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How many trials does it take to collect

all different types of a population

with probability p ?

Aristides V. Doumas1

Abstract

Coupons are collected one at a time (independently and with re-
placement) from a population containing N distinct types. This process
is repeated until all N different types (coupons) have been collected (at
least once).
Recently, interesting results have been published regarding the asymp-
totics of the moments and the variance, of the number TN of coupons
that a collector has to buy in order to find all N existing different
coupons as N → ∞. Moreover, the limit distribution of the random
variable TN (appropriately normalized), has been obtained for a large
class of coupon probabilities (see, [9], [10], and [11]).
This classical problem of probability theory has found a plethora of
applications in many areas of science, and quite recently, it has been
highly involved with cryptography. In this note we take advantage of
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the above results and present in detailed various examples that illustrate
problems similar to those one faces in the real life. We also conjecture
on the minimum of the variance V [TN ].
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1 Introduction

Consider a population whose members are of N different types (e.g. base-

ball cards). For 1 ≤ j ≤ N we denote by pj the probability that a member

of the population is of type j, where pj > 0 and
∑N

j=1 pj = 1. The members

of the population are sampled independently with replacement and their types

are recorded. The so-called “coupon collector problem” deals with questions

arising in the above procedure. TN is, of course, a random variable. Some key

quantities are the (rising) moments of the number TN of trials it takes until

all N types are detected (at least once), the variance, and (of course), the

distribution of TN .

The CCP pertains to the family of Urn problems among with other fa-

mous problems such as the birthday problem (initiated by Richard von Mises

in 1932), and the matching problem, see, e.g., [8]. CCP has a long history

starting from P.S. Laplace and A.De Moivre, (for details see, e.g., [9], [10],

[11] and the references therein.) The problem became popular in the 1930’s

when the Dixie Cup company introduced a highly successful program by which

children collected Dixie lids to receive “Premiums,” beginning with illustra-

tions of their favored Dixie Circus characters, and then Hollywood stars and

major league baseball players (for the Dixie Cup company history see [31]).

The information above explains, possibly, the fact that the entertaining term

cartophily appeared in the title of two (relatively unknown) papers published

in the first half of the past century (both in Math. Gazette, see [21], [18]).

The problem was highlighted in W. Feller’s work [15] as a classic and impor-

tant topic (see Section 2 below). Since then, CCP has attracted the attention
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of various researchers due to the fact that it has found many applications

in many areas of science (computer science/search algorithms, mathematical

programming, optimization, learning processes, engineering, ecology, as well

as linguistics—see, e.g., [4]). Some representative applications (quite a few

articles are now in the math arXiv) concern biology, (see, [25]), linguistics,

(see, e.g., [19], [13], [26]), computer science (see, e.g., [24], [1], [17], [3], and,

[6].) In particular, the work of J. Bonneau and E. Shutova [6], triggered the

article Computer passwords Speak, friend, and enter, published in the

Economist, 24 March 2012. CCP has attracted the interest of researchers

working in Cryptography and is our belief that this interest will be increased

in the near future, (see, e.g., [16] and [28]).

The outline of this note follows: In Subsection 2.1 we remind the reader well

known results (from the sixties) for the simplest version of the problem, i.e.,

the case where the coupon probabilities are equal. In Subsection 2.2 we present

recently published results for the general case of unequal probabilities. Finally,

in Section 3 we present some examples by exploiting the above mentioned

results.

2 Well known results

2.1 The case of equal probabilities

Naturally, the simplest case occurs when one takes

p1 = · · · = pN =
1

N
. (1)

There are three classical references for this version of the problem:

(i) W. Feller’s well known work, An Introduction to Probability Theory and

Its Applications, Vol. I, (1950), [15].2

(ii)D. J. Newman’s, L. Shepp’s paper, The Double Dixie Cup problem,

(1960), [23], (where they answered the more general question: how long, on

2Readers may observe that general results for the classic CCP of [21] and [18], had
appeared before Feller’s book.
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average does it take to obtain m complete sets of N coupons),

(iii) the famous paper of P. Erdős, A. Rényi, On a classical problem of

Probability theory, (1961), where the limit distribution of the random vari-

able TN (appropriately normalized), turned out to be the standard Gumbel

distribution (see [14]). The results for this case are:

E [ TN ] = NHN , (2)

where (see, [15])

HN =
N∑

m=1

1

m
(3)

