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and other Diophantine Equations
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Abstract

This paper develops a framework of algebra whereby every Diophan-
tine equation is made quickly accessible by a study of the corresponding
row entries in an array of numbers which we call the Binomial trian-
gle. We then apply the framework to the discussion of some notable
results in the theory of numbers. Among other results, we prove a new
and complete generation of all Pythagorean triples (without necessarily
resorting to their production by examples), convert the collection of Bi-
nomial triangles to a Noetherian ring (whose identity element is found to
be the well-known Pascal triangle) and develop an easy understanding
of the original Fermat’s Last Theorem (FLT ). The application includes
the computation of the Galois groups of those polynomials coming from
our outlook on FLT and an approach to the explicit realization of arith-
metic groups of curves by a treatment of some Diophantine curves.
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1 Introduction

Let x, y, n ∈ N∪{0}, then the coefficients in the expansion of (x+y)n, when

considered as a polynomial in descending powers of x, are 1, nC1y, nC2y
2, · · · , yn.

For y = 1 these coefficients form the nth row of the Pascal triangle, while, for

other values of y, the coefficients form the nth row of an array of numbers

which we call the Binomial triangles. Numbers formed from these coefficients,

by the application of the digital-correspondence map, are n−powers of natural

numbers and may be extended to generate all n−powers of rational numbers

only. This outlook simplifies every Diophantine equation and gives proof of

results that are consistent with the expectations of their originators and true

to the spirit of classical number theory, as we shall show in the case of rational

solutions of the equation un +vn = wn, for n = 2 and its impossibility for non-

zero rationals u, v and w, when integers n > 2, in §3. and §4., respectively.

The approach to the present study is that instead of splitting the power n

above, thus leading to its primality or otherwise (as it has always been done

by many number theorists), we decide to split u, v and w and study the conse-

quences of this choice. We believe this approach is more natural to the study

of Diophantine equations, especially Fermat’s Last Theorem.

The ideas of this paper emanated from a very elementary transforma-

tion of the finite Binomial theorem. After the introduction of the digital-

correspondence map and the Binomial triangles in §2, we state and establish

a purely algebraic reason for the existence and explicit form of all rational

Pythagorean triples, leading to the partitioning of the integral ones in §3. Aside

other mentioned approaches that may be taken to the study of Pythagorean

triples, the ring of Binomial triangles is introduced and proved to be Noethe-

rian. §4 contains an elementary proof of the original Fermat’s Last Theorem

which is seen to be greatly simplified by the introduction and investigation of

some built-in polynomials of the Binomial triangles. Open problems on the

ideal theory of the Noetherian ring of Binomial triangles, distribution and den-

sity of solutions of Diophantine equations, non-rational Pythagorean triples in

other fields and the link with the Wiles-Taylor proof of FLT are all brought up

in the remark at the end of each section. §5. contains two Lemmas and a The-

orem, on the nature of these built-in polynomials we call Fermat polynomials,

while we offer a novel approach to the yet-to-be-solved problem of computing
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the Mordell-Weil groups of algebraic curves in §6. Some open problems are

also contained in §7.

A preliminary version of Theorem 3.1 is contained in the announcement

[9].

2 Digital-correspondence and Binomial trian-

gles

A typical row in the Pascal triangle is (1, nC1,
nC2, · · · , 1). Among its

many properties we have that

1 +n C1 +n C2 + · · ·+ 1 = 2n,

for all n ∈ N ∪ {0}. For n < 5, each of the coefficients 1, nC1,
nC2, · · · , 1, is

a digit, so that any row may be viewed as a number having these coefficients

as its digits. These numbers are 1, 11, 121, 1331, and 14641, each of which is

the respective nth power of 11, for n = 0, 1, 2, 3, 4. ([10.], p. 10) It may then

be asked:

Is it a mere coincidence that for n ∈ N ∪ {0}, n < 5, the number

(1+1)n (where 1 is the repeated digit of the number 11 = (10+1))

is exactly 2n (the sum 1 +n C1 +n C2 + · · ·+ 1)? Indeed, what can

we say of each of the remaining rows in the Pascal triangle with

respect to (11)n?

We answer the second question above as follows. Since the 5th row in the

triangle is (1, 5, 10, 10, 5, 1) an appropriate transfer of tens, at the middle terms,

gives the number 161051. This is 115. We have taken the top digit 1 in the

Pascal triangle as the 0th row. The 6th row is (1, 6, 15, 20, 15, 6, 1), which corre-

sponds, after appropriate transfer of tens, to the number 1771561. This is 116.

A first conclusion is therefore that these equalities are not mere coincidences

and that there is a map taking 1+nC1+
nC2+· · ·+1 = 2n = (1+1)n to (1110)

n.

This map is expected to combine the coefficients, (1, nC1,
nC2, · · · , 1), of the
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Pascal triangle to form a whole number having the coefficients as the digits

of the number (for n < 5) or form the number after appropriate transfer of

tens (for n ≥ 5). In order to define this map in its generality we shall first

generalize the Pascal triangle.

We consider n, y ∈ N ∪ {0} and the coefficients (1, nC1y, nC2y
2, · · · , yn)

of the finite binomial expansion of (x + y)n. For different choices of n, the

corresponding triangle is

1

1 y

1 2y y2

1 3y 3y2 y3

1 4y 6y2 4y3 y4

1 5y 10y2 10y3 5y4 y5

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

1 nC1y
nC2y

2 nC3y
3 · · ·n Cry

r · · · yn

· · · · · · · · · · · · · · ·
We shall refer to this as the Binomial triangle and denote it as T (y). Its build-

up formula may be seen as y(n−1Cr−1y
r−1) +n−1 Cry

r =n Cry
r, ∀ r ∈ N,

which becomes familiar when y = 1. In order to get a handle on our extension

of the Pascal triangle we consider the Binomial triangle for y = 2. In this

case the 2nd row is (1, 4, 4), which corresponds to the number 144 = 122, the

3rd row is (1, 6, 12, 8) corresponding to the number 1728 = 123, the 4th row is

(1, 8, 24, 32, 16) corresponding to the number 20736 = 124, etc. We shall there-

fore say that the number 20736 digitally corresponds to the row (1, 8, 24, 32, 16),

and vice-versa. We shall denote the digital-correspondence map by δ : Nn+1 →
N whose restriction to the subset {(1, nC1y, nC2y

2, · · · , yn) : n, y ∈ N ∪ {0}}
of Nn+1 is given as

δ(1, nC1y, nC2y
2, · · · , yn) = 1 nC1y

nC2y
2 · · · yn,

where the right hand side is viewed as a whole number, whether tens are

transferred (when n ≥ 5 or y 6= 1) or not (when n < 5 and y = 1).
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The truth behind our observations that the whole number

δ(1, nC1y, nC2y
2, · · · , yn)

is always a power of n may be formalized for any row

N(y, n) := (1, nC1y, nC2y
2, · · · , yn)

in the Binomial triangles, T (y). Here a natural number having an nth root

in N, for some n = 2, 3, 4, · · · , shall be called exact. In this sense −4 is an

exact integer of power 1 only (since −4 = (−4)1), while 4 is an exact integer

of powers 1 (since 4 = 41) and 2 (since 4 = (2)2).

