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Abstract 

Load forecasting has long been used in operations and planning of the electric power 

system. In this study, weather variables were used for modeling and prediction of the 

system-level electrical load of the city of Abu Dhabi, UAE. A Transfer Function (TF) 

model was developed and its accuracy was compared to that of an Autoregressive 

Integrated Moving Average (ARIMA) model. We also tested an Artificial Neural 

Network (ANN) model based on the same weather variables that were used in the 

TF model. 

Assuming perfect knowledge of the weather variables over the forecasting horizon, 

the TF model was more accurate for forecast horizons of up to 48 hours. The ANN 

model, on the other hand, was more accurate for one-week ahead forecasts. 
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Assuming imperfect knowledge of the weather variables (i.e., they are not known 

over the forecasting horizon and have to be forecasted first), the TF model was more 

accurate than the ANN model in all cases. Average accuracy of the best TF method 

does not exceed 1.5% for 24-hour horizon, 2.5% for 48-hour horizon and 4% for 

168-hour horizon. With the added uncertainty of forecasted weather drivers, the 

accuracy of the proposed method degrades only slightly, while the ANN model is 

much less robust and becomes unusable beyond a two-day horizon. 

 

Mathematics Subject Classification: 62M10 

Keywords: short-term load forecasting; time series modeling; ARMA; transfer 

function; artificial neural network 

 

 

1  Introduction  

Load forecasting is essential for operations and planning of power systems. 

Inaccurate forecasts increase the operating cost of power companies [1]. Broadly 

speaking, 4 categories of forecasts can have been investigated, each catering to its 

own application niche. Long-term forecasts (1 to 20 years ahead) are used for 

strategic planning and construction of new infrastructure capacity as new projects in 

these areas usually take years to complete [2]. Mid-term forecast (1 month to 1 year 

ahead) are used for maintenance scheduling and planning of power sharing 

agreements as well as generation of ex post baseline in demand-side management 

measurement & verification [3]. Short-term load forecasts (from 1 hour to a few 

weeks ahead) are used in plant scheduling, fuel purchase plans, security capacity, 

short-term maintenance as well as short-term storage usage [4]. The last category, 

very short-term forecasts (from a few minutes to an hour ahead) are used for 

real-time control [5]. In this study, we are specifically investigating short-term load 

forecasting (STLF) of system-wide hourly electricity demand in Abu Dhabi. We 

consider forecasting horizons varying in length from one day to one week.  
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Two approaches have emerged targeting STLF: statistical methods and 

machine learning methods.  Despite differences in model structure and forecasting, 

both approaches rely on historical data of load and other impacting factors as 

seasons, day-types and weather. A popular machine learning method is based 

Artificial Neural Networks (ANN) modeling. This type of model usually consists of 

a black-box input-output mapping where no physical correspondence with the 

underlying physical systems is sought. Alternatively, expert information, system’s 

structure and the underlying physical phenomena can be incorporated, in one way or 

another, to increase the forecast’s accuracy or robustness.  

The models presented in this study use the relationship between load and 

weather. The impact of each of weather variable was analyzed individually, and they 

were included in the final model based on their overall cross-correlation with load. 

The statistical models were compared to an ANN model using the same measured 

weather variables as inputs.  

 

 

2  Literature Review 

A comprehensive review of methods and model propositions applied to load 

forecasting is presented in [6], including techniques such as ARIMA, support vector 

machine, genetic algorithms, and neural networks. Some recent studies have 

employed the combination of two or more of the aforementioned methods. [7] 

describes the combination of an Autoregressive Integrated Moving Average 

(ARIMA) model for the forecast of the daily load, combined with Support Vector 

Machines (SVM). [8] uses the combination of Support Vector Regression (SVR) 

with Kalman Filter, while [9] combines Empirical Mode Decomposition (EMD) and 

Support Vector Machines (SVMs). The main disadvantage of using ARIMA models 

is that the important relationship to weather variables [10] is not accounted for. In 

order to overcome this limitation, a transfer function model (also called ARIMAX, 

X representing the “exogenous” weather variables) has been successfully applied in 
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other scenarios [11, 12] and is the model developed in this study. A series of studies 

have been published based on artificial intelligence models. Data mining has been 

used in [13] to forecast weather sensitivity to load.  A short-term load prediction in 

buildings using feedback ANN is presented in [14]. In [15] two adaptive ANN 

models are proposed and tested for online consumption forecasting. Other examples 

of ANN applied to building electricity forecasting can be seen in [16], [17] and [18]. 

