On commutative and non-commutative quantum stochastic diffusion flows

Panagiotis N. Koumantos ${ }^{1}$, Oliver R. Katsikas ${ }^{2}$, Evagelia S. Athanasiadou ${ }^{3}$ and Panaiotis K. Pavlakos ${ }^{4}$

Abstract

In this work we develop quantum stochastic solution flows of stochastic diffusion evolution equations of the form

(SDE)

$$
\left\{\begin{array}{c}
L x=F(x(t)), t>0 \\
x(0)=x_{0}
\end{array}\right.
$$

[^0]Article Info: Received : November 10, 2014. Revised : February 12, 2015.
Published online : September 15, 2015.
on a suitable von Neumann (W^{*}-, Clifford) algebra C of operators with a finite (probability) regular trace. By $L:=d / d t+A$ it is denoted a linear operator such that $-A$ (the Hamiltonian operator of a Quantum Mechanical or a Quantum Field System) is a non-negative and self-adjoint linear operator and the infinitesimal generator of the corresponding analytic semigroup acting on L^{2}-commutative (Bose-Einstein) of functions or on an L^{2}-non-commutative (Fermion-Dirac) of operators (possible unbounded operators) Hilbert space H. By F we mean a given H-valued quantum stochastic process. Our results apply on a Fock space generated by Hilbert space K with conjugation J, in a Quantum Mechanical or Quantum Field System, including interactions involving quantized Bose-Einstein and Fermion-Dirac fields (specifically spin $1 / 2$ Dirac particles) with an external field via a cutoff Yukawa-type interaction.

Mathematics Subject Classification: 34K30; 47D03; 47D06; 47L30; 81T05; 81 T 10

Keywords: Diffusion evolution equation; one-parameter analytic semi-groups; quantum stochastic flows; quantum mechanics; quantum field theory

1 Introduction

This paper is devoted to quantum stochastic diffusion evolution equations of the form

$$
\left\{\begin{array}{c}
L x=F(x(t)), t>0 \tag{SDE}\\
x(0)=x_{0}
\end{array}\right.
$$

on a suitable Hilbert space H defined by a suitable von Neumann (W^{*}-, Clifford) algebra C endowed with a probability regular trace.

The subject has roots in the interactions of elementary particles namely Bosons (photons, mesons, H^{4}, mesotrons, pions) and Fermions (neutrons,
neutrinos, protons, electrons) have been studied from a variety of points of view (cf. [1], [2]).

In particular in their famous papers Carathéodory [3] and Einstein [4], investigated a foundation of Thermodynamics which has consequences for a better consideration of modern quantum fields models for the interactions of elementary particles.

Besides, Oppenheimer and Schwinger [5] examined an effort to take into account the relation of the source to the mesotron field than either Blabha's classical methods or the a priori postulation of isobars afforded.

Moreover, Yukawa, Sakata and Taketani in a series of papers [6], [7] and [8] following previous ideas of Heisenberg and Fermi studied the emission of light particles, i.e. a neutrino and an electron, after the transition of a "heavy" particle from neutron state to photon state. Years later, Glimm [9], Glimm and Jaffe [10] continue the investigations of Yukawa-type interacting coupling spaces.

On the other hand, Accardi, Anillesh and Volterra [11], Arnold and Sparber [12], Canizo, Lopez and Nieto [13], Lindsay [14], Lindsay and Wills [15], Lindsay and Parthasarathy [16], Sparber, Carrillo, Dolbeault and Markowich [17], considered a class of quantum evolution equations, quantum dynamical semigroups for diffusion models and studied a non-commutative generalization of a stochastic quantum differential equation (of Feynman-Kac type) deriving stochastic quantum flows.

In the present work we obtain quantum stochastic diffusion flows in a commutative case (Bose-Einstein interaction) and in a non-commutative case (Fermi-Dirac interaction).

We study $(S D E)$ in the infinite dimensional case, where $L:=d / d t+A$ denotes a linear operator such that $-A$ is a non-negative self-adjoint linear operator (the Hamiltonian operator) acting on a Hilbert space H such that $-A$ is the infinitesimal generator of an analytic semigroup $e^{-t A}, t \in \mathbf{R}^{+}$and F is a given quantum stochastic process taking values in H.

