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Abstract

The article is a short exposition of group-based cryptography. Af-
ter a short introduction, the exposition begins with several public key
cryptosystems that are based on group theory. Next, group-based se-
cret sharing protocols are presented. The relation between group theory
and hash functions and group theory and random generators is studied
in the following two sections. The article closes with a few remarks on
some recent developments on group theoretic analogs of classical com-
binatorial optimization problems.
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of group theory to cryptography. The subject has a rich history with many

points of origin. In this survey article the authors try to present as many

interconnections of the two subjects as possible. There exists a large corpus of

texts on the subject but to the best of our knowledge this is the first that tries

to give a birds eye view instead of focusing on only one cryptographic applica-

tion. The following Section is about applications of group theory to public key

cryptography. Section 3 presents secret sharing schemes. Hash functions based

on Cayley graphs are discussed in Section 4. Section 5 discusses the creation

of random strings using group theory. Finally, in Section 6 the group-theoretic

analogs of classical problems like the Subset Sum and the Knapsack problems

are studied.

2 Public key cryptography

In 1975 Diffie, Hellman and Merkle introduced public key cryptography.

The basic idea is to use for encryption a so-called one way function, a function

such that it is easy to compute f(x) but difficult, in general, to compute f−1(y).

In 1976 Diffie and Hellman presented the Discrete Logarithm Key agree-

ment protocol [12]. This protocol uses a finite cyclic group with generator g

(the original implementation used the multiplicative group of integers modulo

p as the basis group and a primitive root for g). A brief description of the

scheme is given bellow.

Discrete Logarithm scheme

1. Alice and Bob agree, publicly, on a finite cyclic group G and a generating

element g of G.

2. Alice randomly chooses an integer α and sends gα to Bob.

3. Bob randomly chooses an integer β and sends gβ to Alice.

4. Bob computes gαβ = (gα)β.

5. Alice computes gβα = (gβ)α.

Since K = gαβ = gβα, K may serve as a common key. The Discrete Log-

arithm Key agreement protocol is considered secure because it is, supposedly,
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difficult for an eavesdropper to compute gαβ from gα, gβ. A problem that is

connected (although not equivalent) to the discrete logarithm problem, i.e. the

problem of recovering α from g and gα [22, p. 6-7]. Koblitz [16] and Miller

[19] independently suggested the use of the group of rational points of elliptic

curves as a platform in 1985.

The most famous public key encryption protocol is RSA which was pro-

posed by Rivest, Shamir and Adleman in 1977 [27].

RSA scheme

1. Alice chooses two primes p, q, calculates n = pq and selects an integer

1 < e < φ(n) = (p−1)(q−1) with g.c.d(e, φ(n)) = 1. She publishes n, e.

Her secret key is an integer d such that ed = 1 mod φ(n).

2. Bob encodes his message using integers 0 ≤ m ≤ n−1. For every integer

m, Bob sends me mod n to Alice.

3. Alice computes m = med = (me)d mod n.

The basic mathematical tool behind RSA is Euler’s theorem which states

that for every integers n and a with 0 ≤ a ≤ n − 1, aφ(n) = 1 mod n. RSA

is considered secure because it is related to the integer factorization problem

since the only known way to recover m mod n from me mod n is to calculate

med = (me)d mod n. And finding d, supposedly, requires knowledge of φ(n) =

(p− 1)(q − 1) and hence the factorization of n.

Most common public key cryptosystems in use, such as presented above,

are based on abelian groups. However, since computing power expands every

day and new innovative lines of attack are invented, the security of many of

them is questioned. For example, there exists a wide bibliography concerning

attacks to the RSA cryptosystem [8]. And it is not wise to place all of one’s

eggs in the same basket. The wide use of only a few cryptosystems means that

should a line of attack proved successful, the consequences would reach a huge

number of people and certainly, the news would attract a great deal of media

attention. This was the case for an announcement made by A. Shamir back in

1999 which proposed a way to break RSA [17, 32].

Therefore, research in new cryptographic methods is in demand. One

such method uses the foundations of group theory, especially non-commutati-

ve structures as platforms. In section 2, after a brief overview of some basic
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definitions of group theory, we present a few cryptographic methods based on

non-commutative groups. In section 3, we present a secret sharing scheme

which was proposed by the second author [24] and it is based on group pre-

sentations and the word problem.

2.1 Non-commutative Algebraic Cryptography

2.1.1 Group presentations and normal forms

Some prerequisites for the use of a group as a platform, are the presentation

of a group and the possibility to obtain a normal form for an element of the

group with a specific presentation.

