
Journal of Applied Mathematics & Bioinformatics, vol.5, no.3, 2015, 155-176
ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2015

Design and evaluation

of random number generators

George Marinakis1

Abstract

In a cryptographic system the most secret component is the key. Therefore, a great

caution must be given in the key management, which concerns how the keys are

produced, loaded, renovated and distributed. Cryptographic keys are generated

using various types of random number generators (RNG). If these RNG are not

secure, they will constitute the weakest point of the cryptosystem, which might be

susceptible to various attacks. In this study we examine the basic components and

the security weaknesses of deterministic and non-deterministic RNGs and we

propose some improvements in their design methods and evaluation procedures.

Mathematics Subject Classification: 65C10; 94A60; 68P25

Keywords: Random Number Generation; Cryptography; Data encryption

1 Telecommunications and Electronics School of Military Signal Officers, Athens,
 Greece. E-mail: gmari@tee.gr

Article Info: Received : November 14, 2014. Revised : February 15, 2015.
 Published online : September 15, 2015.

mailto:gmari@tee.gr

156 Design and evaluation of random number generators

1 Random Number Generators (RNG)

 In a random number sequence all the possible numbers appear in a random

order and there is no way of predicting the occurrence of one number from its

preceding or its following numbers. Random Number Generator (RNG) is a

hardware or software device which generates number sequences that are

indistinguishable from truly random numbers.

There is a great need for random numbers generation in a big number of

applications, such as gambling, statistical sampling, computer simulations, Monte

Carlo simulations, stochastic simulations, authentication protocols, training of

neural networks, random padding, passwords, initialization vectors, cryptographic

key production, and many others.

 A deep analysis of randomness and random numbers can be found in [1]. In

this paper we will concentrate in the secure design and evaluation of the Random

Number Generators as the basic tool for the production of cryptographic keys.

2 Cryptographic security of RNG

 In every cryptographic system there are two elements which determine its

security, the cryptographic algorithm (which remains constant during the use of

the system) and the cryptographic key (which must change in short time periods).

For cryptanalytic purposes, the cryptographic algorithm is considered to be

known, either because the algorithm from the beginning has been published or it

may be compromised during its life time. Therefore, the most critical security

element becomes the key, because if the key is compromised to a non authorized

person, he can decrypt all the messages that are encrypted with it.

 It is obvious that the cryptographic keys must not only have an adequate

complexity (big key length) and a short crypto period (frequent key change), but

they must have a good quality, which means that they must have sufficient

George Marinakis 157

randomness and unpredictability. The characteristics of the random numbers

generators (RNG) make them proper for the production of cryptographic keys. But

if the quality of the RNG is not good (low randomness and unpredictability), this

could compromise and bypass the total security of a cryptographic system.

 Generally, it has to be noted that the cryptanalytic exhaustive key search for

the crypto keys can be reduced, if the RNG which produces the keys has less

entropy than the key. For example, if a crypto system uses 128 bit keys, which are

produced from an PRNG which has only 64 bits seed, then it does not have a key

space of 2^128 - as it may first appear - but 2^64.

3 Categories of Random Number Generators

 There are two basic categories of Random Number Generators, the True RNG

(or Physical RNG) and the Pseudo RNG (or Deterministic RNG). Their basic

properties are shown in Table 1.

 Table 1: Types of RNG

 TRUE RNG (TRNG)

 PSEUDO RNG (PRNG)

-Non Deterministic RNG

-Deterministic RNG (DRNG)

-Random output

-Pseudo random output

Input Entropy : Physical noise

Input Entropy : Chosen Seed

Implementation : Hardware

Implementation : Software

-Special devices
-Hardware failures

-Depend from seed and internal state
-Correlations of outputs

-Slower

-Faster

158 Design and evaluation of random number generators

 HYBRID RNG
 PRNG with regular re-seeding by a true random source

The Hybrid Random Number Generators (HRNG) are mixed RNG, which

combine some of the properties of the True and the Pseudo RNG and usually they

are implemented by PRNG with a regular re-seeding by a TRNG.

In the following paragraphs we will examine separately the design and

security attributes of TRNG , PRNG and HRNG.

4 True Random Number Generators (TRNG)

The TRNG’s are based on a physical noise source which produces an analog

random signal, which is then digitized and processed to produce random bits in the

output, as is shown in Figure 1.

