
Journal of Applied Mathematics & Bioinformatics, vol.5, no.2, 2015, 85-97 
ISSN: 1792-6602 (print), 1792-6939 (online)  
Scienpress Ltd, 2015 

 
Positive solutions of singular (k,n-k) conjugate 

eigenvalue problem 

Shujie Tian1 and Wei Gao2 

 

 

Abstract 

Positive solution of singular nonlinear (k,n-k) conjugate eigenvalue problem is 

studied by employing the positive property of the Green’s function, the fixed point 

theorem of concave function and Krasnoselskii fixed point theorem in cone. 
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1  Introduction 

This paper deals with the following singular (k,n-k) conjugate eigenvalue 

problem 
( )( 1) ( ) ( ) ( ) 0 1,n k ny x h x f y xλ−− = < <                 (1.1) 
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86                Positive solutions of singular (k,n-k) conjugate eigenvalue problem 

( ) ( )(0) 0, (1) 0 0 1, 0 1,i jy y i k j n k= = ≤ ≤ − ≤ ≤ − −             (1.2) 

Where 1 1k n≤ ≤ −  is a positive number and 0λ >  is a parameter.  

If the conjugate eigenvalue problem (1.1), (1.2) has a positive solution ( )y x  

for a particular λ , then λ  is called an eigenvalue and ( )y x  a corresponding 

eigenfunction of (1.1), (1.2). LetΛ  be the set of eigenvalue of the problem (1.1), 

(1.2), i.e. 

             Λ ={ 0λ > ; (1.1), (1.2) has a positive solution}. 

In recent years, the conjugate eigenvalue problem (1.1), (1.2) has been studied 

extensively, for special case of 1λ = , the existence results of positive solution of 

the problem (1.1), (1.2) has been established in [1-6], and as for twin positive 

solutions, several studies to the problem (1.1), (1.2) can be found in [7-9]. For the 

case of 0λ > , eigenvalue intervals characterizations of the problem (1.1), (1.2) 

has been discussed in [10] by using Krasnoselskii fixed point theorem if ( )f y  is 

superlinear or sublinear. In this paper, by employing property of Green function, 

the fixed point theorem of concave function and Krasnoselskii fixed point theorem 

in cone, we give eigenvalue characterizations under different hypothesis condition, 

and we may allow that ( )f x  is singular at 0,1x = . By using different method 

from [10] we establish not only existence of positive solution but also multiplicity 

of positive solutions of the problem (1.1), (1.2).  

Our assumptions throughout are: 

(H1) ( )h x  is a nonnegative measurable function defined in (0,1) and do not 

vanish identically on any subinterval in (0,1) and 
1 1

1 1

0 0

0 (1 ) ( )d (1 ) ( )dn k k n k ks s h s s s s h s s− − − −< − < − < +∞∫ ∫ ; 

(H2) :[0, ) [0, )f +∞ → +∞ is a nondecreasing continuous function 

and ( ) 0f y >  for 0y > ; 

(H3) 0 0

( )lim 0
y

f yf
y→

= = , ( )lim 0
y

f yf
y∞ →∞

= = . 
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By a positive solution ( )y x of the problem (1.1), (1.2), we means that ( )y x  

satisfies 

(a) 1 1 1( ) C [0,1) C (0,1] C (0,1)k n k ny x − − − −∈   , ( ) 0f y >  in (0,1) and (1.2) 

holds; 

(b) ( 1) ( )ny x−  is locally absolutely continuous in (0,1) and 

              ( )( 1) ( ) ( ) ( ( ))n k ny x h x f y xλ−− =  a.e. in (0,1). 

The main results of this paper are as follows. 

 

Theorem 1 Assume that (H1), (H2) and (H3) hold. Then there exist two positive 

numbers ,λ λ∗
∗ with 0 λ λ∗

∗< ≤ < +∞ such that 

(i). (1.1),(1.2) has no positive solution for (0, )λ λ∗∈ ; 

(ii). (1.1),(1.2) has at least one positive solution for ( , ]λ λ λ∗
∗∈ ; 

(iii). (1.1),(1.2) has at least two positive solutions for ( , )λ λ∗∈ +∞ ; 

(iv). (1.1),(1.2) has nonnegative solution forλ λ∗= . 