Lemma 2.1. Let y, n ∈ N ∪ {0} and define fn(y) = δ(N(y, n)). Each

fn(y) ∈ N and is exact of power n. Every exact number in N is of the form

fn(y).

Proof. We know that (x+ y)n = xn +(nC1y)xn−1 +(nC2y
2)xn−2 + · · ·+ yn,

so that, considering x as the base of numeration on both sides, we have

(1yx)
n = (1 nC1y

nC2y
2 · · · yn)x.

That is,

(1yx)
n = δ(N(y, n))x = fn(y)x · · · · · · · · · (∗)

as two equal numbers in base x.

The above lemma shall be employed in Theorems 3.1, 4.2 and 4.3 in the

following form. Our point of departure in the consideration of powers of inte-

gers (resp., rationals) is to view the set of all exact integers (resp., rationals)

of power n in terms of the polynomials, fn, as assured by the following lemma.

Corollary 2.2. Let E be the collection of all exact integers, explicitly given

as

E = {ξn : ξ ∈ Z+ and n ∈ 2N} ∪ {ξn : ξ ∈ Z and n ∈ N \ 2N}.
Then the set E is in a one-to-one correspondence with the set

{fn(y) : y ∈ Z, n ∈ N}.



26 Fermat’s Last Theorem and other Diophantine Equations

Proof. Define ρ : {fn(y) : y ∈ Z} → E as ρ(fn(y)) := ξn, with ξ =

10 + y, y ∈ Z. ρ is a one-to-one correspondence.

Remark 2.3. 1. On all exact rationals : It may be seen, from the left

side of (∗), that fn(y) = (10 + y)n, as earlier envisaged in the case of

y = 1. This polynomial form for fn allows us to extend its domain to

all y ∈ Q, giving only all exact rationals. The constant 10 in fn may

clearly be replaced with any other constant in Z. The definition of E

above is designed to take adequate care of the unnecessary repetition of

values of powers of integers brought about by the equality of (−m)2n and

m2n, m ∈ Z, n ∈ N, when computing natural powers of integers.

2. On general Diophantine equations : Our focus is to discuss the contri-

bution of fn(y) to Diophantine equations, which we may generally write

as

A1α
n1
1 + A2α

n2
2 + A3α

n3
3 + · · ·+ Apα

np
p = Bβm,

for some constants Ai, B ∈ Q, ni,m ∈ N and unknowns αi, β ∈ Q, i =

1, 2, · · · , p. This translates, in our context, to studying

A1fn1(y1) + A2fn2(y2) + A3fn3(y3) + · · ·+ Apfnp(yp) = Bfm(y),

for some y, yi ∈ Q, i = 1, 2, · · · , p. A particular example is when Ai = 1

and ni = m = n with p = 2, which is the defining equation of FLT. That

is,

fn(y1) + fn(y2) = fn(y3),

for y1 6= y2 6= y3. It is necessary to illustrate the depth of insight of this

formulation of Diophantine equations by tackling a formidable problem.

We shall illustrate our method with the problems of Pythagorean triples

and FLT. In our context, these two problems are simultaneously cap-

tured by studying the possible values of y ∈ Q for which

Qn−1,a(y) := fn(y + a)− fn(y),

y ∈ Q, a ∈ Q \ {0}, n ∈ N, is the digital-correspondence of some

N(y0, n), y0 ∈ Q. We have set y1 = y0, y2 = y and y3 = y + a, in

fn(y1) + fn(y2) = fn(y3) above to arrive at the equation Qn−1,a(y) :=

fn(y + a)− fn(y).
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Our approach would then be to investigate, among other things, the reason

for the existence of (rational) Pythagorean triples in §3, which we then employ

to seek Fermat’s triples, if they exist in §4.

3 Pythagorean triples in the context of Bino-

mial trianglesIntroduction

Lemma 2.1 clearly says that f2(y),∀ y ∈ N ∪ {0}, (indeed ∀ y ∈ Q) is a

perfect-square in Q and that every perfect-square in Q is some f2(y). Hence

the study of f2(y) in Pythagoras’ theorem translates to studying the digital-

correspondence of the second rows, N(y, 2), of the Binomial triangles, T (y),

for different values of y. In this case Q1,a(y) = (2a)y +a(20+a). The following

result may be seen as a purely algebraic and rational proof of the existence of

Pythagorean triples and of the truth of Pythagoras’ theorem for rationals. It

establishes, in our context, that some of the values of Q1,a(y) appear in the

list of the digital-correspondences of N(y0, 2).

Theorem 3.1. Let a ∈ Q\{0}. Then there exist y ∈ Q for which Q1,a(y) is a

perfect-square. That is, Q1,a(y) = δ(N(y+b, 2)), for some y ∈ Q, b ∈ Q\{0, a}.

Proof. Since Q1,a(y) is a linear polynomial in y we substitute y = α2x
2 +

α1x + α0, x ∈ Q, where the values of α2, α1, α0 ∈ Q are yet to be known,

into Q1,a(y) in order to consider Q1,a(y) for a candidate in the list of values of

δ(N(y + b, 2)). That is,

Q1,a(y) = Q1,a(x) = (2aα2)x
2 + (2aα1)x + a(2α0 + 20 + a)

and, for it to be a complete square of a non-zero rational, we must have

Q1,a(x) ≡ (px + q)2 for all p, q, x ∈ Q. The choice of y and the above identity

are informed by the one-to-one correspondence in Corollary 2.2, with n = 2.

This identity gives α2 = 1
2a

p2, α1 = 1
a
pq and α0 = q2−a(20+a)

2a
, each of which

belongs to Q uniquely, for every p, q ∈ Q. Hence

y =

(
p2

2a

)
x2 +

(pq

a

)
x +

[
q2 − a(20 + a)

2a

]
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is the required y in Q. Indeed, the discriminant of Q1,a(x) vanishes exactly

when α2 = 1
2a

p2, α1 = 1
a
pq and α0 = q2−a(20+a)

2a
.

The conclusion of Theorem 3.1 is that, for every x, p, q ∈ Q and a ∈ Q\{0},
the rational solutions, y, to the equation Q1,a(y) = δ(N(y + b, 2)) exist and are

given as

y =

(
p2

2a

)
x2 +

(pq

a

)
x +

[
q2 − a(20 + a)

2a

]
.

The converse question to this result is that: if this y is a given rational solu-

tion of Q1,a(y) = δ(N(y + b, 2)), does it imply that x ∈ Q? This question is

addressed in the following theorem.