(HN is, sometimes, called the N -th harmonic number). Moreover,

E [ TN (TN + 1) ] = N2

(
H2

N +
N∑

m=1

1

m2

)
. (4)

By the celebrated Euler-Maclaurin Summation formula (see, [2]) one has

E [ TN ] ∼ N ln N + γN +
1

2
−

∞∑

k=2

Bk

kNk−1
, (5)

E [ TN (TN + 1) ] = N2

[
(ln N)2 + 2γ ln N + γ2 +

π2

6
+ O

(
ln N

N

)]
, (6)

where BK are the well known Bernoulli numbers. Using the identity

V [ TN ] = E [ TN(TN + 1) ]− E [ TN ]− E [ TN ]2 , (7)

one arrives at the expression

V [ TN ] =
π2

6
N2 −N ln N − (γ + 1)N + O

(
ln N

N

)
. (8)

The heaviest result is due to Erdős and Rényi, [14]. In the case of equal

probabilities the authors stated and proved the following remarkable limit

theorem (see also [12]):

P

{
TN −N ln N

N
≤ x

}
→ exp

(−e−x
)
, N →∞. (9)

♣ A nice computer simulation of the CCP in the case of equal probabilities is

available from [32].
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2.2 The general case of unequal coupon probabilities

For the general (and much more interesting) case of unequal sampling

probabilities the first important result was given by Herman Von Schelling,

in a German journal of a limited circulation as early as 1934 (even before W.

Feller!). This paper, [29], remained practically unknown; besides the formulas

were given without proofs. Later, Von Schelling, (1954), published a complete

version of the first paper, in the American Mathematical Monthly, and ob-

tained general formulae for the first and second moment of TN , see [30]. In

particular, he proved that:

E [ TN ] =
∑

J⊂{1,...,N}
J 6=∅

(−1)|J |−1

∑
j∈J pj

=
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

pj1 + · · ·+ pjm

(10)

and

E [ TN (TN + 1) ] = 2
∑

J⊂{1,...,N}
J 6=∅

(−1)|J |−1

(∑
j∈J pj

)2 (11)

= 2
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

(pj1 + · · ·+ pjm)2 . (12)

However, these expressions are not easy to handle, when N is large. This is

why asymptotic estimates of E[ TN ] and E [ TN (TN + 1) ] are necessary. Of

course, (7) holds. Before we continue we would like to make a conjecture.

Conjecture. Under the constraints:
∑N

j=1 pj = 1, pj > 0, the variance V [ TN ]

is a Schur convex function.

Remark. If the statement above is true, then by a well known property

of Schur convex functions (see [20]), the variance V [ TN ] := V (p1, p2, · · · , pN)

attains its minimum value when all its variables are equal. Then, the conjec-

ture stated in [9] is also true.

The following set up was first introduced in [5] and then it has been adapted

in [9], [10] and [11]. Let α = {aj}∞j=1 be a sequence of strictly positive numbers.

Then, for each integer N > 0, one can create a probability measure πN =
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{p1, ..., pN} on the set of types {1, ..., N} by taking

pj =
aj

AN

, where AN =
N∑

j=1

aj. (13)

Notice that pj depends on α and N , thus, given α, it makes sense to consider

the asymptotic behavior of E [TN ], E [TN (TN + 1)], and V [TN ] as N → ∞.

Thus,

E [TN ] = EN(A−1
N α) = ANEN(α), (14)

where

EN(α) : =
∑

J⊂{1,...,N}
J 6=∅

(−1)|J |−1

∑
j∈J aj

=
N∑

k=1

(−1)k−1
∑

1≤j1<···<jk≤N

1

aj1 + · · ·+ ajk

(15)

=

∫ ∞

0

[
1−

N∏
j=1

(
1− e−ajt

)
]

dt =

∫ 1

0

[
1−

N∏
j=1

(1− xaj)

]
dx

x
. (16)

Similaly,

E [TN(TN + 1)] = QN(A−1
N α) = A2

NQN(α), (17)

where

QN(α) : = 2
∑

J⊂{1,...,N}
J 6=∅

(−1)|J |−1

(∑
j∈J aj

)2 = 2
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

(aj1 + · · ·+ ajm)2

(18)

= 2

∫ ∞

0

[
1−

N∏
j=1

(
1− e−ajt

)
]

t dt = −2

∫ 1

0

[
1−

N∏
j=1

(1− xaj)

]
ln x

x
dx.