A generator g of a group G is any element of a subset S ⊂ G, called

generating set, such that any other element of the group can be expressed in

terms of S. The generators of a group G could be connected by some relations.

For example, the cyclic group of order 2 C2 could be defined by an element g,

as the generator of C2, which is related to the identity element of G by the

relation g2 = e. A presentation of a group G consists of a generating set

and some relations between those generators. Of course, for any group there

is not a unique presentation. For example the next two presentations define

the cyclic group of order 6:

(a : a6 = 1)

(a, b : a2 = 1, b3 = 1, aba−1b−1 = 1)

Although there is a way to pass from one presentation to another for isomor-

phic groups, using the Tietze transformations for example, this is not always

trivial. A useful property of a group is the possibility of writing any element

in a standard way that becomes easy for us to choose and manipulate ele-

ments. This is the notion of normal form. The existence of a normal form

is a characteristic of free groups for example [28]. There are two necessary

principles that need to be held by a normal form. The first one is uniqueness;

every object must have exactly one normal form of a given type, as the second

principle states that two objects of the same normal form have to be equal.

For instance, in the additive group of integers it is known that every integer

has a unique decomposition as a product of prime numbers, not taking in con-
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sideration the order of the product. This is a good way for representing an

integer, with all the advantages described above.

Another extra, useful property of a group is the capability of effectively

rewriting an element in normal form. In Thompson’s Group, for example,

there is such a rewriting system, that converts a given word to its normal

form. Another such example is the braid group where there is not only one

type of normal form, but different types of normal forms, each one useful for

another reason. The early use of braid groups in cryptography is partly due

to the development of different types of normal forms. Thus, the existence of

a normal form is crucial for a platform group in cryptosystems. But what are

other useful properties for a group to be chosen as the base of a cryptosystem?

We will discuss this question in section 2.3. Let us see first the underlying

problems in group-based cryptography.

2.1.2 Decision and Search problems in Group Theory

Fundamental decision problems formulated by Max Dehn [10] in 1911, be-

ing used for implementing a one-way function are presented below [18]. Let G

be a group which presentation is given. Then:

• The Word Problem: for a word W given in terms of generators of G,

find in a finite number of steps whether W = 1 or not.

• The Conjugacy Problem: for two given words W1, W2 on the gener-

ators of G, decide in a finite number of steps whether

W1 = g−1W2g, for g ∈ G.

• The Isomorphism Problem: for two presentations G, G′, decide in a

finite number of steps whether the groups G, G′ are isomorphic or not.

These problems are not solvable in general. The word problem is solvable

in the following classes of groups: finite, polycyclic, one relator negative cur-

vature, Coxeter, Braid, residually finite, finitely generated groups and others.

The conjugacy problem expands the word problem, as the latter comes from

the first one, just by substituting the word W1 = 1. The isomorphism problem

is believed to be the most difficult of Dehn’s problems.
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Although some of these have been solved for some special types of groups,

as mentioned above, their solution is sometimes infeasible to compute; so a

one-way function could be implemented based on this fact. Even though such

a problem could be solved in a finite number of steps, it could be a difficult

problem from a cryptographic point of view. So, one should know whether the

problem could be solved in polynomial or subexponential time. In this way

search problems emerge: Given a property P , known that there are objects

with this property, try to find such an object.

2.1.3 Key Agreement Protocols based on non commutative groups

An analogue of Discrete Logarithm Problem (DLP) in group theory is the

Conjugacy Search Problem (CSP): If G is a non-abelian group and g, h ∈ G

such that g and h are conjugate, find an element y ∈ G so that the next

equality occurs: h = y−1gy. The CSP seems to be a really hard problem given

an appropriate choice of a platform group. This choice is going to be discussed

later on.

2.1.4 Ko et al. Key Agreement Protocol [15]

Suppose G is a non-abelian group chosen and A, B ≤ G commuting sub-

groups and let g ∈ G be an element, all the above publicly known. A secret

common key is developed by Alice and Bob, procceding as follows:

1. Alice selects a ∈ A, calculates ga = a−1ga and sends ga to Bob.

2. Bob selects b ∈ B, calculates gb = b−1gb and sends gb to Alice.

3. Each one computes Ka = (gb)a, Kb = (ga)b = K which stands for the

common secret key, as ab = ba and hence Ka = gab = gba = Kb.

The platform group G chosen in this scheme is a very critical point. The

authors Ko et al. used for instance the Braid group Bn. The real reason about

that is that a good normal form for the elements of Braid groups exists.
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2.1.5 Anshel et al. Key Agreement Protocol [1]

A non-abelian group G is used for this protocol too, but the need of any

commuting subgroups is overtaken. So, except the group G, also elements

a1, . . . , ak, b1, . . . , bm ∈ G are made publicly known. The key establishment

comes as follows:

1. Alice computes a private word x = x(a1, . . . , ak) on a1, . . . , ak and sends

Bob bx
1 , . . . , b

x
m, where bx

i stands for the conjugate x−1bix.