A comparison study between neural networks and hybrid neuro-fuzzy system is 

presented in [19]. 

Herein, a transfer function model was developed and its performance compared 

to an ANN model that fits the same dataset.  

 

 

3  Method 

While some earlier studies only relied on the autoregressive characteristics of 

load to generate forecasts, load models gradually evolve to account for observable 

external drivers of the load. Transfer Function models are one class of models that 

use the causal information represented by external drivers. This paper presents the 

process of data analysis and model estimation where temperature, specific humidity, 

GHI and wind speed data are integrated into a model for load forecasting.  

 

 

3.1 Data description 

We used substation-level hourly electricity data measured by the SCADA 

system of Abu-Dhabi Emirate’s electricity utility, as well as hourly weather data, 

including global solar irradiance (GHI) and wind speed, monitored by Masdar City’s 

weather station over a 2-year period from July 1st, 2009 until June 30th, 2011. Only 

electricity consumption within the Abu Dhabi municipality, mostly imputable to 

buildings (residential, commercial and institutional), is considered. A subset of 
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substations representing the targeted downtown area was selected, thereby 

eliminating industrial & agricultural loads. This subset constitutes, in aggregate, a 

better proxy for the total system load within the municipality. Hourly electricity 

consumption data from 29 low-voltage was used. This subset includes all substations 

that directly supply street transformers serving final customers in 

residential/business areas within the Abu Dhabi municipality. The aggregate demand 

of the selected substations during this period peaks at 2,040 MW in 2011, presenting 

a growth over 2009 and 2010. Figure 1 presents the plot of electricity demand (MW) 

for each hour over the 2-year period of analysis. This data was used for model 

training and testing. A plot of each exogenous variable is presented in Figure 2, 

namely, temperature, specific humidity, GHI and wind.  
 

 

 
Figure 1: Electricity demand 

 
  Figure 2: Exogenous variables(temperature, specific humidity, GHI and wind speed) 
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3.2 Data pre-processing 

As can be seen in Figure 1, the load presents a trend as well as a daily 

seasonality (24-hour periodicity) and a weekly seasonality (168-hour periodicity). 

Following the Box–Jenkins time series modeling approach, the first step is to 

stationarize the time series under study. Considering 𝑌𝑡 the measured electricity 

consumption, first order differencing was used to eliminate the trend (growth). 

24-hour and 168-hour differencing was applied in order to eliminate the seasonality 

components not driven by exogenous variables. The transformed series is 

represented by 𝑦𝑡 (1). Annual differencing did not improve the model and because 

the annual seasonality is mostly captured by the exogenous variables and also 

because our longest forecasting horizon (one week) is significantly shorter than one 

year. Similarly, defining 𝑋𝑡 as the matrix with the time series representing hourly 

measured values of temperature, specific humidity (SH), GHI and wind speed, 

1-hour and 24-hour differencing was applied. Equation (2) presents this 

transformation, where 𝑥𝑡 represents the transformed matrix of exogenous variables. 

All five time series were stationary after the differencing process. 

𝑦𝑡 = (1 − 𝐵)(1− 𝐵24)(1− 𝐵168)𝑌𝑡                   (1) 

𝑥𝑡 = (1 − 𝐵)(1 − 𝐵24)𝑋𝑡                     (2) 

where: 𝑋𝑡 = �𝑋𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑋𝑆𝐻 𝑋𝐺𝐻𝐼 𝑋𝑊𝑖𝑛𝑑� 

Since exogenous variables (input series) are often auto-correlated, the direct 

cross-correlation function between the input and response series would give a 

misleading indication for model specification. One solution to this problem is to 

apply “pre-whitening”. Pre-whitening consists in fitting an ARMA model to the 

input series in order to account for the autocorrelation of the series and applying that 

same model to the response series (hourly load in this case). This analysis was 

conducted for all four input series. By analyzing the auto-correlation function ACF), 

the partial autocorrelation function (PACF) and the inverse autocorrelation function 

(IACF) of the differenced series, as shown on Figure 4, an autoregressive model was 

fit to each of the input series reducing the residuals to white-noise, and the same 
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model was then applied to the differenced response series. 