(19)

Set

L1(α) := lim
N

EN(α) =

∫ 1

0

[
1−

∞∏
j=1

(1− xaj)

]
dx

x
(20)

and

L2(α) := lim
N

QN(α) = −2

∫ 1

0

[
1−

∞∏
j=1

(1− xaj)

]
ln x

x
dx. (21)



Aristides V. Doumas 7

In [9] the authors obtained a dichotomy, namely that both L1(α), L2(α) are

positive numbers (CASE I), or they are both infinite (CASE II). In partic-

ular they are both finite, if and only if there exist a ξ ∈ (0, 1) such that

∞∑
j=1

ξaj < ∞. (22)

The results we have for the (CASE I) are the following (see, again [9]): If

Li(α) < ∞, i ∈ {1, 2}, then, as N →∞,

E [TN ] = ANL1(α) [1 + o(1)] (23)

E [TN(TN + 1)] = A2
NL2(α) [1 + o(1)] (24)

V [TN ] = A2
N

[
L2(α)− L1(α)2

]
+ o

(
A2

N

)
. (25)

The heaviest result is the following limit theorem:

P

{
TN

AN

≤ y

}
→

∞∏
j=1

(
1− e−ajy

)
, N →∞. (26)

Notice that here the limiting distribution depends on the choice of the sequence

{aj}.
Regarding (CASE II) the authors restricted the class of sequences α = {aj}:

aj =
1

f(j)
, where f ∈ C3, f(x) > 0, f ′(x) > 0,

and, as x →∞,

f(x) →∞,
f ′(x)

f(x)
→ 0,

f ′′(x)/f ′(x)

[f ′(x)/f(x)
= O(1),

f ′′′(x) f(x)2

f ′(x)3
= O(1). (27)

These conditions are satisfied by several common functions. In particular,

f(·) belongs to the class of positive and strictly increasing C3(0,∞) functions,

which grow to ∞ (as x →∞) slower than exponentials, but faster than powers

of logarithms. The results for the (CASE II) are the following:

E[TN ] = ANf(N)

[
1

δ
+ ln δ + γ − δ ln δ + (ω(N)− γ) δ + O

(
δ2 ln2 δ

)]
, (28)

E[TN(TN + 1)] = A2
Nf(N)2

{
1

δ2
+

2 ln δ

δ
+

2γ

δ
+ ln2 δ + 2 (γ − 1) ln δ
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+

(
2ω(N) + γ2 +

π2

6
− 2γ

)
+ O

(
δ ln2 δ

)}
. (29)

V [TN ] ∼ π2

6
A2

N f(N)2 =
π2

6
· 1

p2
N

=
π2

6
· 1

min1≤j≤N{pj}2
, (30)

where

δ(N) =

[
ln

(
f(N)

f ′(N)

)]−1

and

ω(N) := −2 +
f ′′(N)/f ′(N)

f ′(N)/f(N)
.

(The leading behavior of the rising moments of the r.v. TN has been obtained

in [11]). What is even more important is a limit theorem which gives to the

results above a tangible sense. It has been proved that as N →∞

P

{
TN − bN

kN

≤ y

}
−→ exp(e−y), for all y ∈ R, (31)

where

bN = ANf(N) [ln (f(N)/f ′(N))− ln ln (f(N)/f ′(N))] and kN = ANf(N).(32)

Notice that the limiting distribution is Gumbel, independently of the choice of

f(x)(!).

Observation. It is notable that the authors in [9] took advantage of well

known but general limit theorems of [22], in order to prove (26) and (31).

3 Examples

In this section we present some examples which illustrate the limit theo-

rems (9), (26), and (31). We believe, that the connection, as well as, possible

applications with areas such as cryptology, arise naturally. We begin with a

warm up example from W. Feller, [15].

Example 1. What is the probability that in a village of 2190 (= 6 · 365)

people all birthdays are presented? Is the answer much different for 1825

(= 5 · 365) people?
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Here N = 365, and N ln N = 2153. Hence, (9) yields

P (T365 ≤ 2190) = P ((T365 − 2153) /365 ≤ 37/365)

≈ exp(−e−0.1014) = exp(−0.9036) = 0.4051.

On the other hand

P (T365 ≤ 1825) = P ((T365 − 2153) /365 ≤ −328/365)

≈ exp(−e0.8986) = exp(−2.4562) = 0.085.