2 Function spaces and flows

In what follows H will denote a general (complex) Hilbert space with norm $\|\cdot\|$. Let $-A$ be a non-negative self-adjoint operator acting on the Hilbert space H and let $e^{-t A}, t \in \mathbf{R}^{+}:=[0, \infty)$ be the analytic semigroup acting on H with infinitesimal generator $-A$.

As it is well-known we may assume that there exist positive real numbers M, δ such that

$$
\left\|e^{-t A}\right\| \leq M e^{-\delta t}, \quad \text { for all } t \in \mathbf{R}^{+}
$$

Let $C_{b}\left(\mathbf{R}^{+}, H\right)$ the Banach space of bounded continuous functions $u: \mathbf{R}^{+} \rightarrow H$ endowed with supremum norm

$$
\begin{equation*}
|u|:=\left\{\|u(t)\|: t \in \mathbf{R}^{+}\right\} \tag{2.1}
\end{equation*}
$$

and let $C\left(\mathbf{R}^{+}, H\right)$ be the Fréchet space of continuous functions $u: \mathbf{R}^{+} \rightarrow H$.

By a flow (dynamical system, nonlinear semigroup) on a complete metric space X we mean a family $U=U(t), t \in \mathbf{R}^{+}$of functions $U(t): X \rightarrow X$, enjoying the following properties;
for every $t \in \mathbf{R}^{+}, U(t)$ is continuous from X into X for each $x \in X$ the function $t \mapsto U(t) X$ is continuous $U(0)=i$ (identity on X) $U(t+s) x=U(t) U(s) x$, whenever $t, s \in \mathbf{R}^{+}$and $x \in X$ We recall that the function $t \mapsto U(t) x$ is called the trajectory of $x \in X$.

In practice flows arise from autonomous differential equations for which there are theorems concerning existence uniqueness and continuity of solutions.

3 Main results

3.1 The linear case

We start with the linear initial value problem

$$
\left\{\begin{align*}
\left(\frac{d}{d t}+A\right) x(t) & =f(t), t>0 \tag{3.1}\\
x(0) & =x_{0}
\end{align*}\right.
$$

where f is a given H-valued function on $\mathbf{R}^{+}, x_{0} \in H$.

A function $u: \mathbf{R}^{+} \rightarrow D(A)$ is called a classical solution on \mathbf{R}^{+}of (3.1) if it is strongly differentiable for every $t \in \mathbf{R}^{+}$and satisfies (3.1) for every t in \mathbf{R}^{+}. On the other hand a function u in $C\left(\mathbf{R}^{+}, H\right)$ given by

$$
\begin{equation*}
u(t)=e^{-t A} u_{0}+\int_{0}^{t} e^{-(t-s) A} f(s) d s \tag{3.2}
\end{equation*}
$$

is called the mild solution of (3.1) on \mathbf{R}^{+}, with initial data $u(0)=u_{0}$ in H.

Theorem 3.1. Let f be in the Fréchet space $C\left(\mathbf{R}^{+}, H\right)$. Then there exists exactly one mild solution u of (3.2) in $C\left(\mathbf{R}^{+}, H\right)$ and if $f \in C_{b}\left(\mathbf{R}^{+}, H\right)$ then also $u \in C_{b}\left(\mathbf{R}^{+}, H\right)$.

Proof. Let t in \mathbf{R}^{+}. By hypothesis the function $f:[0, t] \rightarrow H$ is bounded and continuous. Hence the Bochner integral

$$
\begin{equation*}
\int_{0}^{t} e^{-(t-s) A} f(s) d s=\int_{0}^{t} e^{-s A} f(t-s) d s \tag{3.3}
\end{equation*}
$$

is well-defined for every $t \geq 0$, since:

$$
\begin{align*}
\int_{0}^{t}\left\|e^{-s A} f(t-s)\right\| d s & \leq M_{0} \int_{0}^{t} e^{-\delta s}\|f(t-s)\| d s \leq M_{0}|f|_{t} \int_{0}^{t} e^{-\delta s} d s \\
& =M_{0}|f|_{t} \delta^{-1}\left(1-e^{-\delta t}\right) \tag{3.4}
\end{align*}
$$

where $|f|_{t}:=\sup \{\|f(s)\|, s \in[0, t]\}$.