 

 

2  Preliminary Notes 

In this section, we provide some properties of the Green’s function for the 

problem (1.1),(1.2) which are needed later, and state the fixed point theorems 

required. As shown in [6], the problem (1.1),(1.2) is equivalent to the integral 

equation  
1

0
( ) ( , ) ( ) ( ( ))d ,y x G x s h s f y s sλ= ∫                   (2.1) 

where 



88                Positive solutions of singular (k,n-k) conjugate eigenvalue problem 

(1 ) 1 1

0

(1 ) 1 1

0

1 ( ) d , 0 1,
( 1)!( 1)!

( , )
1 ( ) d , 0 1.

( 1)!( 1)!

s x n k k

x s k n k

t t x s t s x
k n k

G x s
t t s x t x s

k n k

− − − −

− − − −

 + − ≤ ≤ ≤ − − −= 
 + − ≤ ≤ ≤
 − − −

∫

∫
      (2.2) 

Moreover, the following results have been offered by Kong and Wang [6]. 

Lemma 2.1 For any , [0,1]x s∈ , we have 

                ( ) ( ) ( , ) ( ) ( ),x g s G x s x g sα β≤ ≤                    (2.3) 

( ) ,0 1,
( , ) 1

( ) ,0 1.

ng s s x
G x s s

ng sx x s
s

 ≤ ≤ ≤∂  −≤ ∂  ≤ ≤ ≤


                  (2.4) 

where 

(1 )( )
1

k n kx xx
n

α
−−

=
−

,
1 1(1 )( )

min{ , }

k n kx xx
k n k

β
− − −−

=
−

, (1 )( )
( 1)!( 1)!

n k ks sg x
k n k

− −
=

− − −
. 

Let K  be a cone in Banach space E . We say that a mapΨ is a nonnegative 

continuous concave function on K , if it satisfied: : [0, )KΨ → +∞ is continuous 

and  

(1 ) (1 )x y x yΨ α α αΨ α Ψ( + − ) ≥ ( ) + − ( )  

for all ,x y K∈ and 0 1α≤ ≤ . 

 

Theorem 2 [12] Le K be a cone in Banach space E . For given 0R > , define 

{ };RK u K u R= ∈ < . Assume that : R RT K K→ is a completely continuous 

operator and Ψ is a nonnegative continuous concave function on Κ such 

that y yΨ ( ) ≤ for all Ry K∈ . Suppose that there exist 0 a b R< < ≤ such that 

(A) { }( , );y K a b y aΨ, Ψ φ∈ ( ) > ≠ , and Ty aΨ ( ) > for all ( , )y K a bΨ,∈ where 

{ }( , ) ; ;K a b y K y a y bΨ, Ψ= ∈ ( ) ≥ ≤ ; 

(B) Ty r< for all ry K∈ ; 
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(C) Ty aΨ ( ) > for all ( , )y K a RΨ,∈ with Ty b> , 

then T has at least three fixed points 1 2,y y and 3y in RK satisfying 1 ry K∈ , 

{ }2 ( , );y y K a R y aΨ, Ψ∈ ∈ ( ) > and 3 \ ( ( , ) )R ry K K a R KΨ,∈ ∪ . 

 

Theorem 3 [13] Let E be a Banach space, and K E⊆ a cone in E . 

Assume 1 2,Ω Ω are open subset of E with 1 1 20 ,∈Ω Ω ⊂Ω , and 

let 2 1: ( \ )K KΦ ∩ Ω Ω → be a completely continuous operator such that either 

(I) u uΦ ≤ for 1u K∈ ∩∂Ω , and u uΦ ≥ for 2u K∈ ∩∂Ω ; or  

(II) u uΦ ≥ for 1u K∈ ∩∂Ω , and u uΦ ≤ for 2u K∈ ∩∂Ω , 

then Φ  has a fixed point in 2 1( \ )K ∩ Ω Ω .  

 

 

3 Main Results 

Let
1 3[ , ]
4 4

min ( )
x

xα α
∈

= ,
[0,1]

max ( )
x

xβ β
∈

= and αγ
β

= . Define the cone in Banach space 

[0,1]C  given as 

{ ( ) C[0,1]; ( ) 0}P y x y x= ∈ ≥ , 

1 3,
4 4

{ ( ) C[0,1]; min ( ) }
x

K y x y x yγ
 ∈  

= ∈ ≥ . 