Theorem 3.2. Let p, q and a be as in the proof of Theorem 3.1, with p 6= 0.

Every rational solution

y =

(
p2

2a

)
x2 +

(pq

a

)
x +

[
q2 − a(20 + a)

2a

]

of

Q1,a(y) = δ(N(y + b, 2))

corresponds to a rational value of x.

Proof. It is clear, from Theorem 3.1, that, if x, p, q ∈ Q and a ∈ Q\{0}, then

the given y is a solution of Q1,a(y) = δ(N(y + b, 2)) and y ∈ Q. Conversely, let

the given y be a rational solution of Q1,a(y) = δ(N(y + b, 2)) and let (α, β, γ)

be a rational Pythagorean triple with α < β < γ. (That is, (Q1,a(y))
1
2 <

(fn(y))
1
2 < (fn(y +a))

1
2 ). Then Q1,a(y) = α2. This gives, 2ay +a(20+a) = α2.

That is, y = 1
2a

[α2 − a(20 + a)]. Hence,

1

2a
[α2 − a(20 + a)] = y =

(
p2

2a

)
x2 +

(pq

a

)
x +

[
q2 − a(20 + a)

2a

]

which reduces to a quadratic equation in x given as p2x2+2pqx+(q2−α2) = 0,

with p 6= 0 (which is necessary in order to be able to find x). The solution of

this quadratic is x = −q±α
p

∈ Q.
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Remark 3.3. 1. On the coefficients of y: Observe that it is necessary

and sufficient for all αi, i = 0, 1, 2, to be rational in order to always have

y ∈ Q. The polynomial Q1,a(x) is always a perfect-square of members

of Q \ {0}, whatever the value of x in Q. A closer look at Theorem 3.1

therefore reveals a very important conclusion that: in order to justify

the identity used, between Q1,a(x) (which is always a perfect-square in

Q \ {0}) and (px + q)2, p and q must necessarily assume all values in

Q, and not just ′some′ values in Q. This observation, which is the

core of the method of Theorem 3.1, shall be needed when considering

rational Pythagorean triples and the non-zero rational solutions (if any)

of un + vn = wn, for n > 2. See also (1) of Remarks 4.4.

2. On the constant b: Now that we have a general expression for y ∈ Q
that explains the existence of Pythagorean triples, we may compute the

constant b ∈ Q \ {0, a} in Q1,a(y) = δ(N(y + b, 2)) as follows: Q1,a(y) =

δ(N(y + b, 2)), for rational y, ⇐⇒ y2 + (20 + 2b − 2a)y + (b2 + 10b +

100−a2− 20a) = 0 has a perfect-square discriminant ⇐⇒ the quadratic

2a2 − 2ba + 10b, in a, has zero discriminant ⇐⇒ b = 20.

A complete list of all rational Pythagorean triples is therefore possible

without necessarily having to generate them from the basic example of the

triple (3, 4, 5) , see [5]. This list is contained in the following result.

Corollary 3.4. Let a, p, q, x ∈ Q with a 6= 0. The general expression for

any rational Pythagorean triple is then (α, β, γ) =




((px + q) ,
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2−a2

2a

)
,
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2+a2

2a

)
), if α < β < γ,

(
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2−a2

2a

)
, (px + q) ,

(
p2

2a

)
x2 +

(
pq
a

)
x +

(
q2+a2

2a

)
), if β < α < γ.

Proof. We already know, from Theorem 3.1, that every Pythagorean triple

in Q is

(α, β, γ) =

{
(
√

Q1,a(y),
√

f2(y),
√

f2(y + a)), if α < β < γ,

(
√

f2(y),
√

Q1,a(y),
√

f2(y + a)), if β < α < γ,

where y is as found in the Theorem. Computing each of these triples with the

said y gives the result.

We arrive at the classical Diophantus’s solution to the problem of primitive
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solutions to α2+β2 = γ2, if we set x = 0 in Corollary 3.4 and clear the fractions.

Corollary 3.5. Let α ∈ Q. Then there are β, γ ∈ Q such that (α, β, γ) is a

rational Pythagorean triple. That is, every rational number is a first element

of some rational Pythagorean triple.

Proof. Every α ∈ Q may be written as α = px+q for a choice of p, q, x ∈ Q.

The values of β and γ may then be computed from Corollary 3.4 for any

a ∈ Q \ {0}.

The particular cases of non-trivial, primitive and integral Pythagorean

triples may be deduced from these Corollaries, which may themselves be ex-

tended to include the study of Pythagorean n−tuples. See [1], p. 76. The

generality inherent in the use of Binomial triangles is evident from the ease

with which general Pythagorean triples are handled. We now partition all

integral Pythagorean triples into disjoint classes.

Let P denote the set of all rational Pythagorean triples and denote the

subset consisting of integral ones by PZ. We do not distinguish between (α, β, γ)

and (±α,±β,±γ) as (non-trivial) Pythagorean triples. With this in mind let

Pm = {(α, β, γ) ∈ PZ : gcd(α, β, γ) = m},

where m ∈ Z+. Clearly PZ =
⋃

m∈Z+ Pm. It may not be clear whether or not

this is a disjoint union. This may be addressed by using an appropriate equiv-

alence relation.

Theorem 3.6. The equality PZ =
⋃

m∈Z+ Pm is a disjoint union.

Proof. Define a relation ∼ on members of PZ as

(α1, β1, γ1) ∼ (α2, β2, γ2) iff gcd(α1, β1, γ1) = gcd(α2, β2, γ2).

It is immediate that ∼ is an equivalence relation on PZ. It is also clear that

each Pm is a typical equivalence class in PZ/ ∼ .

It therefore follows that the set {Pm : m ∈ Z+} is a partition of PZ.
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Remark 3.7. 1. On parametrization of rational Pythagorean triples : We

may as well use f2(λy) in the manner in which f2(y + a) has been con-

sidered. The first result here is that, for every λ ∈ Q \ {0, 1}, we always

have that

f2(λy) = λ2f2(y) + R1,λ(y),

where R1,λ(y) = 20λ(1− λ) + 100(1− λ2). It can readily be shown that

R1,λ(y) = δ(N(ξy, 2)), ξ ∈ Q \ {0, λ}, iff

y =

[
p2

20λ(1− λ)

]
x2 +

[
pq

10λ(1− λ)

]
x +

[
q2 − 100(1− λ2)

20λ(1− λ)

]

for all p, q, x ∈ Q. This gives another outlook to Corollary 3.4.