 

 

3.3 Model selection 

Model selection was based on the fitting performance of typical model 

structures available in the literature for each exogenous variable isolated. 
 

 

 
Figure 3: Trend and correlation analysis for 1-lag/24-lag differenced temperature (a),        

        specific humidity (b), GHI (c) and wind speed (d) 



56                               Short-term forecasting of the Abu Dhabi electricity  

After pre-whitening, a cross correlation analysis was performed.  The cross 

correlation plots obtained after the pre-whitening were compared to the typical 

models structures presented in literature for transfer function models. Given b the 

delay (shift) term, s the order of the numerator, and r the order of the denominator in 

the transfer function model, Table 1 summarizes the most likely model structures for 

each exogenous variable being modeled. 

Based on the assumption that the exogenous variables are not correlated, 

transfer model structures were tested for each exogenous variable separately and 

compared based on the AIC (Akaike information criterion) and Standard Error 

Estimate. Table 2 presents the best transfer function model for each exogenous 

variable. These models were then combined to form a full transfer function model 

for load.  

After applying the transfer function model only with the exogenous variables, 

the residuals (difference between the predicted and the measured data) were 

auto-correlated, meaning that some information presented in the data was not being 

fully captured by the model tested. Figure 5 presents the ACF and PACF of the 

residuals.  

 

Table 1: Transfer function model structures investigated 

Temperature s: 0,1 

r: 1,2 

Specific 

Humidity 

s: 0,1,2 

r: 1,2 

GHI s: 1,2 

Wind b: 0,1 

s: 0,1,2 
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Table 2: Best models based on AIC and Standard Error Estimate 

Input Model AIC Standard Error 

Estimate 

Temperature 𝜔0

1 − 𝛿1𝐵
 137828.3 15.52848 

Specific Humidity 𝜔0

1 − 𝛿1𝐵
 137856.5 15.54216 

GHI 𝜔0 − 𝜔1𝐵 − 𝜔2 𝐵2 138013.7 15.61563 

Wind (𝜔0 − 𝜔1𝐵 − 𝜔2 𝐵2)𝐵 138107.4 15.6599 

 

 

   Figure 4: Cross-correlation between 1-lag/24-lag/168-lag differenced load and  

           1-lag/24-lag differenced temperature (a), specific humidity (b),  

           GHI (c) and wind speed (d) 
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Figure 5: Residual analysis after the estimation of the transfer function model     

        without any ARMA component 

 

A series of ARMA models were tested in order to account for the 

autocorrelation of the residuals a(t) until a balance between the number of 

parameters (complexity of the model), significance of the coefficients (given by the 

t-statistics) and the probability of white noise of the residuals after applying the 

ARMA model was achieved. The final model obtained for the ARMA presented in 

(3).  

(1 − 𝜃1𝐵 − 𝜃2𝐵2−𝜃3𝐵3)(1− 𝜃24𝐵24)(1 − 𝜃48𝐵48)
(1 − 𝜙1𝐵 − 𝜙2𝐵2−𝜙3𝐵3)(1 − 𝜙24𝐵24)(1− 𝜙48𝐵48)(1 − 𝜙168𝐵168)𝑎𝑡  

(3)  

 

After applying the full model (4), the residuals presented no further seasonality and 

no significant autocorrelation as shown in Figure 6.  

 

 
  Figure 6: Residual analysis after the estimation of the transfer function model  

          including an ARMA component 
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𝑦𝑡

=  
𝜔0

1 − 𝛿1𝐵
 𝑥𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑡 +

𝜔0

1 − 𝛿1𝐵
𝑥𝑆𝐻𝑡 + (𝜔0 − 𝜔1𝐵 − 𝜔2 𝐵2)𝑥𝐺𝐻𝐼𝑡 + (𝜔0

− 𝜔1𝐵 − 𝜔2 𝐵2)𝐵𝑥𝑊𝑖𝑛𝑑𝑡

+
(1 − 𝜃1𝐵 − 𝜃2𝐵2−𝜃3𝐵3)(1− 𝜃24𝐵24)(1− 𝜃48𝐵48)