Then the function

$$
t \mapsto u(t):=e^{-t A} u_{0}+\int_{0}^{t} e^{-s A} f(t-s) d s
$$

is the unique continuous mild solution of (3.1) (see also [18]).
Finally if $f \in C_{b}\left(\mathbf{R}^{+}, H\right)$ then also $u \in C_{b}\left(\mathbf{R}^{+}, H\right)$ since

$$
\begin{align*}
\|u(t)\| & =\left\|e^{-t A} u_{0}+\int_{0}^{t} e^{-s A} f(t-s) d s\right\| \\
& \leq\left\|e^{-t A} u_{0}\right\|+\left\|\int_{0}^{t} e^{-s A} f(t-s) d s\right\| \\
& \leq M_{0}\left\|u_{0}\right\|+\int_{0}^{t}\left\|e^{-s A} f(t-s)\right\| d s \\
& \leq M_{0}\left\|u_{0}\right\|+M_{0}|f| \delta^{-1} \tag{3.4}
\end{align*}
$$

3.2 The non-linear case

We consider the non-linear initial value problem

$$
\left\{\begin{array}{c}
\left(\frac{d}{d t}+A\right) x(t)=F(x(t)), t>0 \tag{3.5}\\
x(0)=x_{0}
\end{array}\right.
$$

where F is a given H-valued function on $H, x_{0} \in H$.
A function $u: \mathbf{R}^{+} \rightarrow D(A)$ is called a classical solution on \mathbf{R}^{+}of (3.5) if it is strongly differentiable for every $t \in \mathbf{R}^{+}$and satisfies (3.5) for every t in \mathbf{R}^{+}. Moreover a solution u in $C\left(\mathbf{R}^{+}, H\right)$ of the integral equation

$$
\begin{equation*}
x(t)=e^{-t A} u_{0}+\int_{0}^{t} e^{-(t-s) A} F(x(s)) d s \tag{3.6}
\end{equation*}
$$

will be called a mild solution of (3.5) on \mathbf{R}^{+}, with initial data $u(0)=u_{0}$ in H.

Let Φ be the corresponding Nemytskii operator of the non-linear operator $F: H \rightarrow H$ appearing in eq. (3.5), i.e. for every $y: \mathbf{R}^{+} \rightarrow H$, Фy is defined by the formula:

$$
\Phi y(t):=F(y(t)), t \in \mathbf{R}^{+}
$$

Now we state the following condition concerning the Nemytskii operator Φ.

Condition ($\Phi): \Phi y \in C_{b}\left(\mathbf{R}^{+}, H\right)$ provided that $y \in C_{b}\left(\mathbf{R}^{+}, H\right)$ and there exists a real-valued function $\gamma \in C_{b}\left(\mathbf{R}^{+}, \mathbf{R}^{+}\right)$such that:

$$
\begin{equation*}
\left\|\Phi y_{1}(t)-\Phi y_{2}(t)\right\| \leq \gamma(t)\left\|y_{1}(t)-y_{2}(t)\right\| \text {, for all } y_{1}, y_{2} \in C_{b}\left(\mathbf{R}^{+}, H\right) \text { and } \tag{3.7}
\end{equation*}
$$ $t \in \mathbf{R}^{+}$.

Theorem 3.2. Let condition (Φ) holds. Then for any given $u_{0} \in H$ there exists exactly one mild solution $u:=u\left(0, u_{0}\right)$ in $C_{b}\left(\mathbf{R}^{+}, H\right)$ of (3.5) satisfying $u(0)=u_{0}$. Moreover assuming that every mild solution is a classical solution of (3.5), there exists exactly one solution flow $U(t)$ on H with trajectories $t \mapsto U(t) x$ in $C_{b}\left(\mathbf{R}^{+}, H\right), x \in H$.