 Analog random Digitized random Random bits

 signal signal

 Figure 1: TRNG general diagram

We have to note that regardless of the post process method, the entropy

(randomness) of the output bits can not become greater than the entropy of the

source which is given by the formula:

 Physical
noise source

 Digitizer
 Post
 process

 Output
 buffer

George Marinakis 159

2
1

() () log [1 / ()]
n

i i
i

H x p x p x
=

=∑

where ix is one of the possible value of the bits (0 or 1) , ()ip x is the probability

of its occurrence and n is the total number of the bits.

4.1. The noise source

The physical noise source in Figure 1 must produce a truly random signal and

it can be implemented with one of the following devices:

-Johnson noise (thermal noise in resistors)

-Shot noise (random current fluctuations)

-Avalanche noise (reverse biased Zener diode)

-Free running oscillators

-Quantum optics (reflected or passed photons through a mirror)

-Radioactive sources

In order to reduce the design efforts, the necessary space and the cost, an

alternative option for noise source, is the use of some computer internal units

which produce enough random noise such as :

-Hard disk chaotic turbulence

-Unplugged microphone input

-Video input (camera lens cap - on)

4.2. Post processing of bits

Since the noise source of a TRNG is random, sometimes it may produce some

correlations or uneven distributions between the output bits. As is shown in Figure

1, in order to reduce the correlations and uneven distributions, after the

digitization a post processing is applied to the bits. There are many post

160 Design and evaluation of random number generators

processing methods (which are referred also as de-skewing or mixing methods). A

detailed description of the above post processing methods can be found in [6].

Bellow we give the more common of them:

1. Mapping the bits with 0 or 1 6. XOR with LFSR

2. Transition mappings (00 and 11) 7. XOR of overlapping bits

3. Stream parity 8. Compression of bits

4. Fast Fourier Transform (FFT) 9. Hashing of bits

5. Mixing of two or more inputs (XOR) 10. Encryption of bits

We must note that the post processing plays an additional security role,

because if the physical noise source will fail, the TRNG can work temporarily as a

PRNG.

4.3. Evaluation procedures

 In order to determine the security level of a TRNG, we must first evaluate the

randomness an unpredictability of its output bits and then its total security

weaknesses. For this reason the evaluation must be conducted in two different

phases:

In Phase 1 the prototype of the TRNG is evaluated against:

 1. Secure design

 2. Statistical properties (randomness)

In Phase 2 the whole implementation of the TRNG is evaluated against:

 1.Tolerances of components 5.Malfunction or break down

 2. Aging of components 6.Potential attacks

3. Temperature limits

George Marinakis 161

4.4. Statistical tests for randomness

 For the evaluation of the randomness of the output bits, there are a number of

statistical tests which can detect abnormalities in their distribution and give an

indication of security weaknesses and possible cryptanalytic attacks. Three suites

of such statistical tests are shown in Table 2. More details about this subject can

be found in [1], [7], [8] and [9].

Table 2: Three suites of statistical test for randomness

 NIST SP 800-22

 DIEHARD (Marsaglia)

 CRYPT-X

1) Frequency

2) Cumulative Sum

3) Runs

4) Rank

5) Spectral

6) Templates Matching

7) Universal Statistical

8) Approximate Entropy

9) Random Excursions

10) Moving Averages

11) Lempel-Ziv

Compression

12) Linear Complexity

13) Bayes

1) Birthday Spacings

2) Overlapping 5-

permutation

3) Binary Rank (6x8

Matrices)

4) Binary Rank (31x31&

 32x32 Matrices)

5) Monkey tests (20-bit
 words)
6) Monkey tests
 (OPSO,OQSO, DNA)
7) Number of 1’s in stream
of bytes
8) Number of 1’s in specific
 bytes

9) Parking Lot

10) Overlapping Sums

11) Squeeze

12) Minimum Distance

13) Random Sphere’s

14) Runs

15) Craps

 STREAM CIPHERS

1) Frequency

2) Binary derivatives

3) Change points

4) Runs

5) Sequence complexity

6) Linear complexity

 BLOCK CIPHERS

(1) Frequency

(2) Binary Derivative

(3) Linear

(4) Affine

(5) Avalanche (Plaintext)

(6) Complementation

162 Design and evaluation of random number generators

 There is an open issue, which concerns the overlapping of some statistical

tests and a question of how many distinct tests are needed to evaluate the random

numbers. In reference [10] there is a short discussion on this issue and an

indication for future research.