2. Bob computes a private word y = y(b1, . . . , bm) on b1, . . . , bm and sends

Alice ay
1, . . . , a

y
k.

3. Then Alice computes x(ay
1, . . . , a

y
k) = xy = y−1xy and Bob computes

y(bx
1 , . . . , b

x
m) = yx = x−1yx. The commutator [x, y] stands for the

common secret key K, as: [x, y] = x−1xy and [x, y] = (y−1yx)
−1

=

(y−1x−1yx)
−1

= x−1y−1xy respectively.

An interesting implementation involves the braid groups. In particular, the

n-braid group Bn is defined by the following group presentation.

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣σiσjσi = σjσiσj, if |i− j| = 1

σiσj = σjσi, if |i− j| ≥ 2

〉
Each element of Bn is called an n-braid. A n-braid can be displayed as a set of

disjoint n strands all of which are attached to two horizontal bars at the top

and at the bottom, so as each strand always heads downwards as one ”walks”

along the strand from the top to the bottom. The braid index is the number

of strings. The multiplication ab of two braids σ1 and σ2 is the braid obtained

by positioning σ1 on top of σ2. The identity e is the braid consisting of n

straight vertical strands and the inverse of a is the reflection of a with respect

to a horizontal line.

Let us see why braid groups could be a good candidate as a platform group.

First of all it has solvable word problem and there is a canonical form (in fact

more [4]) for it’s elements such that braids are easily compared. Also the

best known algorithm to solve the conjugacy problem is of exponential time.

Finally, the membership decision problem in a braid group Bn, n > 6 is al-

gorithmically unsolvable, because such a group contains subgroups isomorphic

to the free group product F2 × F2, where the membership decision problem
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Figure 1: 5 - braid

Figure 2: A n - braid b

Figure 3: The inverse n - braid b−1

(determining whether or not a given x ∈ G belongs to a subgroup of G gen-

erated by given a1, a2, . . . an) is algorithmically unsolvable [22, p.48]. This is

important because an adversary would have to know the x, y elements above

not simply as a word in G, but as a word in public elements used a1, a2, . . . an

or b1, b2, . . . bm in order to reveal the secret key K ([22]).

2.1.6 Other protocols

There is an easy way to implement other protocols not based on the con-

jugacy search problem. Besides, the first naive scheme on group based cryp-

tography by Wagner and Magyarik (1985) [33], was depended on the word

problem, although it was not really a cryptosystem [3]. The basic idea is that
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we could have a defining relation anything like:

ga = f(a)ga, f : G → G

where f is a function in group G. In the case of conjugacy search problem f

is defined as:
f : G → G

x 7→ f(x) = x−1

On the other hand f could be also the identity map, inducing the decompo-

sition problem protocols. An extended reference on such themes can be

found in [22].

2.2 Attacks on group-based systems

Several cryptanalytic methods try to exploit the group structure used in

group-based cryptographic schemes. For example, if the basis group G that is

used is linear and there exists a group isomorphism φ : G → GL(V ) which can

be efficiently computed, then the word problem and the conjugacy problems

can be solved with simple matrix multiplication and linear algebra respectively

[6]. Below, we present two methods. More information can be found in [22].

2.2.1 Length based attacks

Given a group G where we can define a normal form we can define a length

function l. l(g) is the number of generators counted with multiplicity that

appear in the normal form of g. In 2003 Hughes and Tannenbaum [13] proposed

a method for solving the Conjugacy Search Problem using the length function.

We remind that the problem is given two elements g, h = y−1gy where

g, y ∈ G to find the element y. If S = {s1, . . . , sn} is a generating set of G

then y can be written as a product of the generators i.e. y = si1 · · · sik , sj ∈
{1, . . . , n}. Hughes and Tannenbaum observed that in general the following

inequality holds:

l(x) < l(s−1xs), s ∈ S, x ∈ G

Hence given h = y−1gy = s−1
ik
· · · s−1

i1
gsi1 · · · sik we can form the products

s1hs−1
1 , . . . , snhs−1

n and calculate their lengths. If l(smhs−1
m ) < l(h) for some
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element sm then, hopefully, sik = sm. In that case we conjugate with sm and

repeat the process for the element h′ = s−1
ik
· · · s−1

i2
gsi2 · · · sik .