We define the operator :T P P→ by 
1

0
( )( ) : ( , ) ( ) ( ( ))dTy x G x s h s f y s sλ= ∫ .                (3.1) 

 

Lemma 3.1 Suppose that (H1)-(H3) hold. Then :T P P→ is a completely 

continuous mapping andT(K) K⊂ . Moreover, for y K∈ we have 
1 1 1( )( ) [0,1) (0,1] (0,1)k - n-k - n-Ty x C C C∈   , 
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( )( 1) ( ) ( ) ( ) ( ( )) a.e. (0,1)n k nTy x h x f y x xλ−− = ∈ , 
( ) ( )( ) (0) 0, ( ) (1) 0, 0 1, 0 1i jTy Ty i k j n k= = ≤ ≤ − ≤ ≤ − − . 

Proof We only prove ( )T K K⊂ . The proof of the remainder of Lemma 3.1 can 

be found in [6]. 

For y K∈ , by employing (2.3) we have 

            
1

1 3 1 3 0[ , ] [ , ]
4 4 4 4

min ( )( ) min ( ) ( ) ( ) ( ( ))d
x x

Ty x s g s h s f y s sλ α
∈ ∈

≥ ∫  

                     
1

0[0,1]
max ( , ) ( ) ( ( ))d
x

G x s h s f y s sλα
β ∈

≥ ∫  

                     Tyγ= ,  

this implies ( )T K K⊂ .The proof is complete.                            □ 

It follows from the lemma 3.1 that we know that ( )T K K⊂ and fixed point in 

K of T is a solution of the problem (1.1),(1.2) and vice versa. 

 

Lemma 3.2 Suppose that (H1), (H2) and (H3) hold. Then there 

exists 0 λ∗< < +∞ such that the problem (1.1), (1.2) has at least two positive 

solutions for ( , )λ λ∗∈ +∞ . 

Proof It follows from ( )lim 0
y

f y
y→+∞

= that there exists 1 0R > such that ( )f y yε≤ for 

all 1y R≥ , where ε satisfies
1

0
( ) ( )d 1g s h s sελβ <∫ . Let

10
max ( )

y R
M f y

≤ ≤
= , 

then ( )f y M yε≤ +  for all 0y ≥ . By (H3) we get
0

lim lim
( ) ( )y y

y y
f y f y→ →+∞

= = +∞ , 

thus, there exists 0 b< < +∞  such that
0

min
( ) ( )y

b y
f b f y≥

= , and hence there 

exists 0 λ∗< < +∞ such that 
3

14
1
4

[ ( ) ( )d ]
( )

ab g s h s s
f b

λ∗ −= ∫ . Clearly, for all 0y ≥ we 

have 
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( )
( )
bf y y

f b
≥ .                         (3.2) 

We shall now show that the conditions of Theorem 2 are satisfied. Choose 
1 11

0 0
max{ 1,2 (1 ( ) ( )d ) ( ) ( )d }R b M g s h s s g s h s sλβ ελβ −= + − ∫ ∫ . For Ry K∈ we have 

1

0[0,1]
( )( ) max ( , ) ( ) ( ( ))d

x
Ty x G x s h s f y s sλ

∈
≤ ∫  

      
1

0[0,1]
max ( ) ( ) ( )( ( ))d
x

x g s h s M y s sλ β ε
∈

≤ +∫   

      
1

0
( ) ( ) ( )dM y g s h s sλβ ε≤ + ∫  

      
1

0
( ) ( ) ( )dM R g s h s s Rλβ ε= + <∫ , 

this shows ( )R R RT K K K⊂ ⊂ . 

Let [ ): 0,KΨ → +∞ be defined by  

1 3[ , ]
4 4

( ) min ( )
x

y y xΨ
∈

= , 

clearly,Ψ is a nonnegative continuous concave function on K such that ( )y yΨ ≤  

for all y K∈ . 

It is noted that  

{ }1( ) ( ) ( , , ); ( )
2

y x b b y K b b y bγ Ψ γ Ψ γ φ= + ∈ ∈ ≥ ≠ , 

let ( , , )y K b bΨ γ∈ , then
1 3[ , ]
4 4

min ( ) ( )
x

y x y bΨ γ
∈

= ≥ and y y b≤ ≤ . Using this together 

with (3.2), forλ λ∗> we get  

1 3[ , ]
4 4

( )( ) min ( )( )
x

Ty x Ty xΨ
∈

=  

        
3
4

11 3[ , ] 44 4

min ( ) ( ) ( ) ( ( ))d
x

x g s h s f y s sλ α
∈

≥ ∫  

3
4

1
4

( ) ( ) ( )d
( )

b g s h s y s s
f b
λα

≥ ∫  
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32
4

1
4

( ) ( )d
( )

b g s h s s
f b

λαγ
≥ ∫  

b bλγ γ
λ∗= > .   