4.5. Self tests

From the manufacturer’s point, the final implementation of the TRNG in

order to fulfil the security properties, must incorporate some necessary self tests

which must be conducted in the beginning or during its operation and which if

they detect some no proper operation or malfunction, they must give a warning to

its operator. These self tests must be embedded in the TRNG or exceptionally can

be realized externally (by software calling the TRNG). The basic self tests for the

TRNG are:

Start up tests : Verify the principle functionality and the randomness of the

noise source when the TRNG is started (minimum statistical properties).

On line test : Detect the sufficient quality of noise source, or its

deterioration through time.

Total test : Detect the total break down of noise source.

Alarms : In case of weak statistical tests, operational malfunctions and in

case that some errors exceed the expected number.

The U.S. standard FIPS 140-2 “Security Requirements for cryptographic

modules”, [11] , defines four statistical self tests: Monobit test, Poker test, Runs

test and Long Run test. According to this standard, these tests must be applied at

the start up of the TRNG (or on demand) on a sample output of 20.000 bits. This

small sample of the output is selected in order to reduce the time consuming of the

statistical tests. But this size of the test sample is not adequate if we want to

produce long keystreams (like the case of one time pad cryptographic systems). In

George Marinakis 163

these cases, one must conduct more statistical tests (as these in Table 2) and on

bigger output samples.

4.6. Security Classes of TRNG

The U.S. FIPS 140 - 2 defines four Security Levels, which examine the basic

security parameters of cryptographic modules. Very briefly, the most important of

these parameters are: Ports and interfaces, user authentication, physical security,

operational environment, electromagnetic compatibility, key management, self

tests on power up or on demand (cryptographic algorithm test, software/firmware

integrity test, output statistical tests), design assurance, tampering

detection/response and zeroization of the crypto parameters in case of tampering.

Table 3: TRNG application classes

P1 class (medium strength)

P2 class (high strength)

Applications

-Challenges

-Initial vectors

- Cryptographic keys and parameters

- Random padding

- Passwords

Evaluation

requirements

- Statistically random output

- Self tests during operation

- Stat tests + Entropy tests

- Self tests during operation

 (higher than P1)

The German standard AIS 31 “Functionality classes and evaluation

methodology for true (physical) random number generators” [12], defines two

164 Design and evaluation of random number generators

application classes for the TRNG, according to their security strength: The P1

class (medium strength) and the P2 class (high strength). The basic characteristics

of these classes are sawn in Table 3. In P1 class, the statistical tests cover only the

randomness of the bits and they do not cover their unpredictability. In other

words, the statistical tests may detect defects of the random source, but they

cannot verify its randomness. For this reason, in P2 class the entropy tests are

added (Coron’s test, Collision test etc.) which can verify the unpredictability of

the bits and thus the randomness of the source.

As is shown in Figure 2, the statistical tests are applied after the post process

of the TRNG, but the entropy tests must be done at the output of the digitized

signal, because the post process may mask (hide) some dependencies of the bits.

 Analog Digitized Internal External

 signal random bits random bits random bits

 Entropy tests (P2) Statistical tests (P1)

 Figure 2: Check points of the Statistical and Entropy tests

4.7. Selection criteria

In addition to the security requirements, there are some other criteria for the

selection of the proper TRNG for a cryptographic application, which concerns its

functional characteristics and its embodiment into a system. According the

application or the total system in which the TRNG has to be integrated, the

 Physical
 noise
 source

 Digitizer
 Post
 process

Output
 buffer

George Marinakis 165

priority of these requirements may vary. Reference [4] contains a detailed

examination of these functional characteristics. Generally we can briefly

summarize the security and functional requirements for a TRNG into the

following:

1. Certified randomness 5. Embedded or standalone

2. Self testing 6. Power requirements

3. Output rate (speed) 7. Operating temperature

4. Size 8. Price

5 Pseudo Random Number Generators (PRNG or DRNG)

In a Pseudo Random Number (PRNG) or Deterministic Random Number

(DRNG), the source of randomness is not based on a physical process but on a

man made predefined process, which is called Seed. And since the Seed is a

predefined process (or algorithm), this means that its output is not random, but

appears to be random (pseudorandom). As was mentioned in paragraph 3, the need

for the use of PRNG is due to their speed and easier implementation in software.

 Initial state Advance state Pseudorandom bits

Figure 3: General diagram of PRNG

 Seed

 Internal
 State

 Output
 buffer

166 Design and evaluation of random number generators

As is shown in Figure 3, the Seed feeds the Internal State, which is a Finite

State Machine (FSM), that can take only certain values. After the Internal State is

loaded with an initial state from the seed, it changes its internal state every time it

is triggered with a new random number request. This is done with a feedback from

its output. (advance state).

