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Abstract 

In this paper we deal with the study of Euler equations for isothermal gas that is 

governed by two hyperbolic equations. By analysing the equations we obtain two 

real and distinct eigenvalues which enables us to determine the wave structure of 

the possible solution to the Riemann problem set up. We then obtain the numerical 

solution to the Riemann problem that we set up using the Godunov scheme and 

the relaxation scheme. Finally, we compare the results obtained from these two 

schemes graphically and explain in details. 
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1  Introduction  

Isothermal gas is one in which the temperature throughout the gas remains 

constant and thus the ideal gas law is reduced to 2p a ρ= . That is pressure is a 

function of density alone. Consider the Euler equation for isothermal gas. The 

system consists of Euler equations and is strictly hyperbolic with two real and 

distinct eigenvalues, whereby, one is greater than the other. Eigenvalues 

physically represent speeds of propagation of information. Depending on the 

initial data the eigenvalues may represent shock and rarefaction waves. Riemann 

problem consist of equations together with the discontinuous initial data consisting 

of two constant states separated by a single discontinuity. It is very useful in 

understanding hyperbolic partial differential equations because all properties 

appear as characteristics in the solution. It is defined by: 
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Using local relaxation approximation Shi Jin et al5 constructed a linear hyperbolic 

system with a stiff lower order term that approximates the original system with a 

small dissipative correction. The main feature of this class of schemes was its 

simplicity and generality since it used neither Riemann solvers spatially nor non-

linear systems of algebraic equations solvers temporally, yet it could achieve high 

order accuracy and picked up the right weak solutions. Also Godunov proposed a 

way to make use of the characteristic information within the framework of a 

conservative method by suggesting solving the Riemann problems forward in time 

and the solutions were easy to compute as well as gave substantial information 

about the characteristic structure and lead to conservation methods since they were 

themselves exact solutions of the conservation laws and hence conservative, 

Leveque, [4]. 
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2  Mathematical formulation of the Euler equations 

Considering the one-dimensional time dependent Euler equation for the 

conservation laws given by   

                                       0)( =+ xt UFU                                                     (2.1) 
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In solving the Riemann problem, we shall frequently make use of the vector 

),( uW ρ= of primitive variables rather than the vector U of conserved variables, 

where is ρ  density and u  is the particle velocity, Toro, [1]. 

Data consists of just two constant states which in terms of primitive variables 

are ),( LLL uW ρ= to the left of 0=x and ),( RRR uW ρ= to the right of 0=x and 

separated by a discontinuity at 0=x . For the case in which no vacuum is present 

the exact solution of the Riemann problem has two waves which are associated 

with the eigenvalues au −=1λ and au +=2λ , Mutua S.K et al, [2]. 

From the above eigenvalues and their corresponding eigenvectors then we can 

be able to determine the structure of the waves since the two waves separate three 

constant states namely LW  (data on the left hand side), *W  and RW  (data on the 

right hand side). The solution to this problem depends on the relative values of 

LW and RW . That is, for RL WW < , a rarefaction wave is going to develop while for

RL WW > , a shock wave is going to appear. All the two quantities, that is, density 

and particle velocity change across a shock wave. Considering a right facing 

shock wave travelling at the constant speed, S . In terms of the primitive variables 

we denote the state ahead of the shock by T
RRR uW ),(ρ=  and the state behind the 

shock by TuW ),( *** ρ= . Now we are interested in deriving relations across the 
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shock wave between the various quantities involved. We accomplish this by 

finding the intermediate state such that they are connected by a discontinuity 

satisfying the Rankine-Hugoniot condition, given by: 
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Now introducing a mass flux, Q, and using the above equations to do some 

manipulation one can be able to obtain the shock speed S, Leveque [4], given as: 

                                         
*

* ρ
ρ lauS ±=                                            (2.3) 

Similarly, inspection of the eigenvectors for the primitive variable 

formulation reveals that density and particle velocity change across a rarefaction 

wave. Now utilizing the i-th generalized Riemann invariants given by the (M-1) 

ODEs, we have 
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where C is a constant. 

Now using the above equations and some manipulations we obtain *ρ  and *u  as 

shown below  
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Similarly,  
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Suppose we wish to solve the Riemann problem with left and right states Lu

and Ru . Just as in the linear case, we can accomplish this by finding an 

intermediate state *u  such that Lu  and *u  are connected by a discontinuity 

satisfying the Rankine-Hugoniot condition and so are *u  and Ru Leveque, [4]. 