2. On equivalence classes of Pythagorean triples : The function

h : PZ → Z

given as h(α, β, γ) = gcd(α, β, γ), ∀ (α, β, γ) ∈ PZ, is well-defined and

constant-valued on each Pm. It will be interesting to get the dependence

of m on the parameters of the triples in Corollary 3.4. That is, to de-

rive a function ϑ : Z3 × (Z \ {0}) → Z+ given as m = ϑ(p, q, x, a) =

gcd((px + q) ,
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2−a2

2a

)
,
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2+a2

2a

)
),

where ((px + q) ,
(

p2

2a

)
x2+

(
pq
a

)
x+

(
q2−a2

2a

)
,
(

p2

2a

)
x2+

(
pq
a

)
x+

(
q2+a2

2a

)
) ∈

PZ, as this will put results on h and Pm in proper perspectives. It may

therefore be useful to note, from Corollary 3.4, that every (α, β, γ) ∈ P,

with α < β < γ, (respectively, β < α < γ) may be reduced to the (Dio-

phantine) form (α, α2−a2

2a
, α2+a2

2a
), (respectively, (α2−a2

2a
, α, α2+a2

2a
)), (where

α := px + q of Corollary 3.4) for any a ∈ Q \ {0}. The well-known

case of ϑ ≡ 1 follows from here. The above Diophantine form of the

Pythagorean triples gives a compact expression for the result of Corol-

lary 3.4 and may be further discussed in the light of Hall’s matrices, [5].

A step towards the derivation of an explicit expression for the function,

ϑ : Z3 × (Z \ {0}) → Z,

is to note, from the remark following Corollary 3.4, that ϑ(p, q, x, a) = 1

at x = 0. We may then write ϑ(p, q, x, a) = 1 + xτ(p, q, x, a), where

τ : Z3× (Z \ {0}) → Z, whose explicit expression would enrich the study

of Pm.
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A direct consequence of this outlook, which follows from the above Dio-

phantine form of the Pythagorean triples, is seen in the following.

Corollary 3.8. (Diophantus) The solutions of α2 + β2 = γ2, with α, β, γ ∈
Z, are all generated from α = m2 − n2, β = 2mn and γ = m2 + n2, where

m,n ∈ N and gcd(m,n) = 1.

Proof. As computed above.

The above Corollary puts the age-long result of Diophantus in its proper

perspective; as a Corollary in the general scheme of things and not as a starting

point to the study of Pythagorean triples. This explains the difficulty encoun-

tered in the futile attempts at using techniques of the classical proof given by

Diophantus for Corollary 3.7.1 to understand Fermat’s Last Theorem, in that

Diophantus’ conclusion should only be seen as either the compact form of a

simplified Corollary (by setting α as px + q in Corollary 3.4) or as a very

remote case of a Corollary (by setting x = 0 in Corollary 3.4 and clearing the

fractions) that has been derived from a general outlook on powers of integers.

It suggests that Fermat’s Last Theorem may not be completely and prop-

erly understood (from the classical proof of Corollary 3.7.1) until the frame-

work leading to Corollary 3.7.1 is well established. Indeed we need to com-

pletely understand the natural mathematical emergence of Pythagorean triples

(and not just as a relationship between numbers stumbled on by members of

the Pythagoras’ Brotherhood) as well as their properties in order to employ

them in higher considerations. A framework that may lead to this complete

understanding is given here via binomial triangles.

Remark 3.9. On rings and modules of Binomial triangles: Let n ∈ N be

fixed and consider the set N(n) := {N(y, n) : y ∈ Z}. The operations + and

·, defined on members of N(n), as

N(y1, n) + N(y2, n) := N(y1 + y2, n) and N(y1, n) ·N(y2, n) := N(y1y2, n),

respectively, convert N(n) into a commutative ring with identity, N(1, n),

whose field of fractions is {N(y, n) : y ∈ Q}. The map y 7→ T (y) is a

one-to-one correspondence between Z and N(n), implying that N(n) is indeed
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a Noetherian ring whose ideal structure is exactly as in Z. If, in addition to

these operations above, we define αN(y, n) := N(αy, n) α, y ∈ Z, then N(n)

becomes a Z−module. These properties on N(n) are inherited by the set TZ,
of all Binomial triangles, T (y), y ∈ Z, leading to the requirements that, for

y1, y2, y, α ∈ Z,

T (y1) + T (y2) := T (y1 + y2), T (y1) · T (y2) := T (y1y2), and αT (y) := T (αy).

In this formulation the Pascal triangle, T (1), is the (multiplicative) identity of

the Noetherian ring TZ while the linear functor, T, may be seen to be both

covariant and contravariant on Z. The ring and module structures of TZ are

yet to be studied.

In the light of our success on Pythagorean triples above, we are encouraged

to consider the original FLT.

4 Fermat’s Last Theorem in the context of Bi-

nomial triangles

The consideration of each fn(y), n > 2, is essentially the study of the

other rows, after the 2nd, in each of the Binomial triangles. Following in the

direction of our method in §3., we compute the corresponding polynomial,

Qn−1,a(y), n > 2, which is then sought in the list of digital-correspondences to

N(y, n).

Lemma 4.1. Let a ∈ Q \ {0}. Then Qn−1,a(y) = nayn−1 + n(n−1)
2!

(a2 +

20a)yn−2+n(n−1)(n−2)
3!

(a3+30a2+300a)yn−3+· · ·+(an+10nan−1+· · ·+10n−1na),

for all n ∈ N, y ∈ Q.

Proof. Compute fn(y + a)− fn(y).

In seeking a position for every Qn−1,a(y), n > 2, in the list of digital-

correspondence to N(y, n) we make the following eye-opening observation on

Q2,a(y).
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Theorem 4.2. ( Euler’s proof in [3], p. 39.)There does not exist any y ∈ Q
for which Q2,a(y) is a perfect cube. That is,

Q2,a(y) 6= δ(N(y + b, 3)),

∀ y ∈ Q, b ∈ Q \ {0, a}.

Proof. We assume the contrary and proceed as in Theorem 3.1. If the

polynomial

Q2,a(y) = 3ay2 + (3a2 + 60a)y + (a3 + 30a2 + 300a)

is to be a perfect-cube in Q, there must exist y = α3x
3 + α2x

2 + α1x + α0 ∈ Q
with α3, α2, α1, α0, x ∈ Q, such that, after substituting y into Q2,a(y), the

resulting polynomial, Q2,a(x), in x and of degree six, would be identical to

(px2 + qx + r)3, for all p, q, r ∈ Q. The choice of y and the above identity are

informed by the one-to-one correspondence in Corollary 2.2, with n = 3.