We must note that, regardless of any intermediate processing of the bits, the

entropy of the output bits can not become greater than the entropy of the seed.

5.1. Entropy of the seed

The Seed in the PRNG must give enough randomness and unpredictability for

the initial state. In Table 4 we give some software and hardware sources for the

implementation of the Seed, categorized in Low, Medium and High entropy,

according to their level of unpredictability.

 Table 4: Entropy of different kind of seeds

 Low Entropy

 System Constants

 Medium Entropy

 Variable and Unguessable

 High Entropy

 External Random

-Configuration files

-Drive configuration

-Environment strings

-Contents of screen

-Computer’s date and time

-High resolution clock samples

-Last key pressed

-Log file blocks

-Network statistics

-Process statistics

-Program counter for various

 Processes

-Cursor position with time

-Keystrokes timing

-Mouse click timing

-Mouse movement

-Memory statistics

-Microphone input

 (micr. connected)

-Video input

George Marinakis 167

 When a PRNG it used for cryptographic key production, there are two

important rules that must be followed:

-The entropy of the Seed must be greater than the entropy of the

 cryptographic Key (which is equal to its length).

-The seed must be frequently updated (re-seeding).

5.2. Design goals for PRNG

The basic design goals for a secure PRNG are given bellow in a priority

order:

1. Output indistinguishable from random sequence

2. Knowledge of output does not predict future or past outputs

3. Good use of the entropy in the seed

4. Guaranteed long cycle length

5. Large internal state to avoid exhaustive search

6. Good performance

7. Simple algorithm

5.3. Attacks against the PRNG

A detailed description of the possible attacks against a PRNG is found in [14].

The more important of these attacks are the following:

1. Exhaustive seed search 6. Compromise back tracking

2. Exhaustive state search 7. Control of the input entropy

3. Output pre-computation 8. Chosen seed input

4. Malicious software attacks 9. Cycle shortening

5. Compromise forward tracking 10. Attacks on the operations running

 time

168 Design and evaluation of random number generators

There are various measures that can be taken against the above attacks, which

concern not only the security of the RNG, but the security of the total system

which generates and manages the cryptographic keys (computer security). These

measures include the isolation of the key generation module (using stand alone

computers), the conduction of regular integrity checks (executable code,

configuration files etc.) and the hiding of the critical security information of the

computer memory [15].

5.4. Application Classes (AIS 20)

The German standard AIS 20 “Functionality classes and evaluation

methodology for deterministic random number generators” - ref. [16], defines

four application classes for the PRNG’s, according to their security strength: The

K1, K2, K3 and K4 class. In Table 5 we give their basic characteristics,

applications and security requirements.

Table 5: PRNG application classes according to German AIS 20 standard

 Class

 Apllications

 Security Requirements

 K1

-Challenges

 Mutually different output vectors

 K2

-Initial vectors

+ Output with similar statistical properties

as ideal random numbers

 K3

-Cryptographic

keys

+ Minimum bounds for seed entropy

+ Protection of preceding and following

 K4

-Cryptographic

keys

 + Protection of preceding outputs, in case

 of compromised internal state

George Marinakis 169

5.4.1 Examples of application classes

 The basic component which defines the security class of a PRNG is the Initial

State. In Figure 4 we give examples of K1, K2, K3 implementations:

In class K1 the Initial State is implemented by a counter. In this class, the

security requirements are only for different output vectors with no statistical

properties.

In class K2 the Initial State is implemented by a LFSR or by a block cipher

(OFB) with known key. In this class, there is the additional security requirement

for output statistics similar to ideal random numbers.

In class K3 the Initial State is implemented by a block cipher (OFB) with

secret key. This class, has all the security requirements of the previous classes,

with the additional requirement for minimum bounds for seed entropy and for the

protection of preceding and following outputs (in case of compromised output).

 Advance state

 Pseudorandom bits

 Class K1 : Counter , Class K2 : LFSR or Block cipher (OFB with known key)

 Class K3 : Block cipher (OFB with secret key)

Figure 4: Examples of PRNG application classes K1, K2 and K3 (AIS 20)

 In Figure 5, there is another example of K3 class, in which the Initial State is

implemented by a LFSR and after this is added an One Way Function (hash

function). This prevents an attacker, in the case that he knows some output bits, to

calculate preceding or following output bits.