In [29] Ruinsky et. al. remark that since in several protocols the element

y in the Conjugacy Search Problem belongs to a subgroup H of G instead of

using a length function we could use a subgroup distance function d i.e. a

function d : G → R+ that satisfies the following two axioms:

1. d(h) = 0 for all h ∈ H,

2. d(g) > 0 for all g ∈ G \H.

2.2.2 Quotient attacks

Another general method for attacking group-based cryptosystems is the so

called quotient attacks. The idea behind these attacks is for a given group

G to find a ”suitable” quotient G/N and a surjective group homomorphism

φ : G → G/N . Then instead of solving a problem (ex. Conjugacy Search

Problem, Membership Problem etc.) in G solve it in G/N . The solution then

might be ”lifted” in G.

For example, let G be a group and H =< a1, . . . , am > a finitely gen-

erated subgroup. The membership problem is for a given element g in G

to determine whether g is an element of H. If φ : G → G/N is a surjec-

tive group homomorphism one may try to determine whether φ(g) belongs to

φ(H) =< φ(a1), . . . , φ(am) >. If φ(g) ∈ φ(H) and φ(g) = w(φ(a1), . . . , φ(am))

is the expression of φ(g) in the generating set {φ(a1), . . . , φ(am)} then one can

check if g = w(a1, . . . , am). In case the last equation holds, we have g ∈ H.

2.3 Choosing the group and the problem

As noted above the construction of a group-based cryptosystem has two

parts. The first one is choosing the platform group and the second one is

the underlying problem. Concerning the group-based underlying problem it

is not really clear, at the present, which is the best choice. For example, the

conjugacy search problem may not provide a sufficient security level in braid

groups, although it could be adopted in special cases [22].
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On the other hand the choice of the platform group is believed that has to

meet specific standards, such as mentioned below. The first one is the existence

of an effective normal form, so that the word problem is solvable in real time.

The normal form is also useful in hiding the message parts that could be

obvious to recover; i.e. the part elements x, y ∈ G in the product xy. Another,

high priority, requirement is the size of the group. It is needed to be of super-

polynomial growth, that means the elements of length n, growing faster than

any polynomial in n so that a direct attack could not be implemented. Finally,

all the above contribute to the choice of a well known group. Among groups

meeting the above criteria and used so far are: braid groups, Thompson’s

group, Artin groups, solvable groups and others. Research in this context is

open and has many potential.

3 Secret sharing

3.1 Secret sharing in general

A secret sharing scheme answers to the problem of distributing a secret

among a group of n persons in such a way that it can be reconstructed only

if at least t of them combine their shares. Such a scheme is called a (n, t)

threshold scheme. If n = t then, the most simple solution is to encode the

secret as a vector u = (u1, . . . , um) and distribute one vector vi = (vi1, . . . , vim)

to each participant such that u = v1 + · · ·+ vn. We call this method the XOR

method. The problem for n 6= t was first solved independently by A. Shamir

[30] and G. Blakley [5] in 1979. In what follows we, briefly, present Shamir’s

scheme for creating a (n, t) threshold scheme.

Shamir’s secret sharing scheme

Suppose that the secret is encoded by a number D.

1. Choose at random t− 1 coefficients a1, . . . , at−1 and calculate the values

Di = p(i) for i = 1, . . . , n of the polynomial p(x) = D + a1x + · · · +
at−1x

t−1. Di are the distributed pieces of the key.

2. Given any subset of t of these Di values we can find the coefficients of

p(x) by interpolation, and then evaluate D = p(0). Knowledge of t − 1
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(or fewer) of these values, on the other hand, does not suffice to calculate

D. Knowing t− 1 (or fewer) shares provide no advantage over knowing

no pieces (i.e. this is a perfect threshold scheme).

Shamir’s solution to the secret sharing problem (as well as several other solu-

tions) has some interesting properties. For example:

• its security is theoretical, it is not based on the hardness of a specific

problem. Not knowing at least t− 1 pieces makes it not hard but impos-

sible to find D,

• the keys are easy to change without changing the original secret infor-

mation D,

• we can have a hierarchial scheme in which important persons have more

pieces of the key,

• if t is fixed, then any of the pieces Di can be dynamically added or deleted

without this affecting the other pieces.

The use of group theory to secret sharing was introduced by the second

author in [24] and it is based on group presentations and the word problem.

A brief presentation of the scheme is given in the next subsection.

3.2 A secret sharing scheme based on the word problem

3.2.1 Description of the scheme

Suppose that a binary sequence must be distributed among n persons in

such a way that at least t of them must cooperate in order to obtain the whole

sequence. The secret sharing scheme consists of the following steps:

1. A group G with finite presentation G =< x1, x2, . . . , xk/ r1, . . . , rm >

and soluble word problem is chosen. We require that m =

(
n

t− 1

)
.