By making this substitution and comparing the coefficients we arrive at

seven relations, namely: 3aα2
3 = p3, 2aα2α3 = p2q, a(2α1α3 + α2

2) =

p2r + pq2,

6a(α0α3 +α1α2)+60aα3 +3a2α3 = 6pqr + q3, a(2α0α2 +α2
1)+20aα2 +a2α2 =

pr2 + q2r, 2α0α1 + 60aα1 + 3a2α1 = 3qr2 and α2
0 + (3a2 + 60a)α0 + (a3 +

30a2 + 300a) = r3, from which we are expected to find the rational constants

α3, α2, α1 and α0 in terms of p, q and r. A consideration of the first three and

last relations give, if p 6= 0 is assumed:

α3 =

√
1

3a
p3, α2 =

p2q
√

3a

2a
√

p3
, α1 =

(4p2r + pq2)

8a

(√
3a

p3

)

and

α0 =
−3a2 − 60a±√9a4 + 356a3 + 3480a2 − 1200a + 4r3

2
.

These relations imply that y /∈ Q, if we use (1) of Remarks 3.3.

We may as well consider the use of (px+q)6 instead of (px2+qx+r)3 in the

proof of Theorem 4.2. However the use of (px2 + qx + r)3 accommodates more

generality than (px + q)6, since not all quadratics are completely factorisable
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over Q. In any of these options the deduced expressions for αi, i = 0, 1, 2, 3

do not satisfy the remaining three of the seven relations. A closer look at

the proof reveals that this disorder in the identity, Q2,a(x) ≡ (px2 + qx + r)3,

is primarily due to the disparity in the number of terms in Q2,a(x) (which is

seven) and the number of unknowns in the coefficients of y (which is four).

There is no way to match these two numbers when n > 2, like what we have in

the case of n = 2 in Theorem 3.1, where there are three terms in Q1,a(x) and

exactly three unknowns in y = α2x
2 + α1x + α0. We shall consider, in §7(B)

below, the remedy to this Fermat pathology.

The method of proof of Theorem 4.2 may be formalized in the following

version of the original FLT.

Theorem 4.3. (Fermat’s Last Theorem) Let a ∈ Q \ {0}, n > 2. Then

there does not exist any y ∈ Q for which Qn−1,a(y) is an exact rational of

power n. That is,

Qn−1,a(y) 6= δ(N(y + b, n)),

∀ y ∈ Q, b ∈ Q \ {0, a}.

Proof. We substitute y = αnx
n + αn−1x

n−1 + · · ·+ α1x + α0 into Qn−1,a(y)

in Lemma 4.1 and observe that the only choices to be made of each αk, k =

0, 1, 2, · · · , n > 2, for Qn−1,a(x) to be a digital-corresponding of some N(y0, n),

would involve extraction of roots, since powers of y must have been computed

in the process of substitution. This leads, via (1.) of Remarks (3.3), to the

conclusion that y /∈ Q.

The above method of proof shows that a structural reason for the non-

existence of Fermat’s triples is because, in seeking a position for Qn−1,a(y)

among the values of δ(N(y, n)) every substituted y into Qn−1,a(y) must be

raised to some powers, thereby introducing extraction of roots when coefficients

of y are later sought. The exception to this is in the cases of n = 1, 2, where

Qn−1,a(y) are the constant and linear polynomials, respectively. This explains

the existence of rational triples, (u, v, w), satisfying the Diophantine equations

u + v = w (when n = 1 in un + vn = wn) and u2 + v2 = w2 (when n = 2 in

un + vn = wn).
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A Galois equivalence of this reason has also been exploited in the next

section. It is noted that no extra condition on n, other than the original

requirement of n ∈ Z and n > 2, was used to prove FLT.

Remark 4.4. 1. On the significance of the constant a ∈ Q \ {0}: Corol-

lary 3.5 reveals that every a ∈ Q \ {0} leads to a rational Pythagorean

triple, while only some a ∈ Q\{0} gives the integral Pythagorean triples.

The same may be deduced from the consideration of the non-zero rational

and integral solutions of other Diophantine equations, say, u3− v3 = w2.

Indeed, substituting y = α1x + α0 into Q2,a(y), which, when identical

with (px + q)2,∀ p, q, x ∈ Q, gives

α1 =
p√
3a

, α0 =
2pq − (3a2 + 60a)α1

6aα1

,

we see that the non-zero rational solutions of u3 − v3 = w2 exist only

when a = k2

3
,∀ k ∈ Z\{0}, p, q, x ∈ Q, p 6= 0, while the non-zero integral

solutions exist only when a = 1
3
, for some p, q, x ∈ Z, p 6= 0. It therefore

follows that the non-zero rational constant a, in Qn−1,a(y), measures the

distribution and density of solutions of Diophantine equations, when they

exist. This may be further explored.

2. On unique factorization: The method of this paper is to fix n−power of

two arbitrary non-zero rationals, say αn and βn, and then seek for the

possibility of a third one, γn, such that αn + βn = γn, with αβγ 6= 0. In

this approach any two of αn, βn and γn may be fixed. However, our choice

of fn(y + a) = fn(y) + Qn−1,a(y) over and above the other possibility of

fn(y + a) + fn(y) = Pn,a(y),

which leads to the study of the polynomial, Pn,a, of degree n, is informed

by the non-zero rational solutions of α2 +β2 = γ2 which, if considered in

the light of Pn,a, will lead us outside the base field of Q. Indeed, consid-

ering any example of the Pythagorean triples, say (3, 4, 5), it is advisable,

based on our approach, to use 5 and 3 to seek for 4 by factorising the

difference of two squares 52 − 32 as

52 − 32 = (5− 3)(5 + 3) = (2)(8) = (2)(2)(4) = 42
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(which is a calculation accommodated in Z or Q) or to use 5 and 4 to

seek for 3 by factorising the difference of two squares 52 − 42 as

52 − 42 = (5− 4)(5 + 4) = (1)(9) = 32

(which is also a calculation accommodated in Z or Q) than to use 3 and

4 to seek for 5 by factorising the sum of two squares 32 + 42 as

32 + 42 = 32 − (4i)2 = (3− 4i)(3 + 4i) =| 3 + 4i |2= 52,

which, in the process, leads to the consideration of

K(i) := {a + bi ∈ C : a, b ∈ K = Z or Q}
outside the base field of Q.

Thus, since factorisation in a fixed base field is the first step at extracting

indices out of a number (and now, out of a polynomial), we have settled

for the considerations of Qn−1,a(y) (which is the difference fn(y + a) −
fn(y)), while we hope that the polynomials Pn,a will be of immense use

in aspects of number theory allowing the employment of the integral

domain Z(i) or the field Q(i) of gaussian numbers and others. With the

above approach we bypass the intricate manipulations involving unique

factorization in quadratic fields. Other properties of the polynomials fn

and Qn−1,a, beyond their present use in the proof of FLT, may also be

studied.

3. On non-rational Pythagorean triples : Our present approach in §3 sug-

gests the study of non-rational Pythagorean triples in quadratic fields,

Q( n
√

σ), (where σ is an nth root-free rational number), in fields, Fp, of

prime characteristics and in fields, Qp, of p-adic numbers. The signif-

icance of the constant b = 20 in the present field of Q, as derived in

Theorem 3.1, or as may be derived in any other number field, is still

unknown.

