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 Abstract 

In this paper we consider laminar viscous incompressible fluid between two 

infinite parallel plates when the upper plate is moving with constant velocity oU  

and the lower plate is held stationary under the influence of inclined magnetic 

field.  The resulting governing partial differential equation is solved by Sumudu 

Transform and the solution expressed in terms of Hartmann number. The analysis 

of this shows that, the velocity profile will decrease as the Hartmann number and 

magnetic inclination increases. This approach can be used to obtain solutions of 

ordinary differential equations in astronomy, Physics and in controlling 

engineering problems. 
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1 Introduction   

The theoretical study of Magnetohydrodynamics (MHD) has been on recent 

years of great interest due to its wide spread  applications on purification of crude 

oil in petroleum industry, separation of matter from fluids, MHD power 

generation, aerodynamics and designing of cooling systems with liquid metals 

among many applications. When an electrically conducting fluid is placed in a 

constant magnetic field, the motion of the fluid induces currents which create 

forces on the fluid. The production of these currents has led to the design of 

among other devices the MHD generators for electricity production. The equations 

which describe MHD flow are a combination of continuity equation and Navier-

Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. 

The resultant governing differential equations have to be solved either analytically 

or numerically. 

When an electrically conducting fluid is placed in a constant magnetic field, 

the motion of the fluid induces currents which create forces on the fluid. The 

production of these currents has led to the design of among other devices the 

MHD generators for electricity production. The equations which describe MHD 

flow are a combination of continuity equation and Navier-Stokes equations of 

fluid dynamics and Maxwell’s equations of electromagnetism. The resultant 

governing differential equations have to be solved either analytically or 

numerically. 

An exact solution of Navier-Stokes equation for plane couette flow between 

two parallel plates without suction was well discussed by Schlichting [4]. Sinha 
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and Choudhary [6] analysed flow of viscous incompressible fluid between two 

parallel plates, one in uniform motion and the other at rest with suction at the 

stationary Plate. Singh and Ram [8] studied laminar flow of an electrically 

conducting fluid through a channel in the presence of a transverse magnetic field 

under the influence of a periodic pressure gradient and solved the resulting 

differential equation by the method of Laplace transform. Ram et.al. [9] have 

discussed  Hall effects on heat and mass transfer flow through porous media.  

Kazuyuki [10] analysed inertia effects in two dimensional MHD channel flow 

while Al-Hadhrami [12] considered flow of fluids through horizontal channels of 

porous materials and obtained velocity expressions in terms of the Reynolds 

number. Ganesh [13] studied unsteady MHD Stokes flow of a viscous fluid 

between two parallel porous plates. They considered fluid being withdrawn 

through both walls of the channel at the same rate. Singh et.al. [14] studied 

Couette laminar viscous MHD fluid flow between two parallel infinite plates in 

presence of transverse magnetic field and solved this by Laplace Transform. 

Manyonge et al. [16] considered steady MHD flow between two infinite parallel 

porous plates in an inclined magnetic field and the resultant differential equation 

solved analytically by analytical method.  

There are numerous integral transforms in literature used to solve differential 

equations. In Kihcman et al. [15] applied integral transform to partial differential 

equations with non-homogeneous forcing term and having singular variable data. 

In 1993, Watugala introduced a new transform which he named it as Sumudu 

Transform which he defined as 

( )

1 2
0

1( ) [ ( ; )] ( ) , ( , )
t
uF u S f t u e f t dt u

u
τ τ

∞
−

= = ∈ ∈ −∫  

and applied it to the solution of ordinary differential equations, see [11]. 

In this paper we consider two dimensional steady couette flow of an 

electrically conducting fluid between two infinite parallel plates under the 

influence of uniform transverse magnetic field. The resulting differential equation 
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is solved by application of Sumudu Transform.  

 

 

2 Mathematical Formulation 

The basic concept describing magnetohydrodynamics phenomena can be 

described by considering an electrically conducting fluid moving with a velocity 

vector V. At right angles to this we apply a magnetic field, B.  We then assume 

that steady flow conditions have been attained i.e. flow variables are independent 

of the time t . This condition is purely for analytic reasons so that no macroscopic 

charge density is being built up at any place in the system as well as all currents 

are constant in time. Because of the interaction of two fields, namely, velocity and 

magnetic fields, an electric field denoted by E is induced at right angles to both V 

and B. This electric field is given by       

              indE V B= ×                (1) 

If we assume that the conducting fluid is isotropic in spite of the magnetic field, 

we can denote its electrical conductivity by the scalar quantity σ.  By Ohms law, 

the density of the current induced in the conducting fluid denoted by  indJ    is 

given by    ind indJ Eσ=                (2) 

or we can simply  write this as  

                        ind appJ  =  (V × B ) σ               (3) 