2. Let A1, . . . , Am be an enumeration of the subsets of {1, . . . , n} with t-1

elements. Let R1, . . . , Rn be n subsets of the relators set {r1, . . . , rm}
where rj ∈ Ri if and only if i /∈ Aj, j = 1, . . . ,m, i = 1, . . . , n.
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Another way of viewing the sets R1, . . . , Rn is the following: each set Ri

is created from the relators set {r1, . . . , rm} after deleting the relations

rk for those k for which i belongs to Ak.

Thus, for every j = 1, . . . ,m, rj is not contained in exactly t-1 of the

subsets R1, . . . , Rn. It follows that rj is contained in any union of t of

them whereas if we take any t-1 of the R1, . . . , Rn there exists a j such

that rj is not contained in their union.

3. Distribute to each of the n persons one of the sets R1, . . . , Rn. The set

{x1, . . . , xk} is known to all of them.

4. If the binary sequence to be distributed is a1 · · · al construct and dis-

tribute a sequence of elements w1, . . . , wl of G such that wi =G 1 if and

only if ai = 1, i = 1, . . . , l. The word wi must involve most of the rela-

tions r1, . . . , rm if wi = 1. Furthermore, all of the relations must be used

at some point in the construction of some element.

Any t of the n persons can obtain the sequence a1 · · · al by taking the

union of the subsets of the relations of G that they possess and thus obtaining

the presentation G =< x1, x2, . . . , xk/r1, r2, . . . , rm > and solving the word

problem wi =G 1 in G for i = 1, . . . , l.

A coalition of fewer than t persons cannot decode correctly the message

since the union of fewer than t of the sets R1, . . . , Rn contains some but not

all of the relations r1, . . . , rm. Thus, such a coalition can only obtain a group

presentation G′ =< x1, . . . , xk/ rj1 , . . . , rjp > with p < m and G 6= G′, where

wi =G 1 is not equivalent to wi =G′ 1 in general.

In [24] it was proposed that Coxeter or polycyclic groups could be used

for the implementation of the scheme. In the same article some more remarks

were made on possible attacks to the scheme and ways to protect from them.

3.2.2 Some interesting remarks

The aforementioned scheme has several interesting properties:

• If in step 4 all the relations r1, . . . , rm are used f or the generation of

a word w representing the digit 1, then the scheme is perfect (i.e. no

information can be gained by a subset with fewer than t secret holders).
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• Contrary to other schemes (e.g. Shamir’s, Blakley’s scheme), the secret

sequence to be shared can be transmitted through open channels.

• The secret is not needed until the final step. Hence, it is possible for

someone to distribute the sets R1, . . . , Rn and decide at a later time

what the sequence will be.

• Since the secret is not needed until the final step several different secrets

can be shared without updating the long-term private information.

• Since the secret is not needed until the final step the scheme can also be

used so that t of the n persons can verify the authenticity of a message.

In particular the binary sequence in step 4 could contain a predeter-

mined subsequence (signature) along with the normal message. Then t

persons may check whether this predetermined sequence is contained in

the encoded message thus validating it.

• Moreover, the signature mentioned above can be created in such a way

that only a certain subset of n persons can verify it. This can be done

by using only the relations that appear in the pieces of this particular

subset of key holders. In general it can be arranged that only a specific

subset of the key holders will be able to correctly decrypt a message. It

can even be arranged that two different subsets of key holders will end

up with entirely different messages after decryption.

• Like Shamir’s scheme the security is theoretical. Any of the pieces can

be added or deleted without this affecting the others and we can have a

hierarchial scheme in which important persons have more pieces of the

key. On the other hand, contrary to Shamir’s scheme, it is not obvious

how to add a share. It is not clear, also, if a key can be changed.

3.2.3 Further developments

The major drawback of the previous (n, t) secret sharing scheme is that

the number of the relationships r1, . . . , rm in the group’s presentations grows

very fast for increasing n. Habeeb et. al. [14] and Cavallo et. al. [9] try
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to remedy the problem by proposing variations of the classical secret sharing

schemes that use group theory.

More specifically, they alter the XOR method by distributing groups Gi =<

x1, . . . , xm/Ri > to each participant and then use them to encode and dis-

tribute the, binary in this case, vectors vi. This is done for every vector

vi = (vi1, . . . , vim) by a sequence of words wi1, · · · , wim where wij = 1 in Gi if

and only if vij = 1. As for Shamir’s scheme they encode the values Di first into

binary sequences and then use the same method to transmit them to the par-

ticipants [9, 14]. In addition to this method in [9] it is proposed to use groups

Gi =< x1, . . . , xm/Ri > where a normal form can be efficiently computed and

which we can use to order the elements of the group. The encoding of each

value Di is a word in Gi whose number is Di in the resulting ordering.