(1 − 𝜙1𝐵 − 𝜙2𝐵2−𝜙3𝐵3)(1 − 𝜙24𝐵24)(1− 𝜙48𝐵48)(1 − 𝜙168𝐵168)𝑎𝑡 

(4) 

where: 

𝑦𝑡 = (1 − 𝐵)(1− 𝐵24)(1− 𝐵168)𝑌𝑡   

𝑥𝑡 = (1 − 𝐵)(1 − 𝐵24)𝑋𝑡   

 

 
Figure 7: Artificial Neural Network architecture 

 

 

4  Forecasting  

4.1 Accuracy assessment 

In order to test the model’s accuracy, load was forecasted from one hour ahead 

to one week ahead (168 hours) starting every day at midnight for 30 consecutive 

days, resulting in 30 forecasts of one week each. The results from each forecast 𝑌�𝑡 

were compared against actual data 𝑌𝑡 and the accuracy was measured using the 

Mean Absolute Percentage Error (MAPE) according to (5). At this stage, 

comparative forecasting accuracy being the main focus, perfect knowledge of the 

exogenous variables was assumed over the forecasting horizon. 
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𝑀𝐴𝑃𝐸 = 1
𝑁
∑ |𝑌(𝑡)−𝑌�(𝑡)|

𝑌(𝑡)
∗ 100𝑁

𝑡=1                    (5) 

 

 

4.2 Model comparison 

In order to compare the proposed model’s forecasting accuracy for STLF, an 

ANN model using the same input parameters was considered. Modeling and training 

was conducted using Matlab’s Neural Net Time Series Application. An ANN model 

composed of one input layer, one hidden layer and one output layer was used 

similarly to [20]. Due to the strong autocorrelation and cross correlation between 

load and the exogenous variables, lagged variables of each series was considered for 

lags 1, 2, 3, 6, 12, 24 and 168. Figure 3 presents the ANN architecture used during 

the training period. Once the model is used for forecasting, 𝑌�𝑡 is fed back to the 

input layer so that only information prior to the start of the forecast is used, and 

subsequent terms in the future are based on forecasted values. 

 

 

5  Results & Discussion 

5.1 Ex post forecast 

Perfect knowledge of the weather variables over the forecast horizon (1 week) 

is assumed. Forecasting accuracy was compared between the ARIMA model, the TF 

model and the ANN model. Thirty forecast of one week each were generated, 

starting at midnight, for 30 consecutive days covering the period from the last week 

of May until the last week of June 2011. Table 3 presents the forecasting accuracy 

(MAPE) for the three models averaged over each of three different forecast horizons: 

first 24 hours (1:24), first 48 hours (1:48) and the full week (1:168). 

For the ANN model, due to large number of parameters to be identified, the 

non-convex nature of the estimation problem and the random starting parameters 
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utilized for the training, each run produced slightly different results. The ANN 

model with best performing cross-validation after 10 runs was used for comparison 

to ARIMA and TF.   

Figure 8 presents the residuals for 30 forecasts of one week for the TF model. 

Residuals are centered around zero and, as expected, increase in variability as the 

forecasting horizon increases. For a given forecast, the residuals are often on-sided, 

meaning either over- or under-forecast consistently over the horizon. 

 

 
Figure 8: Residuals for 30 forecasts of one week 

 

Table 3: Forecasting efficiency 

 1:24 1:48 1:168 

TF 1.47 1.97 3.92 

ARIMA 1.53 2.06 4.13 

ANN 1.97 2.48 3.18 
 

 

The TF model produced the best results for 1:24 and 1:48 hours, while the 

ANN gave better forecasting performance for 1:168 hours. This can be justified by 

the fact that the TF has a significant autoregressive component, while the ANN is 
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based mostly on the exogenous variables, which at this stage were considered to be 

known over the forecasting horizon.  

 

 

5.1 Ex ante forecast 

In the second stage of the study, in order to analyze the applicability of the 

models to a more realistic scenario, where the weather information for the future is 

not known, an ANN model was used for forecasting the weather parameters using 

lags 1, 2, 3, 6, 12, 24, 48 and two hidden layers with 5 neurons each (Figure 9). For 

the forecasting of the weather variables, the only input to the model was past 

weather information, as opposed to the load forecasting case where exogenous 

variables are present. Forecasted values of specific humidity, GHI and wind below 

zero were set to zero. 