Simultaneously occurring with the induced current is the induced 

ponderomotivforce or the Lorentz force indF which is given by  

                     ind app =  × BindF J               (4) 

 .The Lorentz force is significant in determining the flow profile based on the 

dimensionless Hartmann number which is given by the ratio of the magnetic body 

force and the viscous force Ha = (N.Re)1/2 , where N =Ha2/Re =σ .L.B2 / ρ U 

stands for the nondimensional interaction parameter known as Stuart number 
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which is defined as the ratio of electromagnetic to inertial forces, and this  gives 

an estimate of the relative importance of a magnetic field of the flow. It is also 

relevant for flows of conducting fields e.g in fusion reactors, steel casters or 

plasmas. On the other hand, Re = UL /ν   is the nondimensional hydrodynamic 

Reynolds number, so the Hartmann number can be rewritten as Ha= L.B. (σ / μ) 1/2   

where μ is the dynamic viscosity and ν is kinematic viscosity. 

The Lorentz force will occur because, as an electric generator, the conducting 

fluid cuts the lines of the magnetic field. The vector F is the vector cross product 

of both J and B and is a vector perpendicular to the plane of both J and B. The 

induced force is parallel to V but in opposite direction. Laminar flow through a 

channel under uniform transverse magnetic field is important because of the use of 

MHD generator, MHD pump, crude oil purification and electromagnetic flow 

meter.  

We now consider an electrically conducting, viscous, steady and 

incompressible fluid moving between two infinite parallel plates both kept at a 

constant distance h  between them. The upper plate is moving with constant 

velocity oU  while the lower plate is kept stationary. The fluid is acted upon by a 

constant pressure gradient. 

The governing equations for the flow of incompressible Newtonian fluid that 

we use in this study are the continuity equation and the momentum equations 

which are: 

                        .V=0∇                 (5) 

                      2[ ( . ) ]V V V P u J B
t

ρ µ∂
+ ∇ = −∇ + ∇ + ×

∂
            (6) 

Where ρ  is the fluid density, P  is the fluid pressure function acting on the fluid, 

µ is the fluid dynamic viscosity and J B× is the Lorentz force. 
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3 Non-dimensionalizing of the governing equations 

We now consider unidirectional flow, in which we choose the axis of the 

channel formed by the two plates as the x axis and assume that flow is in this 

direction. 

 If V = u′ (x′,y′, z′ ) i +v′( x′,y′, z′) j +w′ (x′,y′, z′ ) k in which u′,v′ and w′ are  the 

components of the velocity in ,x y− −  and z −  directions respectively and primes  

denote dimensionless quantities. This now implies that v′ = w ′= 0 and that u ′ ≠ 0.  

Then the continuity equation (5) yields    ' ' ' 0u v w
x y z
′ ′ ′∂ ∂ ∂
+ + =

∂ ∂ ∂
. But    ' ' 0v w

y z
′ ′∂ ∂
+ =

∂ ∂
 

so that '

' 0u
x

∂
=

∂
  from which we infer  that   u′  is independent of x′ . This makes 

the non- linear term [(V.∇  )] V in the Navier-Stokes equations equal to zero 

because of the unidirectional flow assumption. Since we had assumed a steady 

flow, the flow variable does not depend on time.  By assuming that the flow is two 

dimensional i.e. the flow variables are independent of z −  direction, then this  

means that , by choosing the axis of the channel as the  x –axis, the governing 

equations  of motion for  two dimensional steady  flow are 

              
2

2

10 xFp u
x y

ν
ρ ρ

′ ′∂ ∂
= − + +

′ ′∂ ∂
               (7) 

             10 p
yρ
′∂

= −
′∂
                 (8) 

where  µν
ρ

=  is the kinematic viscosity and xF  is the component of the magnetic 

force in the x  - direction. We note that p is a function of x  only and that pressure 

does not depend on y from equation (8). Also, assuming unidirectional flow v′ = 

w′ = 0 and   Bx = Bz = 0 so that V = u′ i and B = B0 j where B0 is the magnetic field 

strength component assumed to be applied to a direction perpendicular to fluid 

motion  (y -direction). Therefore, using the cross product of (7) we obtain                             

                         [( ) ]x o oF u i j B j Bσ ′= × ×                           (9) 
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This is easily shown to reduce to    

                           2x
o

F B uσ
ρ ρ

′= −               (10) 