 

 

3  Simulation 

3.1 Relaxation Scheme 

The details of the numerical scheme can be found at Mutua S.K et al [3] 

We use the value of h as 0.005 but choose the time step, k, according to Courant-

Friedrichs-Lewy (CFL) condition.  

2
1

max

≤
λh
k  

where maxλ is the maximal (in absolute value) eigenvalue of the Jacobian matrix. 

Now investigating two Euler flow scenarios that lead to two solutions of 

interest namely 1-Rarefaction followed by 2-Shock wave and a 1-Shock wave 

followed by 2-Rarefaction. 
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In the first scenario we consider the initial data 2.0,9.0 == RL ρρ

2.0,1.0 == RL vv . Figure 3.10 (a), 3.10(b), 3.10(c) shows the density, Space – 

time plot and velocity profiles respectively 

 

 

            Figure 3.10 (a): Density profile for a 1-rarefaction followed by a 2-shock 

 

     Figure 3.10 (b): distance-time graph of the density profile for a 1-rarefaction  

                        followed by a 2-shock 
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Figure 3.10 (c): Velocity profile for a 1-rarefaction followed by a 2-shock 
 

 

In the second scenario we consider the initial data 9.0,2.0 == RL ρρ ,

5.0,9.0 == RL vv . Figure 3.11 (a), 3.11(b), 3.11(c) shows the density, Space – 

time plot and velocity profiles respectively. 
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Figure 3.11 (a): Density profile for a 1-shock followed by a 2-rarefaction. 

 

Figure 3.11 (b): distance-time graph of the density profile for a 1-shock followed  

                    by a 2-rarefaction 
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Figure 3.11 (c): Velocity profile for a 1-shock followed by a 2-rarefaction. 

 

 

3.2 Godunov Scheme 

The details of the numerical scheme can be found at Mutua S.K et al, [3]. 

Also using the value of h as 0.005 but choose the time step, k, according to 

Courant-Friedrichs-Lewy (CFL) condition, we investigate two Euler flow 

scenarios that lead to two solutions of interest using the Godunov scheme. In the 

first scenario we consider the initial data 2.0,9.0 == RL ρρ 2.0,1.0 == RL vv . 

Figure 3.12(a) and 3.12(b) shows the density and velocity profiles for the wave 

solutions respectively. 
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Figure 3.12 (a): Density profile for a 1-rarefaction followed by a 2-shock 

 

 

Figure 3.12 (b): Velocity profile for a 1-rarefaction followed by a 2-shock 
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In the second scenario we consider the initial data 9.0,2.0 == RL ρρ ,

5.0,9.0 == RL vv  to yield a 1-Shock followed by 2-Rarefaction wave as shown 

below for both density and velocity profiles respectively. 
 

 

Figure 3.13 (a): Density profile for a 1-shock followed by a 2-rarefaction 

 

 

Figure 3.13 (b): Velocity profile for a 1-shock followed by a 2-rarefaction 
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4  Comparison 

Having considered both the density and velocity profiles for the Euler 

equations using both the Relaxation and Godunov’s schemes, we now present a 

comparison for the two schemes as shown in the figures below. 

Figure 3.14(a) shows the density profile comparison for both schemes 

applied to Euler equations for a 1-Rarefaction wave followed by 2- shock wave 

solution. Figure 3.14(b) shows the velocity profiles for the same wave solutions. 

 

 

 

Figure 3.14 (a): Density profile comparison for 1-Rarefaction followed by 2-

Shock 
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Figure 3.14 (b): Velocity profile comparison for 1-Rarefaction followed by 2-

Shock 

 

Figure 3.15(a) shows the density profile comparison for both schemes applied 

to Euler equations for a 1-Shock wave followed by 2- Rarefaction wave solution. 

Figure 3.15(b) shows the velocity profiles for the same wave solutions. 
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Figure 3.15 (a): Density profile comparison for 1-Shock followed by 2-

Rarefaction 

 

 

Figure 3.15 (b): Velocity profile comparison for 1-Shock followed by 2-

Rarefaction 
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5 Conclusion 

In this study Euler equations have been studied and simulated using both 

Godunov and relaxation schemes and their respective results compared using 

graphs. 

From the graphs above it is noted that the relaxation scheme performs equally 

better as the Godunov scheme. Thus it appears to be more promising and a good 

alternative to the Godunov scheme because of its simplicity. 

Due to insufficient time the authors of this paper decided to consider both 

numerical schemes that is Godunov scheme and relaxation schemes and thus the 

authors recommends for comparison of the schemes with the exact solution to 

check their accuracy so as to show which scheme is more accurate than the other 

in terms of approximating the exact solutions. 
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