The following is an entertaining example; in fact it is an inverse type of Ex-

ample 1.

Example 2. A Ph.D. student is the first who visits every day the library

of his university. The library has 200 numbered lockers from 1 to 200. Each

day the librarian gives the student, with probability 1/200, a (numbered) key,

so that the student’s personal things may be safe, while he studies. What

should be the duration of this Ph.D. program, so that with probability 0.90,

our student will borrow all 200 keys at least once (consider that the library is

365 days per year open and that the student is willing to study every day).

In this case N = 200 and N ln N = 1059.66. Assume that the answer is λ

years. We have (from (9))

P (T200 ≤ λ · 365) = P ((T200 − 1059.66) /200 ≤ (λ · 365− 1059.66) /200)

≈ exp(−e−α) = 0.90,

where α = (λ · 365− 1059.66) /200.

Thus, α = − ln [− ln (0.90)] = 2.25037, hence with probability 0.90, this Ph.D.

program should last no less than 4.14 years.

We continue with a general example:

Example 3. It is well known that 100 different types of fish live in the

Lake Michigan (U.S.A.), (see, e.g., [33]). Assume that a fisherman always gets

a fish3 and that after every success he releases the fish into the lake. His goal

is to get a complete set of all 100 types of fish (at least once). What should be

3He is that capable !
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the minimum number of trials, so that with probability 0.90 he gets a complete

set, in each one of the three following cases:

(i) aj = 1/j, j = 1, 2, · · · , 100. This case is the so–called standard Zipf distri-

bution.

(ii) aj = j, j = 1, 2, · · · , 100. This is the well known Linear case.

(iii) aj = 1, i.e., pj = 1/100. This case has already been studied (see Sub-

section 2.1 and Examples 1–2 of Section 3).

I (i) We have,
∑∞

j=1 ξ1/j = ∞, for all ξ ∈ (0, 1). In addition, the function

f(x) = x satisfies conditions (27). Hence, the sequence aj falls into Case II.

We have:

N = 100, f(N) = N, ln (f(N)/f ′(N)) = ln N, and AN = H100 = 5.18738.

Hence, (32) yields b100 = 1596.67, k100 = 518.738. Assume that the answer is

a trials. We have

P (T100 ≤ a) = P ((T100 − 1596.67) /518.738 ≤ (a− 1596.67) /518.738)

≈ exp(−e−λ) = 0.90,

where λ = (a− 1596.67) /518.738.

So that λ = − ln [− ln (0.90)] = 2.25037. Thus, with probability 0.90 one needs

at least 2,765 trials to collect all 100 different types of fish. (The exact calcu-

lation yields a = 2, 764.07 trials).

I (ii). We have,
∑∞

j=1(
1
2
)j < ∞. Hence, this case falls into CASE I. We

have N = 100 and AN =
∑100

j=1 j = 5, 050. As we will see more than 12,000

trials are needed. Indeed,

P (T100 ≤ 12, 000) = P (T100/5, 050) ≤ (12, 000/5, 050)

≈
∞∏

j=1

(
1− e−2.37624j

)
= 0.898477 ≈ 0.90.

I (iii). This is an example similar to Example 2. We mention, again, this

case in order to compare with the results of (i), (ii). We have N = 100 and

N ln N = 460.517. Assume that the answer is b trials. From the corresponding
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limiting theorem (see, (9)) we get

P (T100 ≤ b) = P ((T100 − 460.517) /100 ≤ (b− 460.517) /100)

≈ exp(−e−u) = 0.90,

where u = (b− 460.517) /100.

Hence, u = − ln [− ln (0.90)] = 2.25037, so that with probability 0.90, at least

686 trials are needed. (The exact calculation yields b = 685.554 trials).

Regarging the standard deviation we have the following approximations for

each case respectively:

√
V [ TNZipf

] ≈
√

π2

6
N2 (ln N)2 (30)

=
√

348, 851 ≈ 590.64

√
V [ TNLinear

] ≈
√

(L2(α)− L1(α)2) A2
N

(25)
=

√
20, 945, 800 ≈ 4, 576.66

√
V [ TNEqual

] ≈
√

π2

6
N2

(8)
=

√
1, 6449.3 ≈ 128.26.
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[14] P. Erdős and A. Rényi, On a classical problem of probability theory,
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