Using equation (10) into equation (7) we obtain  

                  
2

2
2

10 o
p u B u
x y

σν
ρ ρ

′ ′∂ ∂ ′= − + −
′ ′∂ ∂

             (11) 

or 

                   
2

2
2

1
o

d u dpB u
dy dx

σ
µ µ

′ ′
′− =

′ ′
              (12) 

or 

                    
2

2
2

1sin( )o
d u dpB u
dy dx

σ α
µ µ

′ ′
′− =

′ ′
             (13) 

where we have taken ordinary derivatives instead of partial derivatives and α is the 

angle between V and B. Equation (13) is a general equation in that the two fields 

can be assessed at any angle 0 α π≤ ≤  and is solved subject to boundary 

conditions :- 

                      0 1u y= = −                 1ou U y= = +    (BC)     

We can now drop the primes for convenience in (12) ,(13) and (8)  to  have 

  

                         
2

2
2

1
o

d u dpB u
dy dx

σ
µ µ

− =              (14) 

or      

                                  
2

2
2

1sin( )o
d u dpB u
dy dx

σ α
µ µ

− =             (15) 

  and                        

                                  10 dp
dyρ

= −               (16) 

Since the flow is couette then we shall have pressure gradient taken to be zero 
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i.e. 0dp
dx

=   in (15). If we let l be the characteristic length, the dimensionless 

equation (15) reverts back to the non-dimensionless form and we can now define 

the dimensionless quantities as  

                       
'xx

l
= ,  

'yy
l

= ,   
' 2

2

p lp
ρν

= ,  
'u lu
ν

=                      (17) 

By substituting the quantities of (17) into (13) we get  

                      
2

2 2 2
2 sin ( ) 0o

d u B l u
dy

σ α
µ

− =               (18) 

or         

                       
2

2
2 0d u M u

dy
− =               (19) 

Where * sinM M α=  and   
1

* 2( )oM lB Haσ
µ

= =  is the Hartmann Number 

given by
2 2

2 oB lHa σ
µ

= . We now solve equation (19) by using Sumudu Transform 

method by first evaluating initial conditions with the help of boundary conditions:- 

 

          0 1u y= = −    1ou U y= = +        (BC)  

This is a second order differential equation which can be transformed to its 

Sumudu equivalent as   2
2

( ) (0) '(0) ( ) 0G u y y M G u
u u
−

− − = . Multiplying all 

through by 2u  and on rearranging we obtain 

     2 2( ) (0) '(0) ( ) 0G u y u y M u G u− − − =   

or     2 2( )[1 ] (0) '(0)G u M u y u y− = + . 

The general Sumudu solution is   2 2

(0) '(0)( )
1

y u yG u
M u
+

=
−

.  Let   1(0)y c=  and  

2'(0)y c=  so that we have 1 2
2 2( )

1
c c uG u

M u
+

=
−

. Upon inverting we obtain the general 
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solution as  

                                           1 2
sinh( ) cosh Myu y c My c

M
= +            (20) 

Using the boundary conditions (BC) we obtain  

            1 20 cosh sinhc M c M= −                (21) 

      1 2cosh sinhou c M c M= +               (22)  

On solving (21) and (22) we obtain  

1 2cosh
oUc

M
=     and      2 sinh

oUc
M

=  

and substituting these to equation (20) we obtain   

0 cosh sinh( )
2 cosh sinh

U My Myu y
M M

 = +  
 

οr 

                                
0

( ) sinh [ (1 )]
sinh 2

u y M y
U M

+
= ,            (23) 

where * sinM M α=  and   

1
2

*
oM lB Haσ

µ
 

= = 
 

 is the Hartmann Number given 

by 
2 2

2 oB lHa σ
µ

=  and is directly proportional to the magnetic field B0.  Flow 

velocity for Hartmann numbers 0.5Ha = , 1.5Ha = , 2.5Ha =  and angle of 

inclinations for 15α =  , 30α =   and 45α =    are shown in the figures below. 
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              Figure 1: Velocity profiles for various Hartmann numbers for angle of  

                            inclination 150 
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            Figure 2: Velocity profiles for various Hartmann numbers for angle of  

                           inclination 300 
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               Figure 3: Velocity profiles for various Hartmann numbers for angle of  

                               inclination 450 

 

 

4 Discussion of results and Conclusions 

Equation (19) has been solved by using Sumudu Transform for the linear 

differential equation with constant coefficients .We assumed some initial 

conditions 1c  and  2c   which resulted the expression for the velocity of fluid 

particles be derived in terms of hyperbolic functions. The velocity profiles drawn 

for  Hartmann numbers 0.5Ha = , 1.5Ha = , 2.5Ha =  and angle of inclinations 

for 15α =  , 30α =   and 45α =  shows that, increase in magnetic field strength 

and magnetic inclinations results into decreases in  the velocity profiles.   
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