 Seed

 Internal
 State

 (K1 / K2 / K3)

 Output
 buffer

170 Design and evaluation of random number generators

 Advance state
Pseudorandom bits

Figure 5: PRNG class K3 implementation with One Way Function

 In Figure 6, is shown an example of K4 class, in which the Initial State is

implemented by a LFSR with the addition of two One Way Functions, one before

and one after the Initial State. The additional One Way Function before the Initial

State updates the seed and thus the contents of the Initial State. This not only

prevents the calculation of preceding or following output bits (in the case of

compromised output bits), but prevents also the calculation of preceding outputs,

in the case that some contents of the Internal State are compromised.

 Advance state

 Pseudorandom bits

 Update seed

 Figure 6: PRNG class K4 implementation with two One Way Functions

 Seed

 Internal
 State

 (LFSR)

Output

 buffer One way
Function

(HASH)

 Seed

Internal
 State

(LFSR)

 One way
Function

(HASH)

 One way
Function

(HASH)

Output
 buffer

George Marinakis 171

6 Hybrid Random Number Generators

The Hybrid Random Number Generators (HRNG) combine some of the

properties of True and Pseudo RNG. Their most frequent implementation is the

use of a PRNG with a regular re-seeding by a TRNG, as is shown in Figure 7. The

substitution of the Seed with a TRNG provides a true random input to the PRNG.

This type of HRNG, do not only provide protection against the compromise of the

contents of the Initial State (as in the K4 class), but also provides protection

against the total control of the Internal State. The Hybrid Random Number

Generators provide higher security than the K4 class and belong to the application

class H5 (AIS 20 standard).

 Advance state
Pseudorandom bits

 Update seed

Figure 7: Hybrid RNG (class H5) with a TRNG instead of Seed

 Apart from the example of Figure 7, many other types of HRNG can be

designed with the combination of TRNG ad PRNG. The more common

combination is to mix their outputs with an exclusive OR function. George

Marsaglia has proved that the combination of two independent sequences of

random numbers, makes the final numbers more evenly distributed than the

originals. Also, the combination of two PRNG, provides a longer period to the

output bits, which is the least common multiple of the individual periods.

TRNG

Internal
 State

(LFSR)

 One way
Function

(HASH)

 Output
 buffer

 One way
Function

(HASH)

172 Design and evaluation of random number generators

Generally, the combination of RNG’s make the output bits more independent,

more evenly distributed and harder to predict. A suggestion is to use four types of

RNG that at least one of them must be TRNG and the others must be PRNG of

different categories [15].

 In order to incorporate the various types of hybrid RNG, the AIS 31 standard

was updated in 2011, with the addition of new application classes, which mix the

TRNG with PRNG [17]. An additional reason for this update, was that if the

physical noise source of a TRNG will fail, it can work temporarily as a PRNG,

through the post processing (as it was mentioned in paragraph 4.2.).

7 Security evaluation of the total system

 As it was mentioned in paragraph 5.3, in order to avoid various attacks, we

must not only evaluate the cryptographic security of the RNG, but also the

security of the system in which this is embedded. Therefore, as an additional

measure we suggest to evaluate the functional security of the total cryptographic

key generation system (computer hardware and software), according to the ISO

15408 standard.

 The ISO 15408 standard, known also as the Common Criteria for Information

Technology security evaluation (CC), is an international set of guidelines,

specifications and methods for evaluating the security of the various Information

Technology (IT) products. As is shown in Table 6, it provides seven levels of

assurance, according to the width of the internal tests and the formality of the

security design of the product which is under evaluation. More information on this

subject can be found in [18].

George Marinakis 173

Table 6: The Common Criteria (ISO 15408) Evaluation Assurance Levels (EAL)

 Assurance Level

 Range of Checks

 EAL1

Functional Check

 EAL2

Structural Check

 EAL3

Formal Check and Testing

 EAL4

Formal Design, Check and Inspection

 EAL5

Semi-officially Design and Check

 EAL6

Semi-officially Validated Design and Check

 EAL7

Officially Validated Design and Check

8 Additional security measures

If a user knows the basic technical and security aspects of the RNG, he will be

able to produce his own trusted cryptographic keys. But many hardware or

software cryptographic systems in the market, do not have a Key Input Interface,

which will permit the user to load his own trusted keys. Instead of this, they

provide an automatic internal key generation unit, in which the key production and

the re-keying procedures are not available to the user. The lack of Key Input

Interface and external key generation capability, degrade the security of

cryptographic systems and decrease the trust of the user in them. Therefore, the

users must select cryptographic systems with a Key Input Interface option and

they must not use the internal automatic key generation unit, if the key production

module is not certified and if the automatic re-keying procedure is not known or

not officially approved.