4 Hash functions

4.1 Hash functions in general

This section contains a few generalities on hash functions. We beginwith

some definitions.

Definition 4.1. A hash function h is a function that takes as input an arbi-

trarily long string of letters on an alphabet X, usually called a message, and

outputs a bit string of fixed length n.

h : X∗ → Xn, m 7→ h(m)

Remark 4.2. In the literature the alphabet X is {0, 1}. The reason for the

generalization will become clear in the next subsection. (Our apologies to the

cryptographic community.)

A classical application of hash functions is in password storage [11]. The

passwords of the users of an online service (ex. e-banking) are not stored

verbatim but for every password m the value h(m) is calculated and stored.

Every time a user tries to use the service he provides his password and its hash

image is computed and compared with the stored value. Hash functions are

designed such that:
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1. it is highly improbable to have to strings m, m′ such that h(m) = h(m′),

hence a user passes the verification only if he provides the right password

and

2. it is computationally impossible to find a pre-image m of a hashed value

h(m), hence even if a malicious agent manages to obtain the stored

hashed values he will not be able to retrieve the users passwords.

The second property is the reason for saying that hash functions are one-way

functions. Of course, from a mathematicians point of view a hash function is

obviously not injective. The application above justifies the following definition:

Definition 4.3. Let h : X∗ −→ Xn be a hash function. h is said to be:

• preimage resistant if given h ∈ Xn it is computationally infeasible to find

m ∈ X∗ such that h = h(m).

• second preimage resistant if given m ∈ X∗ it is computationally infeasible

to find m′ ∈ X∗ such that h(m) = h(m′).

• collision resistant if it is computationally infeasible to find m, m′ ∈ X∗, m 6=
m′ such that h(m) = h(m′).

Some simple arguments [11] show that if a hash function is collision resis-

tant then, it is second preimage resistant. Furthermore, if a hash function is

second preimage resistant then, it most probable is preimage resistant.

4.2 Cayley hash functions

At Eurocrypt’91 Zémor [34] introduced a hash function based on a Cayley

graph of the group SL2(Fp) where p is a large prime. More specifically, Zémor

proposed to encode a string as a word on {A, B} where

A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)

and then evaluate the word in SL2(Fp), the resulting element being the hashed

value of the word. Based on this example we can define hash functions based

on finite groups and their generating sets.
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Definition 4.4. Let G be a finite group and S a generating set of the group,

a Cayley hash function h : S∗ → G is the function that sends a word on S to

the corresponding element of G.

When using Cayley graphs for hashing the following three group-theoretic

problems are of paramount importance.

Definition 4.5. [25] Let G be a group and let S = {s1, . . . , sk} be a set of

generators of G. If N ∈ N then, we define the following problems

• The Balance Problem: find two words x1 . . . xm and y1 . . . yl in the

alphabet S with m, l < N such that x1 . . . xm = y1 . . . yl in G.

• The Representation Problem: find a (non trivial) word x1 . . . xm in

the alphabet S with m < N such that x1 . . . xm = l in G.

• The Factorization Problem: given an element g ∈ G find a word

x1 . . . xm in the alphabet S with m < N such that x1 . . . xm = g in G.

It is obvious that the Balance, Representation and Factorization problems

correspond to the notions of collision resistance, second preimage resistance

and preimage resistance for a hash function respectively. We should note

here the importance of the bound N in the above problems. For example, if

the bounding condition on the length of the word is removed, then a simple

answer to the Representation problem would be sk, where sıS is a generator

and k = |G| is the order of G.

As noted by Zémor [34, 35] when creating Cayley hash functions we require

that the corresponding Cayley graph of the group G and its generator set S

(i.e. the graph whose vertices are the elements of G and where (g, w) is an

edge if and only if gw−1 ∈ S ∪S−1) has large girth and small diameter. These

questions are closely related to the Babai’s conjecture:

Conjecture 4.6. [2, conjecture 1.7] If G is a non-abelian finite simple group

of order N and diam(G) its diameter , then diam(G) < (logN)C for some

constant C.

As Petit and Quisquater noted ”the factorization problem can be seen as

providing a constructive proof of Babai’s conjecture” [25]. But, while the
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conjecture has been proved for many spacial cases the proof is non construc-

tive. Only for certain generating sets are constructive proofs are known. The

interested reader may consult [25] for further references.

