
υ

ξ η= Ω

Φ
= ≤ <

 − + − 

∑ ∫ ∫                    (4.14) 

Following the same way of [16, 22], after using polar coordinates and noting the 

difference in notations, we have  

)r(gd)(),r(WFu kj

1

0
nk,j

0j
j =ρρψρ∫∑ υ

∞

=
     (4.15)         

where  

0

( , ) ( ) ( ) .n n nW x y xy t J tx J ty dtυ υ
∞

= ∫        (4.16)                    

The formula (4.16) is called Weber-Sonien integral formula. The solution of the 

formula (4.15), after using orthogonal polynomials, leads us to the following 

,

1
( ) 2 * ( , ) 2

, ,2
0 00

( , ) . (1 2 ) (1 2 ) ,
(1 ) m j m j m j

n n nn
j j k j j k

j j

W x yu F P y dy x u F P x
y

υ
ω ω

ω λ
∞ ∞

− −

= =

− = −
−∑ ∑∫  (4.17)               

where   
( ) ( )

2 2

*

12
12 , ( 0 1, ; 0)

22 ! 1m j

j

j j

m
m

m m n

ω υ
υλ υ ω

− + Γ +  − = ≤ < = ≥
Γ + +

    

The formula (4.17) represents eigenvalues and eigenfunctions for a linear system 

of   FIE of the first kind with a generalized potential function. 
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4.3  Special cases 

(a)  Let in (4.17) 0.5υ = , we have directly the spectral relationships of (4.16) 

(b) Logarithmic kernel:  Let in (4.17) 1 1, 
2 2

mυ = = ±   

(c) Carleman function Carleman kernel: Let in (4.17) 1
2

m = ±   

(d) The spectral relationships of SFIEs with elliptic integral kernel can be 

obtained, from (4.17) when υ =  n = 0, to have  

( )

2
1 2

, 2
0 0

2
2

2
, 2

0

2
[ ] ( 1 )

1

2 1 !
( 1 )

4 (2 )!

j

j

mk

j j k
j

k
m j

j j k m
j m j

xy
yK P y dy

x yu F
y

u F P xπ

=

=

−
+ =

−

 −
 = −
  

∑ ∫

∑

            (4.18) 

where 2[ ]uvK
u v+

 is called the elliptic integral from, and Pm(z) is called Legendre 

polynomial function. 

 

 

4.4  Semi- infinite interval 

To obtain the spectral relationships of Eq. (4.13), (4.17) and (4.18) of the 

semi-infinite interval, we represents the Weber-Sonien integral in terms of Gauss 

hyper -geometric function, see formula 8 of [28] PP. 715, to deduce the following 

important property  

( ) ( )y,xW)xy(y,xW n
111

n
υυ+−−υ =       (4.19)         

Using, in (4.13), (4.17) and (4.18), the substitution x = t-1, y = v-1, and making use 

of property (4.19), the spectral relations of the semi-infinite interval for SFIEs 

with potential kernel, generalized potential kernel and elliptic kernel, respectively 

take the following forms 
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( )

( )

1
22

, 1
0 21 2

1
22

,

1
0

( , ) 1

1

1 2
; (1 )

j

j
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j j

n
k n m

j j k
nj

n
k j j k m m

n
j

W t v P v dv
u F

v v

u F P t
t

t

λ

 −  − ∞

+=

 −  − 

+
=

−
=

−

−
= ≤ < ∞

∑ ∫

∑

        (4.20) 

( )
( )

( ) ( )

( ) 2

, 20 1

* 2

, 1
0

( , ) 1 2

1

1 2 1; 1 ,
2

j

j

j

j j
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k
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j j k n wj

n w
k m m

j j k n
j

W t v P v dv
u F

v v
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u F u w

t

υ

ω

υ

λ υ

− −∞

+=

− −

+ +
=

−
=

−

− − = ≤ <∞ = 
 

∑ ∫

∑

          (4.21) 

and 

                  ( )

( ) ( )

2
2

, 3/2 2
0 1

2
2

2
, 2

0

2 1

1

2 1 !
1 .

4 (2 )!

j

j

mk

j j k
j

k
m j

j j k m
j m

tvK P v dv
t v

u F
t v v v

u F P tπ

−
∞

=

−

=

   −   +  =
+ −

 −
 = −
  

∑ ∫

∑

                  (4.22) 

where λm and *
mλ  are given by (4.13), (4.17) respectively. 

 

 

5 Three Dimensional Integral Equations with infinite domain 

5.1 If the domain of integration of equation (4.9) is defined as 

{( , , ) : , , 0},x y z y a x zΩ = ∈Ω < −∞ < < ∞ −∞ < <   we have the following linear 

system of integral equations 

, 2 2
0

( , )
( , )

( ) ( )

ak
j

j j k k
J a

d d
u F f x y

x y

ξ η ξ η

ξ η

∞

= −∞ −

Φ
=

− + −
∑ ∫ ∫     (5.1)                

For this aim, we use the following Fourier transform  
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( ) ( ) ( ) ( ), ,, ; ,i y i y
j j j jx x y e dy f x f x y e dyα α
α α

∞ ∞

−∞ −∞

Φ = Φ =∫ ∫                 (5.2)                            

where α  is a parameter of Fourier transform. Hence, equation (5.1) yields 

( )
,

, ,2 20

( )
( )

i yak
j

j j k j
J a

e dyd
u F f x

x y

α
α

α

ζ ζ

ζ

∞

= −∞ −

Φ
=

− +
∑ ∫ ∫  

Using the following famous relation [28] 