174 Design and evaluation of random number generators

9 Conclusions

We gave a comprehensive introduction of the basic components, the security

weaknesses and the design and evaluation methods of deterministic and non-

deterministic Random Number Generators. In the following list we summarize the

basic security measures which must be taken during the design and the evaluation

phase of a RNG, and we suggest some additional measures in order to make it

suitable for the production of cryptographic keys:

Measures during the design phase of RNG

1. The Entropy of the Seed must be greater than the Key length (PRNG).

2. Frequent change of Seeds (PRNG).

3. Combined use of TRNG and PRNG (hybrid RNG).

4. Isolation of the Key Generation Module (stand alone computer).

5. Integrity checking (executable code, configuration files etc.).

6. Hide the critical information of computer memory.

7. Mandatory Start Up, On Line and Total statistical and performance tests

(TRNG).

8. Alarms in case of weak test results or malfunction (TRNG).

9. Whenever it is possible, obtain random noise from computer hardware.

10. Use cryptographic systems with a Key Input Interface.

11.Use certified internal key generation units with approved re-keying procedures.

Security measures during the evaluation phase of RNG

1. Mandatory Evaluation and Certification of RNG according to International

 Standards (ISO 15408, AIS 20 & 31, FIPS 140 etc.).

2. Improvement of International Standards for RNG with more on line tests on

 bigger samples.

3. Research on the minimum required number of distinct and independent

 statistical tests.

George Marinakis 175

4. For higher levels of security, in addition to statistical tests, conduct entropy

 tests to detect unequal distributions and dependencies.

5. Check not only the design, but also the concrete implementation of RNG , as

well as the total system in which this is embedded.

References

[1] Donald Knuth, The Art of Computer Programming-Volume 2/ Seminumerical

Algorithms, Addison-Wesley 1998.

[2] Bruce Schneier, Applied Cryptography, John Wiley, New York, 1996.

[3] Alfred Menezes, Paul C. van Oorschot, Scott A.Vanstone, Handbook of

Applied Cryptography, CRC Press, 1997.

[4] M. Dugan, Analysis of existing implementations of TRNG, May 2005.

[5] Carl Ellison, P1363:Appendix E-Cryptographic Random Numbers, Draft

V1.0, November 1995.

[6] D. Eastlake, S. Crocker and J. Schiller, RFC 1750 - Randomness

Recommendations for Security, Network Working Group, December 1994.

[7] NIST Special Publication 800-22, A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications, National

Institute of Standards and Technology (NIST), April 2010.

[8] Helen Gustafson et. al., A computer package for measuring strength of

encryption algorithms, Journal of Computers & Security, 13(8), (1994), 687-

697.

[9] G. Marsaglia and G. Diehard, Battery of Tests of Randomness. Available at:

http://stat.fsu.edu/pub/diehard/ (1996), http://stat.fsu.edu/pub/diehard/

[10] Juan Soto, Statistical Testing of Random Number Generators, National

Institute of Standards and Technology (NIST).

[11] FIPS 140-2, Security Requirements for cryptographic modules, National

Institute of Standards and Technology (NIST), May 2001.

http://stat.fsu.edu/pub/diehard/

176 Design and evaluation of random number generators

[12] W. Killmann and W. Schindler, AIS 31: Functionality classes and evaluation

methodology for true (physical) random number generators, version 3.1.,

Bundesamt fur Sicherheit in der Informationstechnik (BSI), Bonn 2001.

[13] Tim Matthews, Suggestions for Random Number Generators in software,

RSA Data Security Engineering Report, December 1995.

[14] Robert W. Baldwin, Preliminary Analysis of the BSAFE 3.x Pseudorandom

Number Generators, RSA Laboratories Technical Bulletin, 8, (Sept., 1998).

[15] W.W. Tsang, C.W. Tso, Lucas Hui, K.P. Chow, K.H. Pun, C.F. Chong and

H.W. Chan, Development of Cryptographic Random Number Generators,

Department of Computer Science and Information Systems, University of

Hong Kong, August 2003.

[16] AIS 20, Functionality classes and evaluation methodology for deterministic

random number generators, Bundesamt fur Sicherheit in der

Informationstechnik (BSI), December 1999.

[17] Viktor Fischer, A Closer Look at Security in Random Number Generators

Design, Laboratoire Hubert Curien, Jean Monnet University, May 2012.

[18] https://www.commoncriteriaportal.org/