Proof. Let $u_{0} \in H$. Considering the Hamerstein-type operator

$$
\begin{equation*}
\Pi: C_{b}\left(\mathbf{R}^{+}, H\right) \rightarrow C_{b}\left(\mathbf{R}^{+}, H\right) \tag{3.8}
\end{equation*}
$$

which to any $y \in C_{b}\left(\mathbf{R}^{+}, H\right)$ associates (according to condition (Φ) and to Theorem 3.1) the unique mild solution

$$
\begin{equation*}
\Pi y(t):=e^{-t A} u_{0}+\int_{0}^{t} e^{-s A} \Phi y(t-s) d s, t \in \mathbf{R}^{+} \tag{3.9}
\end{equation*}
$$

in $C_{b}\left(\mathbf{R}^{+}, H\right)$ of the linear initial value problem:

$$
\left\{\begin{array}{c}
\left(\frac{d}{d t}+A\right) x(t)=\Phi y(t) \tag{3.10}\\
x(0)=u_{0}
\end{array}\right.
$$

Now let $y_{1}, y_{2} \in C_{b}\left(\mathbf{R}^{+}, H\right)$ and $t \in \mathbf{R}^{+}$.
Then applying (2.2) and condition (Φ) we see that:

$$
\begin{align*}
\left\|\Pi y_{2}(t)-\Pi y_{1}(t)\right\| & =\left\|\int_{0}^{t} e^{-s A} \Phi y_{2}(t-s) d s-\int_{0}^{t} e^{-s A} \Phi y_{1}(t-s) d s\right\| \\
& \leq \int_{0}^{t}\left\|e^{-s A}\left(\Phi y_{2}(t-s)-\Phi y_{1}(t-s)\right)\right\| d s \\
& \leq M_{0} \int_{0}^{t} e^{-\delta s}\left\|\Phi y_{2}(t-s)-\Phi y_{1}(t-s)\right\| d s \\
& \leq M_{0}|\gamma| \int_{0}^{t} e^{-\delta s}\left\|y_{2}(t-s)-y_{1}(t-s)\right\| d s \\
& \leq M_{0}|\gamma| \int_{0}^{+\infty} e^{-\delta s}\left\|y_{2}(t-s)-y_{1}(t-s)\right\| d s \\
& \leq M_{0}|\gamma| \delta^{-1}\left|y_{2}-y_{1}\right| \tag{3.11}
\end{align*}
$$

Applying (3.11) and induction we deduce

$$
\begin{equation*}
\left\|\Pi^{n} y_{2}(t)-\Pi^{n} y_{1}(t)\right\| \leq \frac{\left(M_{0}|\gamma| \delta^{-1}\right)^{n}}{n!}\left|y_{2}-y_{1}\right| \text {, for all } n \in \mathbf{N} . \tag{3.12}
\end{equation*}
$$

From (3.12) and for n large enough we conclude that Π is a contraction operator on $C_{b}\left(\mathbf{R}^{+}, H\right)$ and has a unique fixed point $u:=u\left(0, u_{0}\right)$ satisfying

$$
\begin{equation*}
u(t):=e^{-t A} u_{0}+\int_{0}^{t} e^{-s A} \Phi u(t-s) d s, \quad t \in \mathbf{R}^{+} \tag{3.13}
\end{equation*}
$$

Therefore the function $u: \mathbf{R}^{+} \rightarrow H$ is the unique mild solution of (3.5) in $C_{b}\left(\mathbf{R}^{+}, H\right)$ with $u(0)=u_{0}$ (see also [18]).

Then setting

$$
\begin{equation*}
U(t) u_{0}:=u(t) \tag{3.14}
\end{equation*}
$$

whenever $t \in \mathbf{R}^{+}$and $u_{0} \in H$ and assuming that u is a classical solution of (3.5) we must infer that $U(t), t \in \mathbf{R}^{+}$, is the unique solution flow on H, with trajectories $t \mapsto U(t) u_{0}$ in $C_{b}\left(\mathbf{R}^{+}, H\right)$.

We have first to justify that $U(t)$ satisfies conditions (2.10) and (2.11).

