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Abstract 
An intrinsic generalization of the runs principle comes out if instead of focusing 

strictly on fixed-length sequences with all their positions occupied by successes, 

we allow the occurrence of a prespecified (usually small) number of failures. 

Consequently, our study searches out subsequences of consecutive trials which 

embraces a prespecified proportion (usually large) of successes. Such a 

configuration, is traditionally called scan or almost perfect run. In the present 

article, we study the waiting time until the first appearance of a scan of type r/k in 

a sequence of n Bernoulli trials, while several recurrence relations for the 

calculation of probabilities relative to it are deduced. For illustration purposes, we 

provide numerical results and applications that shed light on interesting aspects of 

scan statistics modeling.          
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1  Introduction 

A commonly understood nontechnical meaning of the term run is an 

uninterrupted sequence. More specifically, referring to an experiment involving 

different elements, a run of a certain type of element is a consecutive sequence of 

such elements bordered at each end by other types of outcomes. It is 

straightforward that additional statistics can be defined based on runs. For 

example, one may consider the maximal or the minimal run length in a sequence 

of n outcomes.  

It is true that runs and relative issues have already attracted much research 

attention. As early as 1940, Wald and Wolfowitz used runs to establish a two 

sample test that is intuitively simple and examines whether two independent 

populations follow a common distribution or not. Since then, a variety of different 

applications of runs and run-based statistics have been appeared in the literature. 

For example in the field of Statistical Quality Control, Deming (1972) has 

prescribed a process monitoring scheme in which the maximal run length above 

and below the median respectively is considered.   

Following a parallel approach, number of runs and run lengths has also been 

used to provide distribution-free tests for asymmetry of the population that is 

under investigation, see e.g. Modarres and Gastwirth (1998). Moreover, 

Balakrishnan and Ng (2001) provided a nonparametric statistical run-based test 

that compares two independent populations, where only few early failures of 

elements are needed to be observed.  

Runs statistics models have also been utilized in constructing start-up 

demonstration tests. A start-up demonstration test is a mechanism by which the 

quality of an equipment (such as batteries or fire alarm systems) is evaluated by 

means of successful start-ups. Hahn and Gage (1983) introduced a start-up 

demonstration test in which an equipment (unit) that is under investigation, is 

accepted if a number of consecutive successful start-ups is accomplished (CS 

model). Moreover, Gera (2004) ignored the number of failures in testing process 

  



Ioannis S. Triantafyllou                                                                                                    141 

and proposed accepting the equipment if a number of consecutive successful start-

ups or a total number of successes is met (CSTS model). Balakrishnan and Chan 

(2000) suggested that an equipment should be accepted if a number of consecutive 

successful start-ups is observed before a certain number of failures; otherwise the 

equipment should be rejected (CSTF model). It is noteworthy that additional 

generalizations, modifications of the aforementioned start-up demonstration tests 

have been introduced in the literature (see, e.g. Eryilmaz and Chakraborti (2008), 

Balakrishnan et al. (2014) or Yalcin and Eryilmaz (2012)).      

In addition, runs and more precisely the length of the longest run play an 

important role in Statistical Theory of Reliability. Indeed, the well-known 

consecutive k-out-of-n: F system, which fails if and only if at least k consecutive 

components fail, may be studied by using run statistics modeling. The failure 

criterion of the aforementioned structure calls for a run whose length is equal to or 

greater than k (see, e.g. Triantafyllou & Koutras (2008)), while many 

generalizations can be approached by applying more complicated run rules (see, 

e.g. Eryilmaz et al. (2011) or Triantafyllou and Koutras (2014)).  

Let us next consider an experimental trial whose outcomes can be classified 

into two categories. It is of some interest to investigate whether reasonable criteria 

providing evidence of clustering of any of the two categories could be established. 

If this statement can be proved true, then these criteria could be used to detect 

changes in the underlying process which generates the series of outcomes. Let 

nXXX ,...,, 21  denote a sequence of lmn =  ( 1,2 >≥ lm ) binary outcomes. A 

common criterion indicates the division of n trials into l disjoint groups of m 

consecutive trials each and count of the number of successes within each group. 