5 Galois groups of Fermat Polynomials

The original Fermat’s Last Theorem does not translate to the investigation

of solvability of the Galois group, Gal(Qn−1,a), of the polynomials Qn−1,a,
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as it is always expected in the application of Galois theory to polynomials,

but to the investigation of the values assumed by the order, | Gal(Qn−1,a) |,
of Gal(Qn−1,a), as we shall show shortly. This approach around the Fermat

polynomials, Qn−1,a, when combined with Theorem 4.3, gives the Galois group

version of the original claim of Pierre de Fermat ([3.], p. 3). The results of

this section may also be used to deduce the nature of the roots of Qn−1,a(y) =

0, when n > 2.

Let L/K be a field extension. We know that the degree, [L : K], of the

extension satisfies [L : K] = 1 iff L = K. If the extension is, in addition,

normal and separable we conclude that the Galois group, Gal(L/K), of the

extension is the trivial group. Now if Gal(L/K) is the Galois group of a poly-

nomial f ∈ K[y], also written as Gal(f) where L is a splitting field of f over

K, then | Gal(L/K) |= 1 iff f has all its roots in K. That is, | Gal(L/K) |= 1

iff f is completely reducible over K. This observation may now be formalised.

Lemma 5.1. f ∈ K[y] is completely reducible over K iff | Gal(f) |= 1.

Proof. Let L be a splitting field of f over K. Then L is a normal finite

extension of K and | Gal(f) |= 1 iff [L : K] = 1 iff L = K. This means that

f is completely reducible over K.

Let L be a splitting field of f over K. We shall call a polynomial f ∈ K[y]

incomplete with respect to L/K whenever it has a linear factor in L[y] which

is not in K[y]. An opposite to the above Lemma is therefore possible.

Lemma 5.2. Let L/K be a field extension. f ∈ K[y] is incomplete with

respect to L/K iff | Gal(f) |6= 1.

Proof. (y − α) | f(y) (for some α ∈ L \K) iff K[α] is a splitting field of f

over K iff [K[α] : K] = 2 iff [N : K] ≥ [K[α] : K] = 2 6= 1(where N is the

normal closure of K[α]) iff | Gal(f) |= [N : K] 6= 1.

We may now study the Fermat polynomials, Qn−1,a, in the light of these

Lemmas.
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Theorem 5.3. Each Qn−1,a, with n > 2, a ∈ Q \ {0}, is an incomplete

member of Q[y] with respect to any field extension of Q.

Proof. We show that | Gal(Qn−1,a) |6= 1, for all n > 2, a ∈ Q \ {0}. Let

α1, α2, · · · , αn−1 ∈ C be the roots of the monic polynomial qn−1,a := 1
na

Qn−1,a,

then, by the fundamental theorem of algebra,

qn−1,a(y) = (y−α1)(y−α2) · · · (y−αn−1) = yn−1−s1y
n−2+s2y

n−3+· · ·+(−1)n−1sn−1,

where

s1 = α1 + α2 + · · ·+ αn−1 =
−(n− 1)

2!
(a + 20),

s2 = α1α2 + α1α3 · · ·+ αn−2αn−1 =
(n− 1)(n− 2)

3!
(a2 + 30a + 300),

· · · ,

sn−1 = α1α2 · · ·αn−1 =
(−1)n−1

n
(an−1 + 10nan−2 + · · ·+ 10n−1n)

are non-vanishing elementary symmetric polynomials.

Now let L be a splitting field for qn−1,a over Q(s1, s2, · · · , sn−1). Since the

characteristics of Q is zero we conclude, from Theorem 10.10 of [7.], p. 178,

that Gal(qn−1,a) = Sn−1. Hence Gal(Qn−1,a) = Sn−1, because α1, α2, · · · , αn−1

are also the roots of Qn−1,a. Thus | Gal(Qn−1,a) |= (n− 1)!. Since it is known

that (n−1)! = 1 iff n = 1 or n = 2, we therefore have that | Gal(Qn−1,a) |6= 1,

for all n ∈ N, with n > 2 and a ∈ Q \ {0}.

It is convenient to set Sn−1 as the trivial group when n = 1, so that the

popular choice of 0! as 1 is retained.

Remark 5.4. 1. It follows therefore that, for n > 2, the normal closure

of any splitting field of Qn−1,a over Q cannot be Q itself. This is in

contrast to the situation for n = 1, 2.

2. Since the proof of Theorem 5.3 computes the group Gal(Qn−1,a), for all

n ∈ N, as Sn−1, whose order is (n− 1)!, we may therefore conclude that
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an underlying reason the equation xn = yn + zn has solutions in non-

zero rationals only when n = 1 (which follows from the field structure

of Q) and n = 2 (as established in Theorem 3.1), is because only 0!

(=| Gal(Q0,a) |, when n = 1 in | Gal(Qn−1,a) |) and 1! (=| Gal(Q1,a) |,
when n = 2 in | Gal(Qn−1,a) |) give the value 1 among all (n − 1)!,

n ∈ N. See the paragraph before Remarks 4.4 for an equivalence form of

this reason.

3. On Wiles-Taylor’s proof of FLT : It is expected that a profound theory

would emerge out of the reconciliation of the modern theory of numbers,

as has been put to use in [13.], with the properties of the polynomials,

Qn−1,a, of the present paper. Indeed it would be interesting to link the

analysis of Binomial triangles to the Shimura-Taniyama-Weil conjecture

and the results of Diophantine geometry.

6 Arithmetic groups of Diophantine curves

It is clear from above that Q1,a(x) = (2a)x+a(20+a) and that the non-zero

rational points, (x, y), on the Pythagorean curve

Pa : y2 = Q1,a(x) = (2a)x + a(20 + a)

are given as

(x, y) := (p2 z2

2a
+ pq

z

a
+ [

q2 − a(20 + a)

2a
], pz + q),

with p, q, a ∈ Q \ {0}, z ∈ Q. Define the non-empty set G(Pa) ⊂ Q × Q as

G(Pa) :=

{(x, y) ∈ Q×Q : x = p2 z2

2a
+pq

z

a
+[

q2 − a(20 + a)

2a
], y = pz+q, ∀ p, q, a ∈ Q\{0}, z ∈ Q}

on which we define a binary operation as follows:

Set (x1, y1), (x2, y2) ∈ G(Pa) as (x1, y1) = (p2
1

z2

2a
+p1q1

z
a
+[

q2
1−a(20+a)

2a
], p1z+

q1) and (x2, y2) = (p2
2

z2

2a
+ p2q2

z
a

+ [
q2
2−a(20+a)

2a
], p2z + q2), where pi, qi, a ∈ Q \

{0}, z ∈ Q, i = 1, 2. We set (x1, y1) · (x2, y2) := (x, y), where

x = (p1p2)
2 z2

2a
+ (p1p2)(q1q2)

z

a
+ [

(q1q2)
2 − a(20 + a)

2a
]
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and

y = (p1p2)z + (q1q2).