Weather was forecasted for the last week of June 2011, and the forecasted 

values were used in the load forecasting. Figure 10 presents the forecasted weather 

parameters against the measured ones, only for that week. 

The TF model was compared with the ANN based on the forecasting 

performance for the last week of June 2011, using both the measured weather data 

and the forecasted weather data. The forecasting results between the two models for 

the three time ranges are presented in Table 4. For short horizons of up to 48 hours, 

the TF-based load forecasts using approximate (forecasted) weather is comparable to, 

even slightly better than, the one using actual (measured) weather. This is due to the 

good precision of the weather prediction up to two-days. Also, as mentioned 

previously, for a given load forecast based on actual (measured) weather, the 

residuals are often one-sided—either under-forecast or over-forecast, consistently 

over the entire horizon—so it can happen that the error of the approximate weather, 

itself often one-sided, accidentally cancels part of the bias of the original load 

forecast, resulting in a comparable or slightly better load forecast. It should be noted 

that we are looking, this time, only at a single forecast instance (i.e., only one 
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week-long load forecast instead of 30 previously), so the results in Table 4 are to be 

interpreted only for comparative analysis. That being said, it is safe to infer that the 

TF-based load forecast is not very sensitive to uncertainty in the exogenous variables 

with a degradation of accuracy that does not exceed 0.25% over the week-long 

horizon. The ANN model on the other hand displays a severe lack of robustness to 

said uncertainties, even over a short 24-hour horizon.  

 

 

5  Conclusions 

A Transfer Function model was proposed for the short-term (up to one week) 

forecast of city-scale hourly electricity consumption. The model was validated using 

actual measurements of hourly system load for the city of Abu Dhabi, UAE. The 

influence of exogenous weather variables including not only temperature but also 

specific humidity, solar irradiation and wind speed was incorporated.  

The performance of the TF model, assessed via the MAPE, was compared to an 

ARIMA model (not using exogenous variables) as well as an ANN model. The TF 

and ANN models had better performance than the ARIMA model in all tested 

forecasting horizons (1-day ahead, 2-day ahead and 1-week ahead). Considering 

perfect knowledge of the exogenous variables over the forecast horizon, the TF 

model obtained better results for up to 2 days ahead forecast (MAPE better than 

1.5% for 24-hour horizon, better than 2.5% for 48-hour horizon), while the ANN 

model outperformed the TF model for the 1-week ahead forecast scenario (MAPE of 

3.18% vs. 3.92% ). The superiority of the ANN model for the 1-week ahead forecast 

is in part explained by the fact that the model is less dependent on previous 

forecasted load values, compared to TF. This results in a more stable forecast over 

the longer horizon, when actual values of the weather variables over the horizon are 

available.  

We then switched to a more realistic scenario where weather variables are not 

known over the forecast horizon. Weather was forecasted, using ANN, over one 
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week. All weather variables were estimated together (multivariate forecast) whereby 

the prediction of each variable was informed by past values of all 4 variables. These 

predicted values were then input to the load forecast model. The ANN approach 

proved superior for the forecasting of the exogenous weather variables while the TF 

model presented significantly better load forecasting performance for all forecast 

horizons. The uncertain nature of the predicted weather drivers had limited impact 

on the accuracy of the forecasted load.  

The multivariate prediction of weather via ANN is surprisingly accurate over 

the horizon of interest (one week). The use of all 4 weather variables is shown to be 

advantageous when compared to the ARIMA model or the TF model with a single 

weather variable (temperature) [4]. A sophisticated TF model was derived for the 

forecasting of the hourly system load in Abu Dhabi using hourly values of 4 weather 

variables. This approach is promising and, in our opinion superior to alternatives, for 

this specific case.  

 

Table 4: TF and ANN model comparison for last week of June 2011 

  1:24 1:48 1:168 

Measured 

weather 

TF 2.19 2.46 3.28 

ANN 1.56 3.28 2.43 

Forecasted 

weather 

TF 2.18 2.43 3.42 

ANN 4.38 10.41 11.5 
 

 

 

 
Figure 9: ANN for weather forecast 
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Figure 10: Predicted weather variables (blue) against measured (red) 
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