Let $t \in \mathbf{R}^{+}$.
Let also a sequence $\left(u_{0}^{(n)}\right)$ in H such that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{0}^{(n)}=u_{0} \tag{3.15}
\end{equation*}
$$

Moreover we consider the corresponding solutions

$$
u_{n}\left(0, u_{0}^{(n)}\right):=u_{n}, \text { for every } n \in \mathbf{N}, \text { and } u\left(0, u_{0}\right):=u
$$

such that:

$$
\begin{align*}
& u_{n}(t)=e^{-t A} u_{0}^{(n)}+\int_{0}^{t} e^{-s A} \Phi u_{n}(t-s) d s, t \in \mathbf{R}^{+} \tag{3.16}\\
& u(t)=e^{-t A} u_{0}+\int_{0}^{t} e^{-s A} \Phi u(t-s) d s, t \in \mathbf{R}^{+}
\end{align*}
$$

Then combining condition (Φ), (3.16) and (3.17) we have:

$$
\begin{align*}
\left\|U(t) u_{0}^{(n)}-U(t) u_{0}\right\| & =\left\|u_{n}(t)-u(t)\right\| \\
& =\left\|e^{-t A}\left(u_{0}^{(n)}-u_{0}\right)+\int_{0}^{t} e^{-s A}\left(\Phi u_{n}(t-s)-\Phi u(t-s)\right) d s\right\| \\
& \leq\left\|e^{-t A}\left(u_{0}^{(n)}-u_{0}\right)\right\|+\int_{0}^{t}\left\|e^{-s A}\left(\Phi u_{n}(t-s)-\Phi u(t-s)\right)\right\| d s \\
& \leq M_{0}\left\|u_{0}^{(n)}-u_{0}\right\|+M_{0} \int_{0}^{t} e^{-\delta s}\left\|\Phi u_{n}(t-s)-\Phi u(t-s)\right\| d s \\
& =M_{0}\left\|u_{0}^{(n)}-u_{0}\right\|+M_{0} \int_{0}^{t} e^{-\delta(t-s)}\left\|\Phi u_{n}(s)-\Phi u(s)\right\| d s \\
& \leq M_{0}\left\|u_{0}^{(n)}-u_{0}\right\|+M_{0}|\gamma| \int_{0}^{t}\left\|u_{n}(s)-u(s)\right\| d s \tag{3.18}
\end{align*}
$$

Thus from (3.18) and making use of Gronwall inequality we get:

$$
\begin{align*}
\left\|U(t) u_{0}^{(n)}-U(t) u_{0}\right\| & =\left\|u_{n}(t)-u(t)\right\| \\
& \leq M_{0}\left\|u_{0}^{(n)}-u_{0}\right\| e^{\int_{0}^{t} M_{0}|\gamma| d s} \\
& \leq M_{0}\left\|u_{0}^{(n)}-u_{0}\right\| e^{t M_{0}|\gamma|} \tag{3.19}
\end{align*}
$$

Consequently by (3.15) and (3.19) it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} U(t) u_{0}^{(n)}=U(t) u_{0} \tag{3.20}
\end{equation*}
$$

Next let $u_{0} \in H$. Consider also a sequence $\left(t_{n}\right)$ and $t \in \mathbf{R}^{+}$such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}=t \tag{3.21}
\end{equation*}
$$

and let $t_{0} \in \mathbf{R}^{+}$with

$$
\begin{equation*}
\left|t_{n}\right|=t_{n} \leq t_{0}, \forall n \in \mathbf{N} \tag{3.22}
\end{equation*}
$$

We also put

$$
\begin{equation*}
t_{1}:=\max \left\{t, t_{0}\right\} \tag{3.23}
\end{equation*}
$$

Then by (3.12), (3.15) and (3.23) we deduce
$\left\|U\left(t_{n}\right) u_{0}-U(t) u_{0}\right\|=\left\|u\left(t_{n}\right)-u(t)\right\|$