The existence of a large number of successes inside any group (say k or more) 

leads to the conclusion that the underlying process has been moved from its initial 

state. In case where k is close to m, the corresponding group constitutes an almost 

perfect run of successes or alternatively a scan of type k/m. Scan statistics models 

find interesting applications in many scientific fields, such as Biology, Statistical 
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Theory of Reliability or Statistical Quality Control. For example, in order to 

develop quantitative measures for assessing and interpreting genomic 

inhomogeneities between different species, molecular biologists compare their 

DNA sequences and look for long aligned subsequences that match in most of 

their positions. Apparently, an unusually long match, namely the occurrence of an 

almost perfect run, offers a strong evidence of similarity between subjects that are 

under investigation.  

It is notable that scans modeling is strongly connected to the reliability study 

of several well-known structures. For example, let us consider the r-within-

consecutive-k-out-of-n: F system (see, e.g. Triantafyllou and Koutras (2011)), 

which fails if and only if there exists k consecutive components which include 

among them at least r failed ones ( nkr ≤≤≤1 ). In terms of scan statistics, the 

system fails if and only if an almost perfect run of failed components (or 

equivalently a scan of type r/k) occurs.  

The distribution theory of runs has been mostly developed based on outcomes 

of Bernoulli trials (independent and identically distributed cases). However, these 

approaches can be generalized by relaxing the assumption of independence or 

even the identically distributed part. As already mentioned, let nXXX ,...,, 21  

denote a sequence of binary trials, each resulting in either a success ( 1=iX ) or a 

failure ( 0=iX ). An immediate generalization of the runs principles arises if 

instead of looking at fixed-length strings with all their trials resulted in success, 

one may allow the occurrence of a prespecified maximum number of failures. The 

term scan of type k/m refers to subsequences 11,...,, −++ jiii XXX  of length mj ≤  

such that the number of successes included therein is at least k, namely 

kX
ji

ih
r ≥∑

−+

=

1

. Let )(m
kT  denote the waiting time until  a scan of type k/m occurs for 

the first time. It goes without saying that  
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and since 0=jX  for all 0≤j , the following ensues (for more details, see 

Balakrishnan and Koutras (2002)) 
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Another random variable which is closely related to )(m
kT , is the maximum number 

of successes contained in a moving window of length m over a sequence of fixed 

number of outcomes nXXX ,...,, 21 , namely  









+−≤≤= ∑
−+

=

11:max
1

, mniXS
mi

ij
jmn  .     (1.3) 

The variable defined in the last equation, is called scan statistic. It is 

straightforward that since the events nT m
k ≤)(  and kS mn ≥,  are equivalent, the 

following holds true  

)()( ,
)( kSPnTP mn

m
k ≥=≤        (1.4) 

For a detailed presentation of scan statistics and their distribution properties, the 

interested reader is referred to the monograph of Glaz et al. (2001).  

 For illustration purposes, let us consider the next sequence of outcomes  
S S S F F F F S S F S S F S S S 

Then  

16,12,3,2 )9(
7

)5(
4

)4(
3

)3(
2 ==== TTTT  

7,6,5,5,4,3,3 9,168,167,166,165,164,163,16 ======= SSSSSSS . 

The waiting time )(k
rT  is closely related to the r-within-consecutive-k-out-of-n: F 

structure defined previously. More specifically, if the event  1=iX  represents the 

failure of the i-th component of the aforementioned reliability structure, while 

0=iX  expresses its good functioning, then the system’s reliability is given as 

)()( ,
)( rSPnTP kn

k
r <=> . 
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Based on the above equality, one may exploit well-known results for the r-within-

consecutive-k-out-of-n: F structure in order to reach conclusions referring to the 

distribution of the waiting time )(k
rT .  