4.3 Attacks on Cayley hash functions

Soon after the introduction of Cayley hash functions by Zémor the initial

scheme based on SL2(Fp) was found to be insecure by Tillich and Zémor [31]

(in the same article the authors presented a Cayley hash function based on

SL2(F2n) to overcome the vulnerability of the initial protocol). In this section

we give a brief description of the attack that was used.

The attack is based on the fact that every matrix of SL2(Z) with non

negative entries is a product of A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
and the fact

that there is a factorization algorithm for the generating set{
T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)}
.

Given a matrix M in SL2(Fp) someone finds a matrix M ′ ∈ SL2(Z) that

reduces to M modulo p and then expresses M ′ as a product of A and B.

Finally, he reduces the expression modulo p and derives a factorization of M .

The idea behind this ”lifting” attack was used by Petit and Quisquater for

breaking the hash function based in the group SL2(F2n) too [25].

We should note here that Cayley hash functions are also vulnerable to

quotient attacks. More information can be found in [23] and [25] and the

articles mentioned in them. The existence of these attacks has made Cayley

hash functions out of fashion for awhile. But a closer look shows that the

effectiveness of these attacks is based on the specific group of generators S

that is used. A good choice of the base group G and the generator set S will

keep the system safe from the known attacks.

5 Random strings and group theory

It would be a serious omission not mention the existence of a pseudo-



S.D. Hasapis and D. Panagopoulos 91

random bit generator based on the discrete logarithm problem [7]. The follow-

ing exposition is based on [11].

Definition 5.1. Let I = (Ik)k∈N be a key set with security parameter k. Let

f = (fi : Di → Ri)i∈I be a family of one-way functions with key generator K,

and let B = (Bi : Di → {0, 1})i∈I be a family of boolean predicates. Then, B

is called a family of hard-core predicates if and only if:

1. B can be computed by a Monte Carlo algorithm,

2. B(x) is not computable from f(x) by an efficient algorithm

Given a I = (Ik)k∈N be a key set with security parameter k, a polynomial

Q ∈ Z[x] such that Q(x) > 0 for all x ∈ R, x > 0 and a family of one-way

functions f = (fi : Di → Di)i∈I with hard-core predicate B = (Bi : Di →
{0, 1})i∈I where each fi is bijective we can construct the following pseudo-

random generator:

G := G(f, B, Q) = (Gi : Di → {0, 1})k∈N,i∈I

x ∈ Di → (Bi(x), Bi(fi(x)), Bi(f
2
i (x)), . . . , Bi(f

Q(k)−1
i (x)))

The generator described above creates a bit sequence that is virtually in-

distinguishable from a truly random one [11, Th. 8.4]. In [7] it was proved

that if

f = (expp,g : Zp−1 → Z∗
p ' Zp−1)(p,g)∈I

with I = {(p, g) : p prime, g ∈ Z∗
p a primitive root} and B = (Bp,g)(p,g)∈I

where Bp,g(x) = 1 if and only if x ∈ Z∗
p is the principal square root of x2 then,

B is a family of hard-core predicates. That is given the assumption that the

discrete logarithm problem in Z∗
p is computationally hard.

The natural question is:

Problem 5.2. Does a non-commutative version of the above construction ex-

ist?.
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6 Generalization of classical problems

We would like to end our survey by mentioning a research program initi-

ated by Myasnikov, Nikolaev and Ushakov in a series of two articles [20, 21].

They suggest that the complexity of generalizations of various discrete opti-

mization problems (ex. the subset sum problem, the knapsack problem, the

Post correspondence problem) should be studied and that a corpus of results

in this area would serve a variety of goals. In particular such a search would:

• deepen our understanding of the classical discrete optimization problems,

• some of the problems are interesting on their own,

Let G be a group. Examples of the generalized versions of the problems

are [20]:

• The Subset Sum Problem: given g1, . . . , gm, g ∈ G decide if g =

gε1
1 · · · gεm

m for ε− 1, . . . , εm ∈ {0, 1}.

• The Knapsack Problem: given g1, . . . , gm, g ∈ G decide if g = gε1
1 · · · gεm

m

for non-negative integers ε1, . . . , εm.

• The Submonoid Membership Problem: given g1, . . . , gm, g ∈ G

decide if g belongs to the submonoid generated by g1, . . . gm i.e. if g is

equal to a product of the form gi1 · · · gin where gi1 , . . . , gin ∈ {g1, . . . , gm}.