$$
\begin{align*}
& =\left\|e^{-t_{n} A} u_{0}+\int_{0}^{t_{n}} e^{-s A} \Phi u\left(t_{n}-s\right) d s-e^{-t A} u_{0}-\int_{0}^{t} e^{-s A} \Phi u(t-s) d s\right\| \\
& \leq\left\|e^{-t_{n} A} u_{0}-e^{-t A} u_{0}+\int_{0}^{t_{1}} e^{-s A}\left(\Phi u\left(t_{n}-s\right)-\Phi u(t-s)\right) d s\right\| \\
& \leq\left\|e^{-t_{n} A} u_{0}-e^{-t A} u_{0}\right\|+\int_{0}^{t_{1}}\left\|e^{-s A}\left(\Phi u\left(t_{n}-s\right)-\Phi u(t-s)\right)\right\| d s \\
& \leq\left\|e^{-t_{n} A} u_{0}-e^{-t A} u_{0}\right\|+M_{0} \int_{0}^{t_{1}}\left\|\Phi u\left(t_{n}-s\right)-\Phi u(t-s)\right\| d s \\
& \leq\left\|e^{-t_{n} A} u_{0}-e^{-t A} u_{0}\right\|+M_{0}|\gamma| \int_{0}^{t_{1}}\left\|u\left(t_{n}-s\right)-u(t-s)\right\| d s \tag{3.24}
\end{align*}
$$

for every $n \in \mathbf{N}$.
Thus by (3.21), (3.24) and the Lebesgue Dominated Convergence Theorem it follows that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} U\left(t_{n}\right) u_{0}=U(t) u_{0} \tag{3.25}
\end{equation*}
$$

Finally, by standard arguments, we have $U(0) u_{0}=u_{0}$ and

$$
U\left(t_{1}\right) U\left(t_{2}\right) u_{0}=U\left(t_{1}+t_{2}\right) u_{0}, \text { for all } t_{1}, t_{2} \in \mathbf{R}^{+}
$$

and the proof of the theorem is complete.

4 Applications

4.1 Bose-Einstein case

Let E be the complexification Hilbert space of a real Hilbert space E^{\prime} and let $\wedge_{s}(E)$ denote the Hilbert space of symmetric tensors over E.

Then there exists an isomorphism of $\wedge_{s}(E)$ (via a unitary operator) onto the Hilbert space $L^{2}\left(E^{\prime}, B\left(E^{\prime}\right), d_{2 c}\right)$, with

$$
\begin{equation*}
d_{2 c}(\Gamma)=(2 \pi t)^{-\frac{k}{2}} \int_{\Theta} e^{-\frac{\|x\|^{2}}{4 c}} d \lambda^{k}(x) \tag{4.1}
\end{equation*}
$$

where $\Gamma=P^{-1}(\Theta), \Theta$ is a Borel set in the image $P E^{\prime}$ of a k-dimensional orthogonal projection P on E^{\prime} and $\left(\mathbf{R}^{k}, B\left(\mathbf{R}^{k}\right), \lambda^{k}\right)$ is the Borel-Lebesgue measure in $P E^{\prime}$ (cf. [19]).

Therefore we can take the case

$$
\begin{equation*}
H:=L^{2}\left(E^{\prime}, B\left(E^{\prime}\right), d_{2 c}\right)=\wedge_{s}(E) \tag{4.2}
\end{equation*}
$$

4.2 Fermion (Fermion-Dirac) case

It is well-known that the Banach lattices $L^{p}(X, S, \mu), \quad 1 \leq p \leq \infty$ when (X, S, μ) is a measure space can be extended in a non-commutative algebraic context.

We start recalling briefly some well-known facts concerning a noncommutative integration theory in which, instead of integrating functions on a measurable space with respect to a given measure, one integrates (possibly unbounded) operators "affiliated" with a von Neumann algebra V with respect to a "gage" (or a "trace") on V. We shall restrict on "probability gages" since these gages are relevant for the study of Fermions.

Let E be a complex Hilbert space (the Fermion one-particle space) and let $\wedge_{a}^{n}(E)$ denote the Hilbert space of antisymmetric tensors of rank n over E, whenever $n=1,2, \ldots$ and let $\wedge_{a}^{0}(E)$ be the complex numbers \mathbf{C}.

We shall denote by $\wedge_{a}(E)$ the (Fermion-Dirac) Fock space, that is the Hilbert space direct sum

$$
\begin{equation*}
\oplus_{n=0}^{\infty} \wedge_{a}^{n}(E) \tag{5.1}
\end{equation*}
$$

and ω will denote the complex number ("bare vacuum" or no-particle state) $1 \in \wedge_{a}^{0}(E)$.