 The rest of the paper is organized as follows. In Section 2, we prove 

general results for the waiting time )(k
rT . More specifically, we prove recurrence 

relations for the calculation of probabilities, that are relevant to the variable )(k
rT , 

with respect to the design parameters knr ,, . Finally, in Section 3 we display 

several numerical results based on the propositions established earlier, while an 

application in transposition systems is illustrated in detail.    

 

 

 2  General results  

  Let nXXX ,...,, 21  be a sequence of Bernoulli trials each resulting in either a 

success ( 1=iX ) or a failure ( 0=iX ). In this section, we study the waiting time 

for the first occurrence of a scan of type r/k, namely the time until k consecutive 

trials appear such that the number of successes contained therein is at least r 

( kr ≤ ). As already mentioned, the random variable )(k
rT  given in (1.1), describes 

the above scan waiting time. In case of independent and identically distributed 

trials, the distribution properties of )(k
rT  have been well-studied in the literature 

(see, e.g. Balakrishnan and Koutras (2002) or Bersimis et al. (2014)). In the 

sequel, we study the waiting time )(k
rT  under the exchangeability assumption, 

meaning that the trials have identical distributions, but they are not necessarily 

independent, that is they may affect one another.  

If niX :  ( ni ≤≤1 ) denotes the −i th order statistic of the sample 

nXXX ,...,, 21 , it goes without saying that the following quantity  

)(),,( :
)(

ni
k

ri XTPnkrp ==        (2.1) 
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expresses the probability that a scan of type r/k occurs for the first time upon the 

event niX : . In words, ),,( nkrpi  demonstrates the prospect that under the 

accomplishment of n Bernoulli trials, a subsequence of k uninterrupted trials such 

that the number of successes actualized therein is equal or greater than r, occurs.  

 Let us next denote by ),,( nkrci  the number of sets with exactly i successes 

(among the n trials) that result in the appearance of a scan of type r/k for the first 

time. We next prove recurrence relations for the calculation of probability 

),,( nkrpi  for the special case 2=r  with respect to design parameters k, n and i.  

 

Proposition 2.1. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of niX : , satisfies the following 

recurrence relation with respect to i 

1

111

))2)(1()(1)((
))1(())1)(1()((2)],,2(),,2([)(

−

+++

−−−+−−−
−−−−−−−=−

i

iiiii

ikninin
kinikninnkpnkpn

 

 (2.2) 

for all values ni ,...,2,1=  and nk ≤ , while   

)!(
!)(
in

nn i −
= . 

Proof. The probability ),,( nkrpi  is related to the quantities ),,( nkrci  defined 

earlier, through the system of equations  

),,(),,(
1

),,(
1

1

1

nkrc
in

n
nkrc

in
n

nkrp inini −

−

+−

−









−

−







+−

=      ni ,...,2,1= . 

 (2.3) 

We can easily observe that the number of sets ),,( nkrci  for the special case 2=r  

can be expressed as  
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(note that an equivalent expression has been already appeared in Naus (1968)). 

We then substitute the last formula in (2.3) and the following ensues  

=−+ ),,2(),,2(1 nkpnkp ii  

1 2( )!( ( 1)( 1) ( 1)!( )! ( 1)!( 2 2)! .
! ( ( 1) 1)! ( 1)! ( 2 1)!

n i n k i n i n ik i n i n ki k i
n n k i n ki n ki k
 − − − − − − − + − + − + + −

= − − − − − − − − + − 
Finally, we result in equation (2.2) after some algebraic manipulations.                □ 

 

Proposition 2.2. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of niX : , satisfies the following 

recurrence relation with respect to n 

       1

1

!( 1) [ (2, , ) (2, , 1)]
( ( 1) 2) ( )( 1)( ( 1)( 2))

( )[( ( 2) 3) ( ( 1)( 1)) ]

i i i

i i
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−
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= − − + − + − − + − − −
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             (2.5) 

for all values ni ,...,2,1=  and nk ≤ , while   

)!(
!)(
in

nn i −
= . 