The following result then becomes immediate.

Theorem 6.1. (G(Pa), ·) is an abelian group whose identity element is given

as 1 = ( z2

2a
+ z

a
+[1−a(20+a)

2a
], z +1), with the inverse, (x, y)−1, of every element,

(x, y) ∈ G(Pa), as (x, y)−1 = ((p−1)2 z2

2a
+(pq)−1 z

a
+ [ (q

−1)2−a(20+a)
2a

], p−1z + q−1).

Proof. We verify the well-known axioms of an abelian group.

It is known that, for each a ∈ Q \ {0}, if P1(Q) is the set of rational points

of the projective 1−space, then G(Pa) ' P1(Q) (cf. [6.], Theorem A.4.3.1), so

that each of the groups, G(Pa), may be seen as a concrete realization of P1(Q).

The method outlined above for the Pythagorean curve may be employed

to compute the arithmetic group of any Diophantine curve. According to

Theorem 4.3, the set

G(Fa) := {(x, y) ∈ Q×Q : yn = Qn−1(x), n > 2}, a ∈ Q \ {0},

consisting of non-zero rational solutions of the Fermat curve, yn = Qn−1(x), n >

2, is empty. For another example, the Diophantine curve attached to the non-

zero rational solutions of α3 − β3 = γ2 is y2 = Q2,a(x). That is, the curve

is

Ea : y2 = (3a)x2 + (3a2 + 60a)x + (a3 + 30a2 + 300a),

a ∈ Q \ {0}. The non-zero rational points on Ea are then

(x, y) = (
p√
3a

z +
2pq

√
3a− (3a2 + 60a)p

6ap
, pz + q),

where p, q, z ∈ Q, p, q 6= 0 and a = k2

3
, ∀k ∈ Z \ {0}, from which the group

operation may now be defined. The group G(Ea) is infinite, and since the

genus of the curve Ea is 0, it is also another concrete realization of P1(Q).

However, finite subgroup of G(Ea) may be constructed from restrictions on its

members. See [1], p. 255, for an example of this restriction.

This approach may be seen to have the capability of treating all the finite-

ness theorems of Diophantine geometry by explicitly computing the arithmetic
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group of any Diophantine curve. See [6], p. viii for a list of these theorems.

Remark 6.2. On attitude to a proof of FLT.

It is somewhat sad that no one expects any longer that an elementary

proof of the Fermat’s Last Theorem will ever emerge. This is the conclusion of

Michael Rosen [11], some few years after the long, indirect and very difficult

proof of Andrew Wiles and Richard Taylor was given in [12] and [13]. This

is borne out of the fact that many mathematicians were glad that the simple-

looking embarrassing statement of the Theorem could at least be said to have

been finally proved in 1994, after about 358 years of sustained attacks by the

most brilliant of each generation. What is really more grieving to the theory

of numbers and her workers is the fact that the Wiles-Taylor proof did not

only purport to have proved FLT but buried the totality of both the Theorem

and the expectations of the rich theory that has been anticipated to emerge

from its eventual proof, thus lending credence to the thought that FLT is an

isolated result of the theory of numbers.

This is exactly what is meant when Rosen said: To the degree that they

(i.e., the partial results which appeared over the course of the centuries and

which attempted to shed light on FLT ) deal strictly with FLT and not with

any broader class of problems, it is an unfortunate fact that they are now

obsolete. Our approach in this paper therefore brings out the missed oppor-

tunities of the last three centuries that would have led straight to an easy

understanding of the entire landscape of Diophantine Analysis of Equations,

had it not been overlooked repeatedly. Indeed, if the FLT is the non-existence

result of rational solutions of un + vn = wn, n = 3, 4, 5, · · · , the polynomials,

Qn−1,a, and Pn,a, deduced from it in §4 (and others that may be deduced from

other Diophantine equations) are worthy of an independent study, as done in

§5., and of potential application to a wide range of subjects, as shown in the

present section.

Our present approach has the added advantage in that it does not deal

strictly with FLT, but, as may be seen in the last two sections, it is applicable

to a wide range of subjects in algebraic number theory.
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7 Direct consequences of the Fermat’s Last

Theorem

Contrary to what some experts in the modern theory of numbers would

want us to believe, that the truth of the Fermat’s Last Theorem (FLT ) has no

single application (even within number theory!) (see [4] and [8], we consider

some direct consequences of the Theorem in the form of open problems in the

fields of topology, number theory, ring theory and Galois theory, all of which

are deduced from the outlook of the proof of the Theorem given above. Hints

on how these problems could be resolved are also included. It is our modest

conclusion that the absence of these problems in the aftermath of the 1994

Wiles-Taylor’s proof of FLT is due mainly to the approach of study, which

wrongly presupposes that FLT is an isolated result, and not that the truth of

FLT has no single consequence.

7.1 On non-rational Fermat triples

It is well-known that there are several quadratic fields between the fields Q
and R, or between Q and C. One way of generating these subfields of R or of

C is by the computation of the splitting fields of polynomials in, say, Q[X] or

Q[X1, · · · , Xm]. The following problems are proposed:

7.1.1 On non-rational Fermat triples.

Which of these splitting fields over Q will uphold the truth of the FLT?

That is, on which subfields, F, of R or C is Qn−1,a(y) 6= αn for any y, α ∈ F.

The cases of F = Q( n
√

σ), Fp, Qp have earlier been posited in Remark 4.4(3).

7.1.2 On non-rational Fermat triples

Which of the splitting fields of the fermat polynomials, Qn−1,a (as may be

deuced from Theorem 5.3, would admit the truth of FLT and why?
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7.1.3 On non-rational Fermat triples

What is the numerical value and significance of the constant b ∈ F in the

equation Qn−1,a(y) = δ(N(y+b, n)), n ∈ N, in those fields F that do not admit

the truth of the FLT? For the case of n = 2 and F = Q we already know,

from Remark 3.3(2), that b := b2,Q = 20.

7.2 Correct generalization of α2 + β2 = γ2

The question has always been asked whether FLT was the right question

to the generalization of the Babylonian results on the sum of two (integral or

rational) squares being written as a (integral or rational) square. It has been

posited ([2.]) that the correct analogue to the generalization of α2 +β2 = γ2 to

cubes is not to consider α3 + β3 = γ3, but to seek non-zero rational solutions

to α3 +β3 +γ3 = δ3, while the situation for fourth powers is α4 +β4 +γ4 +δ4 =

ζ4, · · · .