For every x in E, the creation operator C_{x} is the bounded linear operator on $\wedge_{a}(E)$ with norm $\left\|C_{x}\right\|=\|x\|$ such that:

$$
\begin{equation*}
C_{x}(u)=(n+1)^{\frac{1}{2}} P_{a}(x \otimes u) \tag{5.2}
\end{equation*}
$$

whenever $u \in \wedge_{a}^{n}(E)$, where P_{a} denotes the antisymmetrization projection.
The annihilation operator, $A_{x}, x \in E$ is defined to be the adjoint of C_{x}, that is $A_{x}:=C_{x}^{*}$.

Now let J be a conjugation on E. We recall that a function $J: E \rightarrow E$ is said to be a conjugation on E if J is antilinear $(J(a x+b y)=\bar{a} J(x)+\bar{b} J(y)$, whenever $x, y \in E$ and for all complex numbers a and b), J is antiunitary $(<J(x), J(y)\rangle=<y, x\rangle$, whenever $x, y \in E$, where $<,>$ denotes the inner product on E) and J has period two ($J^{2}=I$).

We also denote by C the von Neumann algebra generated by all operators (the "Fermion-Dirac fields") $B_{x}, x \in E$ on $\wedge_{a}(E)$ defined by the formula:

$$
\begin{equation*}
B_{x}=C_{x}+A_{J(x)} \tag{5.3}
\end{equation*}
$$

We note that C is the weakly closed Clifford algebra over E relative to the conjugation J.

A regular probability gage space is a triple (K, V, τ), where K is a complex Hilbert space, V is a von Neumann algebra of linear operators on K and τ is a faithful, central, normal trace (state) on V, i.e. τ is a linear functional from V into \mathbf{C} such that:
$\left(\tau_{1}\right) \tau$ is a state, i.e. $\tau(I)=1, T \in V, T \geq 0$ implies $\tau(T) \geq 0$
$\left(\tau_{2}\right) \tau$ is completely additive, namely, if O is any set of mutually orthogonal projections in V with upper bound Y then $\tau(Y)=\sum_{P \in O} \tau(P)$
$\left(\tau_{3}\right) \tau$ is regular or faithful, i.e. if $T \in V, T \geq 0, \tau(T)=0$ implies $T=0$
$\left(\tau_{4}\right) \tau$ is central, i.e. $\tau(T S)=\tau(S T)$, whenever $T, S \in V$.
($\wedge_{a}(E), C, \tau$) is a regular probability gage space, where $\tau: C \rightarrow \mathbf{C}$, and

$$
\begin{equation*}
\tau(u):=<u \omega, \omega>\text { for every } \omega \in C \tag{5.4}
\end{equation*}
$$

(cf. Segal [20])
For any closed linear operator T on E we put

$$
\begin{equation*}
|T|:=\left(T^{*} T\right)^{\frac{1}{2}} \tag{5.5}
\end{equation*}
$$

For $1 \leq p<\infty, L^{p}(E, C, \tau)$ is defined to be the completion of C with respect to the norm $T \mapsto\|T\|_{p}=\tau\left(|T|^{p}\right)^{\frac{1}{p}}$. $L^{\infty}(E, C, \tau)$ is defined to be the Banach space C with respect to its operator norm. It has been shown that the Banach space $L^{p}(E, C, \tau), 1 \leq p \leq \infty$ are spaces of linear (possible unbounded) operators on E (cf. Segal [20]).

In particular the function $u \mapsto u \omega$ extends to a unitary operator from $L^{2}(E, C, \tau)$ onto $\wedge_{a}(E)$ (cf. [21]).

Now we can take the case

$$
\begin{equation*}
H:=L^{2}(E, C, \tau)=\wedge_{a}(E) \tag{5.6}
\end{equation*}
$$

since $L^{2}(E, C, \tau)$ can be regarded as an ordered Hilbert space of operators on E.
Next let S be a four-dimensional complex spin space with positive definite inner product (,) and let K be the Hilbert space of S-valued functions on \mathbf{R}^{3} with

$$
\begin{equation*}
\|\psi\|_{K}^{2}=\int_{\mathbf{R}^{3}}(\psi(x), \psi(x)) d \lambda^{3}(x)<\infty . \tag{5.7}
\end{equation*}
$$

Then we can also take H the Hilbert state space $\wedge_{a}(Z)$ over the Hilbert space Z of a free spin $1 \not 22$ Dirac particle with an external field via a cutoff Yukawa-type interaction such that

$$
\begin{equation*}
Z=K_{+} \oplus K_{+} \tag{5.8}
\end{equation*}
$$

where K_{+}is the irreducible part of K when the infinitesimal generator of time translation is positive on K_{+}.