Proof. Since the probability ),,( nkrpi  can be expressed via equation (2.3), we 

recall relation (2.4) and the following equality is derived for the special case 2=r   

=−− )1,,2(),,2( nkpnkp ii  
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The desired result is derived after straightforward algebraic maneuvering.            □ 
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Proposition 2.3. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of niX : , satisfies the following 

recurrence relation with respect to n and i 

   
1

1

1 2

( ) ( 1) [ (2, , 1) (2, , )]
( 1) ( ( 1)( 1)) ( 1)( 1) ( ( 1)( 2))

( 2)[( ( 2) 1) ( 3)( ( 3) 2) ]

i i i i

i i i i

i i

n n p k n p k n
n n i k n i n n k i

n i n k i i n i n k i i

−

−

− −

+ + −
= + − − − − − + + − − −
− − + − − + − − − + − − + −

    (2.6) 

for all values ni ,...,2,1=  and nk ≤ , while   

)!(
!)(
in

nn i −
= . 

Proof. Recalling equations (2.3) and (2.4), we may write the following recurrence 

with respect to design parameters n and i  

1(2, , 1) (2, , )

1 ( )!( ( 1) 1)! ( 1)!( ( 2) 2)!
! ( ( 1) 1)! ( ( 2) 1)!

1 ( 3)!( 3 2)! ( 2)!( 2 1)! .
( 1)! ( ( 3))! ( ( 2))!

i ip k n p k n

n i n k i i n i n k i i
n n k i n k i

n i n ik k i n i n ik k i
n n k i n k i

− + −

 − − − + − − + − − + −
= − − − − − − − 

 − + − + + − − + − + + −
+ − + − − − − 

      

The proof is complete after straightforward algebraic operations.                          □ 

  

Proposition 2.4. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of niX : , satisfies the following 

recurrence relation with respect to k and i 

                  
1 1

1

1

( ) [ (2, 1, ) (2, , )]
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for all values ni ,...,2,1=  and nk ≤ , while   
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Proof. Recalling equations (2.3) and (2.4), we may write the following recurrence 

with respect to design parameters k and i  

         

1(2, 1, ) (2, , )

1 ( 1)! ( ( 1))!( )!
! ( 1)! ( ( 1) )!

( 1)!( ( 1)( 2))! ( 1)!( )! .
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n ik k i n k in i
n n ik k n i k k

n i n k i n i n ik
n k i n i k

+ + −

  − + + − − −
= − +  − + − − + + 

− + − − − − − −
− − − − − − + − 

 

The proof is complete after straightforward algebraic operations.                          □ 

 

Proposition 2.5. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of niX : , satisfies the following 

recurrence relation with respect to k and n 

                  1

1
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for all values ni ,...,2,1=  and nk ≤ , while   
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Proof. Recalling equations (2.3) and (2.4), we may write the following recurrence 

with respect to design parameters k and n  
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The proof is complete after straightforward algebraic operations.                          □ 
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Proposition 2.6. Let nXXX ,...,, 21  be a sequence of exchangeable Bernoulli 

trials. The probability ),,2( nkpi  that the appearance of a scan of type 2/k for the 

first time is carried out upon the occurrence of  niX : , satisfies the following 

recurrence relation with respect to i, k and n 

   
2 1

1

1

( ) [ (2, 1, 1) (2, , )]
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Proof. Recalling equations (2.3) and (2.4), we may write the following recurrence 

with respect to design parameters k and n  
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The proof is complete after straightforward algebraic operations.                          □ 

 

 

3  Numerical results and applications  

In this section, we display several numerical results for the quantity 

),,( nkrpi , namely the probability that, among n Bernoulli trials nXXX ,...,, 21 , the 

first appearance of a scan of type r/k is observed upon the occurrence of the order 

statistic niX ni ,...,2,1,: = . More specifically, we recall the equations )9.2()4.2( − , 

proved earlier in the manuscript, in order to calculate probability ),,2( nkpi  for 
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several values of the design parameters nk, . Table 1 depicts the numerical 

outcomes of the applied recurrences.  