Hence, condition (A) of Theorem 2 is satisfied. 

By
0

( )lim 0
y

f y
y→

= , there exists 0 r bγ< < such that ( )f y yε< for all y r≤ , where 

ε satisfies 
1

0
( ) ( )d 1g s h s sελβ <∫ . For ry K∈  we have 

1 1

0 0
( ) ( ) ( ( ))d ( ) ( )dTy g s h s f y s s y g s h s s rλβ ελβ≤ ≤ <∫ ∫ , 

this implies that condition (B) of Theorem 2 is satisfied. 

Finally, for ( , , )y K b bΨ γ∈ with Ty b> , we obtain 

1 3[ , ]
4 4

( )( ) min ( )( )
x

Ty x Ty xΨ
∈

=  

        
1

1 3 0[ , ]
4 4

min ( ) ( ) ( ) ( ( ))d
x

x g s h s f y s sλ α
∈

≥ ∫  

        
1

0[0,1]
max ( , ) ( ) ( ( ))d
x

G x s h s f y s sαλ
β ∈

≥ ∫  

        Ty bγ γ= > ． 

Therefore, the condition (C) of Theorem 2 is also satisfied. Consequently, an 

application of Theorem 2 shows that the problem (1.1), (1.2) has at least three 

solutions 1 2 3, , Ry y y K∈ .  

Further, 

1 ry K∈ , { }2 ( , );y y K b R y bΨ,γ Ψ γ∈ ∈ ( ) > and 3 \ ( ( , ) )R ry K K b R KΨ,γ∈ ∪ . This 

shows that 2 ( )y x and 3( )y x are two positive solution of the problem (1.1), (1.2), and 

1( )y x  is a nonnegative solution of (1.1), (1.2).                           □ 

 

Lemma 3.3 Suppose that (H1), (H2) and (H3) hold. Ifλ is sufficiently small, 
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thenλ Λ∉ . 

Proof Ifλ Λ∈ , then the problem (1.1),(1.2) has a positive solution ( )y x Kλ ∈ and 

it satisfies (2.1). We note that (H3) implies the existence of a constant 0η > such 

that ( )f y yη≤ for all 0y ≥ . By employing (2.1) we have 

1

0
( ) ( ) ( ( ))dy g s h s f y s sλ λλβ≤ ∫  

                              
1

0
( ) ( )dy g s h s sλλβη≤ ∫ , 

this means 
1

0
( ) ( )d 1g s h s sλβη ≥∫ , which contradicts with λ  sufficiently small. □ 

 

Lemma 3.4 Suppose that (H1), (H2) and (H3) hold. Then there exists a 0 0λ > such 

that 0[ , )λ Λ+∞ ⊂ . 

Proof Let { }1 , 1K y K y= ∈ < , choose
3

-14
10
4

( ( ))( ( ) ( )d )f g s h s sλ α γ= ∫ , 

for 1y K K∈ ∩∂ and [ )0 ,λ λ∈ +∞ , then
1 3,
4 4

min ( )
x

y x yγ γ
 ∈  

≥ = , by using (H1) and 

(H2) we have 
3
4

10 1 3, 44 4

min ( ) ( ) ( ) ( ( ))d
x

Ty x g s h s f y s sλ α
 ∈  

≥ ∫  

                           
3
4

10
4

( ) ( ) ( )df g s h s sλ α γ≥ ∫  

                           1 ,y= =  

i.e. Ty y≥ for 1y K K∈ ∩∂ . 