In short, the conclusion of K. Choi [2] is that if rational solutions of

xn
1 + · · ·+ xn

k = zn

are sought, it is necessary to first have that k ≥ n, though no specific way

of attacking this observation was suggested by him or by Davis Wilson (See

Diophantine Equations on the website of WolframMathWorld) other than to

state some conjectures and list the following suggestive examples: 32 +42 = 52

(where k = 2 = n), 32 + 42 + 122 = 132 (where k = 3 > 2 = n), 32 + 42 +

122 + 842 = 852 (where k = 4 > 2 = n), 33 + 43 + 53 = 63 (where k = 3 = n),

44+64+84+94+144 = 154 (where k = 5 > 4 = n), 45+55+65+75+95+115 =

125 (where k = 6 > 5 = n), · · · . It is clear that there may be other examples

that would escape the above scheme. We believe that the prospect of the

case k ≥ n above should not preclude the investigation of the existence, or

otherwise, of rational solutions of xn
1 + · · ·+ xn

k = zn for k < n, though it may

require more than 100 pages if we are to expect a proof of the Wiles-Taylor’s

magnitude (which was the case k = 2 < n) to address each(!) of the cases

2 6= k < n and the new cases of k ≥ n.

We now propose an approach to this study (of both k ≥ n and k < n)

based on an observation already contained in the proofs of Theorems 4.2 and

4.3.
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With k = 2 < n = 3, we already have the non-existence of rational solutions

of x3
1 + x3

2 = z3 as Theorem 4.2 above. A second look at the proof of this

Theorem (as explained in the paragraph following it) shows that the conclusion

of the Theorem stems from “the disparity in the number of terms in Qn−1,a(x)

(which is seven) and the number of unknowns in the coefficients of y (which

is four).” It was also reported that there was no way to match these two

numbers in the case k = 2 < n = 3, unless we increase the number of cubes

being added. That is, unless we increase k beyond 2. Indeed if k = 3 = n, then

x3
1 + x3

2 + x3
3 = z3 may be recast as z3 − x3

1 − x3
2 = x3

3, which translate (in the

context of Binomial triangles) to studying a cubic polynomial R3,a,b, given as

R3,a,b(y) := f3(y + a)− f3(y + b)− f3(y),

for y, a, b ∈ Q, a 6= 0, b 6= 0. We then seek y ∈ Q for which R3,a,b(y) =

δ(N(y+c, 3)), c ∈ Q\{0, a, b}, where the lacuna noted in the proof of Theorem

4.2 would have been filled due to the inclusion of the new term, f3(y + b), in

R3,a,b(y).

It is clear, form this paper, how the above outlined approach for k = 3 = n

may be achieved for all k = 3 ≥ n and indeed for any k ≥ n, whenever n is

fixed in N. We need only refer to Lemma 4.1 for orientation on the general

situation of k = 2 < n, which may itself be extended to the most general case

of k < n.

The present problem, as outlined above, is a strong argument in favour of

our methods of handling the FLT and in the complete understanding of the

study of Diophantine equations.

7.3 On Fermat metric

We consider here a direct consequence of FLT and fix the positive integer

n ≥ 3. It is already shown that the polynomial, Qn−1,a(y), of Lemma 4.1 is

6= δ(N(y + b, n)) as long as y ∈ Q\{0, a}, but that Qn−1,a(y) = δ(N(y + b, n)),

whenever y ∈ R \ {0, a}, for any choice of b ∈ R. A serious question along this

line of thought is how the topologies on the two fields of Q and R contribute

to the above conclusions about Qn−1,a(y) and δ(N(y + b, n)), since we know

that, in the Euclidean metric, Q = R. However, there are other topologies

on Q in whose metric the completion, Q, would not be R. We mention the
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well-known p−adic completion, Q = Qp. It is still an open problem, included

in §A. above, to find a ∈ Qp \ {0}, for which Qn−1,a(y) = δ(N(y + b, n)), for

any y ∈ Qp \ {0, a}. These and many other examples of topologies and metrics

on the subsets, N, Z, Q, Qp, · · · , of R (or of C) lead to the consideration of

the following definition:

Definition 7.1. Let (X, ρ) be the completion of a metric space, (X, ρ). The

metric, ρ, is called a fermat metric if whenever FLT holds in (X, ρ) it also

holds in (X, ρ). We then refer to the pair (X, ρ) as a fermat metric space.

In other words a fermat metric is a metric ρ : X ×X → [0,∞) for which

Qn−1,a(y) 6= αn, for all y, α ∈ (X, ρ). If X = N, Z and x, y ∈ X, we set ρ as

ρ(x, y) =| x− y |, then (X, ρ) is a fermat metric space while (Q, ρ) is not.

In the general situation of the above definition one would like to know

if every metric on a fermat metric space is a fermat metric and which of

the topologies on X may be deduced from a fermat metric. Also, for which

example of the set, X, (whether finite, discrete, Baire, · · · ) is every metric

a fermat metric? A description of the open sets, closed sets, accumulation

of a set, interior of a set, base of the topology, · · · , in terms of the fermat

polynomials, Qn−1,a(y), y ∈ X, will contribute richly to our understanding of

polynomial-induced metrics. An open problem in §A. is to know whether or

not the p−adic metric is a fermat metric on Q.

7.4 Galois theory of Fermat fields

This section may be seen as an analytic continuation of the exploration in

§7(A) above. Let Fi, 1 ≤ i ≤ r be a collection of subfields of R (or C). We

shall call any member of this collection a fermat field whenever FLT holds on

it.

Definition 7.2. Let Q ⊆ F1 ⊆ · · · ⊆ Fr ⊂ R (or C) be an increasing

collection of fields. We refer to the collection, Fi, 1 ≤ i ≤ m, m ≤ r, as a

collection of nested fermat fields of length m whenever (a.) Q ⊆ F1 ⊆ · · · ⊆
Fm ⊂ R (or C) and (b.) each Fi, 1 ≤ i ≤ m, is a fermat field.

Some of the important questions on this definition are:
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a. How many collection of nested fermat fields are there for each exponent

n ≥ 3?

b. Is there a relationship between the length of a nested fermat fields and each

n?

c. In the general case of Q ⊆ F1 ⊆ · · · ⊆ Fr ⊂ R (or C), at what field,

Fk, 1 ≤ k ≤ r, does FLT holds for which it fails at Fk+1 and what is the

relationship of k to n?

d. What are the properties of Fk and Fk+1 in (c.) above and how does the Ga-

lois groups, Gal(Ft+1/Ft), t = 1, 2, 3, · · · , of the field extensions, Ft+1/Ft,

contribute to these conclusions above?

e. Is Gal(Ft+1/Ft) in any relationship with Gal(Qn−1,a) (which has been com-

puted above to be Sn−1) or with Gal(Pn,a) (with Pn,a as in Remarks

4.4(2))?

f. How does an arithmetic group (if non-empty) of any Diophantine curve

contributes to all these open problems?

We are hoping to attack some of these open problems in collaboration with

others.
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