 

Table 1: The probability ),,2( nkpi  for several values of the design parameters  

               nk,  
  i 

k n 1 2 3 4 5 6 7 8 9 10 

3 3 0 1 0        

 4 0 5/6 1/6 0       

 5 0 7/10 3/10 0 0      

 6 0 3/5 2/5 0 0 0     

 7 0 11/21 47/105 1/35 0 0 0    

 8 0 13/28 13/28 1/14 0 0 0 0   

 9 0 5/12 13/28 5/42 0 0 0 0 0  

 10 0 17/45 41/90 17/105 1/210 0 0 0 0 0 

4 4 0 1 0 0       

 5 0 9/10 1/10 0 0      

 6 0 4/5 1/5 0 0 0     

 7 0 5/7 2/7 0 0 0 0    

 8 0 9/14 5/14 0 0 0 0 0   

 9 0 7/12 17/42 1/84 0 0 0 0 0  

 10 0 8/15 13/30 1/30 0 0 0 0 0 0 

5 5 0 1 0 0 0      

 6 0 14/15 1/15 0 0 0     

 7 0 6/7 1/7 0 0 0 0    

 8 0 11/14 3/14 0 0 0 0 0   

 9 0 13/18 5/18 0 0 0 0 0 0  

 10 0 2/3 1/3 0 0 0 0 0 0 0 

6 6 0 1 0 0 0 0     

 7 0 20/21 1/21 0 0 0 0    

 8 0 25/28 3/28 0 0 0 0 0   

 9 0 5/6 1/6 0 0 0 0 0 0  

 10 0 7/9 2/9 0 0 0 0 0 0 0 
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 For illustration purposes, let us consider an application of the theoretical 

results, proved in the previous section, in the field of Cryptography. More 

precisely, let us assume that a transposition system is applied in order to encipher 

a message. In transposition systems, plaintext values are rearranged without 

otherwise changing them or replacing them with other values. All the plaintext 

characters that were present before the encipherment are still present after that. 

The only thing that changes is the order of the initial form of the text. It goes 

without saying that the rearrangement of the sequence of alphabet letters that are 

included in the initial message, aims at making it difficult for a reader to 

understand the meaning of the original text. After transposing the message, we 

focus on comparing its initial form with the final one. The smaller the number of 

matches between the two forms of the text, the better the result of the cipher is. 

According to the transposition system that is under our investigation, an encoding 

is said to be unacceptable whenever among k consecutive comparisons of the 

corresponding positions between the initial and the final form of the message, 

appear at least 2 matches. The failure criterion of the transposition system could 

be expressed in terms of scan statistics as follows: the encipherment fails, namely 

the encoding is not reliable enough, whenever a scan of type 2/k occurs for the 

first time. In words, the time (measured in number of Bernoulli trials) until the 

transposition system fails (for the first time) to produce an encipherment that 

satisfies the prespecified demands, coincides to the waiting time )(
2

kT  till the first 

occurrence of a scan of the prespefied type. Therefore, we may apply the general 

results proved previously, in order to study in detail the operation of such a 

transposition system. For example, let us assume that the message that should be 

cipher by the transposition system is the phrase ENEMY CLOSE, while the 

encoded message is not acceptable if there exist k consecutive positions such that 

at least 2 matches appear therein. If the required design parameter k  is equal to 4, 

then a plausible rearrangement that leads to failure of the encipherment, is given 

as follows 
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ENEMYCLOSE  (initial message)      

YMNEECOESL  (encoded message)      

S S S S S F S S F S  (sequence of 10 comparisons)        

It goes without saying that in the above scheme, there exist 4=k  consecutive 

comparisons (between the initial and the final form of the message) wherein 2 

matches (F ) appear. Based on Table 3.1, one may immediately observe that under 

the runs rule 10,4,2 === nkr , the probability that the failure of the encoding 

procedure comes out upon the occurrence of the thi −  match is equal to 8/15, 

13/30, 1/30 for 4,3,2=i  respectively, while for all other −i values  the 

corresponding probability equals to zero.  
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