It follows from (H3) that there exist 0 1R > such that ( )f y yε≤ for all 0y R≥ , 

whereε  satisfies
1

0
( ) ( )d 1g s h s sελ β∗ <∫ . Let 

0

1

0 00
max ( ) ( ) ( )d

y R
R R f y g s h s sλ β∗

≤ ≤
= + ∫ , 
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and { },RK y K y R= ∈ < ,then for Ry K K∈ ∩∂ , we have  

 

0 0

0

0

1

0

0 ( ) ( )

1

0 00

1

000

( ) ( ) ( ( ))d

[ ( ) ( ) ( ( ))d ( ) ( ) ( ( ))d ]

( max ( ) ) ( ) ( )d

max ( ) ( ) ( )d

,

y s R R y s R

y R

y R

Ty g s h s f y s s

g s h s f y s s g s h s f y s s

f y R g s h s s

f y g s h s s R

R y

λ β

λ β

λ β ε

λ β

∗

∗

≤ ≤ ≤ ≤

∗

≤ ≤

∗

≤ ≤

≤

≤ +

≤ +

< +

= =

∫
∫ ∫

∫

∫

 

i.e. Ty y≤ for Ry K K∈ ∩∂ .                                         □ 

 

In view of the Theorem 3, we know that T has a fixed 

point ( )y x in 1( \ )RK K K∩ . That is to say, the integral equation (2.1) has at least 

one positive solution ( )y x , and hence ( )y x is a positive solution of (k,n-k) 

conjugate eigenvalue problem (1.1),(1.2). 

 

Lemma 3.5 Suppose that (H1), (H2) and (H3) hold. Then the problem (1.1),(1.2) 

has a nonnegative solution forλ λ∗= . 

Proof Without loss of generality, let 1{ }n nλ ∞
= be a monotone decreasing 

sequence, lim nn
λ λ∗→∞

= , and 1{ ( )}
n ny xλ

∞
= be corresponding positive solution sequence 

where nλ Λ∈ . We claim that 1{ ( )}
n ny xλ

∞
= is uniformly bounded. If it is not true, 

then lim
nn

yλ→∞
= +∞ . It follows from ( )lim 0

y

f y
y→+∞

= ; that there exists 0M > such 

that ( )f y M yε≤ + for all 0y ≥ , whereε  satisfies
1

0
( ) ( )d 1g s h s sελβ <∫ . So we get 

1

0
( ) ( ) ( ( ))d

n nny g s h s f y s sλ λλ β≤ ∫  
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1

0
( ) ( ) ( )d .

nn M y g s h s sλλ β ε≤ + ∫             (3.3) 

                 

Let n →∞ in (3.3) to yield 
1

0
1

0

( ) ( )d
lim

1 ( ) ( )d
nn

g s h s s
y

g s h s s
λ

λβ

ελβ→∞
≤ < +∞

−

∫
∫

, 

which is a contradiction. Thus, there exists a number L with 0 L< < +∞ such 

that
n

y Lλ ≤ for all n . 

It follows from (H1) and (2.4) that we have 

 
1

0

( , )|| || ( ) ( ( ))d
n nn

G x sy h s f y s s
xλ λλ ∂′ ≤
∂∫  

11 1

0

( ) ( (1 ) ( )d (1 ) ( )d )
( 1)!( 1)!

x n k k n k k

x

nf L s s h s s s s h s s
k n k

λ∗
− − − −≤ − + −

− − − ∫ ∫  

1 1 1

0

2 ( ) (1 ) ( )d :
( 1)!( 1)!

n k kn f L s s h s s Q
k n k

λ∗
− − −≤ − =

− − − ∫ , 

this shown that 1{ ( )}
n ny xλ

∞
= is equicontinuous. Ascoli-Arzela theorem claims 

that 1{ ( )}
n ny xλ

∞
= has a uniformly convergent subsequence, denoted again 

by 1{ ( )}
n ny xλ

∞
= , and 1{ ( )}

n ny xλ
∞
= converges to ( )y x∗ uniformly on [0,1]. 

Inserting ( )
n

y xλ into (2.1) and letting n →∞ , using the Lebesgue dominated 

convergence theorem, we obtain  
1

0
( ) ( , ) ( ) ( ( ))d 0y x G x s h s f y s sλ∗ ∗ ∗= ≥∫ , 

thus, ( )y x∗ is a nonnegative solution of (1.1),(1.2).                         □ 

 

Remark It is possible that ( ) 0y x∗ = . 

Let infλ Λ∗ = , then from Lemma 3.3 and lemma 3.4 we 

know 0λ∗ > and 0 λ λ∗
∗< ≤ < +∞ . So (k,n-k) conjugate eigenvalue problem 
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(1.1),(1.2) has no positive solution for (0, )λ λ∗∈ , has at least one positive solution 

for ( , ]λ λ λ∗
∗∈ , has at least two positive solutions for ( , )λ λ∗∈ +∞ , and has a 

nonnegative solution forλ λ∗= . 
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