( )
( )02 2

0

cos ,y dy K x
x y

α α ζ
ζ

∞

= −
− +

∫  

We have 

( ), 0 , ,
0

( ) ( )
ak

j j k j j
J a

u F K x d f xα αα ζ ζ ζ
= −

− Φ =∑ ∫                                              (5.3) 

where ( )tK0  is the Macdonald kernel. Using orthogonal polynomial method, we 

have 

. 
( )

1

02 2
0

2
, 1

0

[cos , ]

( )
[cos , ]; ( )

( ) 4

n j

n j

ak e

j a

k
j j k e n j

e
j e n j j

C q q
a K d

a
u F F K j q aC q q

F K q a

ξ

ξ η ξ
ξ

θ ηπ
θ

−

= −

−

=

−
− =

−

−
= − =

−

∑ ∫

∑

           (5.4)  

where FeKn ( -q) neC (θj-q) are called the Mathieu functions under the condition      

0 ≤ θ < 2π, 0 <  < ∞  
 

5.2 If the domain of Eq. (5.1) is defined as {( , , ) : , , 0}x y z x y zΩ = ∈Ω −∞ < < ∞ < , 

so, we have the following integral equation: 

( ) ( )
, 2 2

0 0

( , )
( , )

k
j

j j k k
j

d d
u F f x y

x y

ξ η ξ η

ξ η

∞ ∞

= −∞

Φ
=

− + −
∑ ∫ ∫                 (5.5) 

The formula (5.5) represents system of Wiener-Hopf integral equations of the first 

kind. Using the Fourier transformation (5.2) , we have 
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, 0 , ,
0 0

( ) ( )
k

j j k j k
j

u F K d fα αξ η ξ ξ η
∞

=

− Φ =∑ ∫      (5.6)         

which represents  system of Wiener - Hopf integral equations with Macdonald 

Kernel. The general spectral relationships (5.6), after using orthogonal polynomial 

method and the properties of Chebyshev-Laguerre polynomials, are 

( ) 1/2
0 1/2

, ,
0 00

(2 ) (2 1)!
(2 ) ( 0)

(2 )!2
j

j

m j t
j j k j j k m

j j j

K t e L m
u F d u F e L t t

m

ττ τ πτ
τ

− −∞∞ ∞
− −

= =

− −
= ≥∑ ∑∫  

(5.7) 

where )x(Lm
α is the Chebyshev-Laguerre polynomials 

5.3  If in Eq. (4.14), we define {( , , ) : , , 0}x y z x y zΩ = ∈Ω −∞ < < ∞ −∞ < < , then 

we have  

( ) ( )
, 1

0 2 2 2

( , ) 1( , ), (0 )
2

k
j

j j k k
hj

d d
u F f x y h

x y

ξ η ξ η

ξ η

∞ ∞

+= −∞ −∞

Φ
= ≤ ≤

 − + − 

∑ ∫ ∫             (5.8) 

Using Fourier transformations method, we can get the following integral equation  

( ) ( )

( )

,
0

1

( );

1/ 2
( , 0 1/ 2)

2

k
n j

j j k kh
j

h

h

K s d
u F g

h s
h

ξ η ψ η η
λ ξ

ξ η

λ
π

∞

= −∞

−

−

−
=

−

Γ +
= ≤ ≤

∑ ∫
                         (5.9) 

where s >0, is the coefficient of Fourier integral transformations, and Kh ).(  is 

the generalized Macdonald kernel, and (2 )mL xα is the Chebyshev – Laguerre 

polynomial. 

 Here the following convergence expansion is considered 

               
( ) 1/2 1/2

0
(2 ) (2 ) , 1

2
n h h

m mh h x y
m

K x y
L x L y s

ex y
π ∞

− −
− +

=

−
= =

−
∑                 (5.10) 
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 5.4 Also, the spectral relations for the SFIEs the first kind with Macdonald 

kernel, in the domain {( , , ) : , , 0}x y z y a x zΩ = ∈Ω < −∞ < < ∞ −∞ < < and 

generalized potential function, in the form  

( )( ) /22 2
,

0

2 2 /2
,

0

( )

1 1( ) ( ) , 0,1, 2,..., ,0
2 2

n j

j n j
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a t u F P t n h h

υ υ
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υ υ
υ

ξ ξ ξ θ ξ

λ θ υ
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−
= −

−
=

− − − =

 = − − = = − ≤ < 
 

∑ ∫

∑
   (5.11) 

where  
2 21( )/2[ /2] 1( 1) sin ( ) 2 2 ( ) ( ) ( ) ; ( )
4
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j j j j j

hn hn n
n n n n n
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1 ,

1 ,j

j
n

j
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n odd

α
=−

 

The values of )(b r, θµ


can be determined from trinomial recursion relationships 

[27,28], such that   υ−==θθ=θ=θ υυ−υ
−−

υ
j0,0,0,1r, n,1)(b);(b)(b)(b 



 

Also, 1
2
nr;0)(b r, −



−≤=θυ



 

and 

( ) ( )
( ) ( ) )(b

1r2111
1r211)(b)(b r,r,1r, θ
++υ+Γ+υ−Γ
++υ−Γ+υ+Γ

=θ=θ υ−υ
−−

υ


               (5.13) 



18                           Spectral relationships of Volterra-Fredholm integral equations 
 

The values of )(K θυ


in given by Eq. (29), p.175 of [27] 

5.5 Finally, if we define the domain 

{( , , ) : , , 0}x y z y a x zΩ = ∈Ω > −∞ < < ∞ −∞ < < , 

we can have the following spectral relationships  

( )
, 2 2 /2

0

2 2 /2 (3)
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                (5.14)   

where             
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and ),y(S )2(
n θυ are the spheroidal wave equations of the third kind. 
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