• The Bounded Submonoid Membership Problem: given g1, . . . , gm,g ∈
G and 1k ∈ N (in unary) decide if g is equal to a product of the form

gi1 · · · gin where gi1 , . . . , gin ∈ {g1, . . . , gm} and n ≤ k.

In case the set {g1, . . . , gm} is closed under inversions then, the Submonoid

Membership Problem is actually the well-known generalized word problem of

group theory. In case the set {g1, . . . , gm} is a generating set then, we have

the Factorization problem cf.(Def. 4.5).

Already there are some interesting results. One of them is the following.

Theorem 6.1. [20, Th. 5.11] Let G be a hyperbolic group. Then, the Bounded

Submonoid Membership Problem is in P.

Which should be contrasted with:
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Theorem 6.2. [26] There are hyperbolic groups with undecidable subgroup

membership problem.

7 Conclusion - Acknowledgements

This ends our brief encounter of group-based cryptography. We would

like to stress that the use of group theory to cryptography is a very active

multidisciplinary research area. Group-based cryptography is a relatively new

field with many interesting, far reaching open problems. The authors hope

that the article gives a glimpse in this exciting field.

The authors would like to thank E. Raptis and the organizers of the 2nd

CryptAAF, especially N. Daras, for their support.

References

[1] I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key

cryptography, Math. Res. Lett., 6, (1999), 287-291.

[2] L. Babai and A. Seress, On the diameter of permutation groups, European

Journal of Combinatorics, 13 4, (1992), 231243.

[3] J.C. Birget, S.S. Magliveras and M.Sramka, On public key cryptosystems

based on combinatorial group theory, Tatra Mt. Publ., 33, (2006), 137-

148.

[4] J.S. Birman, Braids, links and mapping class groups, Annals of Math.

Study, 82, (1974).

[5] G.R. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS,

48, (1979), 313-317.

[6] S.R. Blackburn, C. Cid and C. Mullan, Group Theory in Cryptography,

Groups St Andrews 2009 in Bath, London Mathematical Society Lecture

Note Series,Cambridge University Press, 387(1), (2011), 133149. Also on

Arxiv: http://arxiv.org/abs/0906.5545v2.



94 A Survey of Group-based Cryptography

[7] M. Blum and S. Mikali, How to generate cryptographically strong se-

quences of pseudo-random bits, SIAM Journal of Computation, 13(4),

(1984), 850-864.

[8] D. Boneh, Twenty Years of Attacks on the RSA Cryptosystem, Notices

of the AMS, 46(2), (1999), 203-213.

[9] B. Cavallo and D. Kahrobaei, Secret sharing using non-commutative

groups and the shortlex order, Arxiv, http://arxiv.org/abs/1311.7117,

(2013).

[10] B. Chandler and W. Magnus, The History of Combinatorial Group The-

ory: A Case Study in the History of Ideas, Springer-Vedag New York,

1982.

[11] H. Delfs and H. Knebl, Introduction to Cryptography, Springer, 2007.

[12] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans-

action on Information Theory, 22, (1976), 644-654.

[13] J. Hughes and A. Tannenbaum, Length-Based Attacks for Certain

Group Based Encryption Rewriting Systems, , Workshop SECI02

SEcurite de la Communication sur Intenet, (2002). Also on Arxiv:

http://arxiv.org/abs/cs/0306032.

[14] M. Habeeb, D. Kahrobaei and V. Shpilrain, A secret sharing scheme based

on group theory and the word problem, Computational and Combinato-

rial Group Theory and Cryptography, Contemporary Mathematics, 582,

(2012), 143-150.

[15] K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J.s. Kang and C. Park, New

public-key cryptosystem using braid group, Advances in Cryptology -

CRYPTO 2000, Lecture Notes in Computer Science, Springer, Berlin,

(2000), 166-183.

[16] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,

48(177), (1987), 203-209.

[17] J. Markoff, Israeli Scientist Reports Discovery of Advance in Code Break-

ing, The NY Times, May 02, 1999.



S.D. Hasapis and D. Panagopoulos 95

[18] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory,

Dover Publications Inc, 1976.

[19] V. Miller, Use of elliptic curves in cryptography, Advances in Cryptology

Proceedings of CRYPTO ’85 , Springer, Berlin, (1985), 417-426.

[20] A. Myasnikov, A. Nikolaev and A. Ushakov, Knapsack Problems in

Groups, Arxiv, http://arxiv.org/abs/1302.5671, (2013).

[21] A. Myasnikov, A. Nikolaev and A. Ushakov, The post correspondence

problem in Groups, Arxiv, http://arxiv.org/abs/1310.5246, (2013).

[22] A.G. Myasnikov, V. Shpilrain and A. Ushakov, Group-based cryptography,
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