References

[1] Born, M. and Jordan, W., Zur Quantenmechanic, Z. Phys., 34, (1925), 858888.
[2] Born, M., Heisenberg, W. and Jordan, W., Zur Quantenmechanic II, Z. Phys. 35, (1926), 557-615.
[3] Carathéodory, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann., 67, (1909), 355-386.
[4] Einstein, A., Über die von der molekularkinematischen Theorie der Wärme geforderte Bewegung von rehenden Flüssigieiten suspendierten Teilchen, Ann. Der Physik, 17, (1905), 549-560.
[5] Oppenheimer, J.R. and Schwinger, J., On the Interaction of Mesotrons and Nuclei, Ann. Phys. Rev., 60, (1941), 150-152.
[6] Yukawa, H., On the Interaction of Elementary Particles. I, Proc.-Math. Soc. Japan, 17, (1935), 48-58.
[7] Yukawa, H. and Sakata, S., On the Interaction of Elementary Particles. II, Proc.-Math. Soc. Japan, 19, (1937), 14-23.
[8] Yukawa, H., Sakata, S. and Taketani, M., On the Interaction of Elementary Particles. III, Proc.-Math. Soc. Japan, 20, (1938), 319-341.
[9] Glimm, J., Yukawa coupling of quantum fields in two dimensions, Comm. Math. Phys., 5, (1967), 343-386.
[10]Glimm, J. and Jaffe, A., Self-adjointness for Yukawa 2 Hamiltonian, Ann. Phys., 60, (1970), 321-383.
[11] Accardi, L., Anilesh, M. and Volterra, C.V., On the Structure of Classical and Quantum Flows, J. Funct. Anal., 135, (1996), 421-455.
[12] Arnold, A. and Sparber, C., Conservative Quantum Dynamical Semigroups for mean-field quantum diffusion models, Comm. Math. Phys., 251(1), (2004), 179-207.
[13] Cañ izo, J.A., López, J.L. and Nieto, J., Global L^{1} theory and regularity for the 3D nonlinear Wigner-Poisson-Fokker-Planck system, J. Diff. Eq., 198, (2004), 356-373.
[14]Lindsay, J.M., On the generators of Quantum Stochastic Flows, J. Funct. Anal., 158, (1998), 521-549.
[15]Lindsay, J.M. and Wills, S.J., Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise, Prob. Theory Relat. Fields, 116, (2000), 505-543.
[16]Lindsay, J.M. and Parthasarathy, K.R., On the generators of quantum stochastic flows, J. Funct. Anal., 158, (1998), 521-549.
[17] Sparber, C., Carrillo, J.A., Dolbeault, J. and Markowich, P., On the Long Time behavior Quantum Fokker-Planck Equation, Monatsh. f. Math., 141, (2004), 237-257.
[18] Segal, I., Non-linear semigroups, Ann. Math., 78, (1963), 339-364.
[19] Segal, I., Tensor algebras over Hilbert spaces I, Trans. Amer. Math. Soc., 81, (1956), 106-134.
[20]Segal, I., A non-commutative extension of abstract integration, Ann. Math., 57, (1953), 401- 457; Correction, Ann. Math., 58, (1953), 595-596.
[21] Segal, I., Tensor algebras over Hilbert spaces II, Ann. Math., 63, (1956), 160175.

[^0]: ${ }^{1}$ Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis GR-15784 Athens, Greece.
 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis GR-15783 Athens, Greece.
 E-mail: pnkoumantos@gmail.com, pkoumant@phys.uoa.gr
 ${ }^{2}$ Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis GR-15784 Athens, Greece.
 E-mail: oliverkatsikas@gmail.com
 ${ }^{3}$ Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis GR-15784 Athens, Greece.
 E-mail: eathan@math.uoa.gr
 ${ }^{4}$ Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis GR-15784 Athens, Greece.
 E-mail: ppavlakos@math.uoa.gr

