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Abstract 

The interaction between viruses and the immune system is known to be varied and 

complex. In particular, viruses may develop survival tactics to diminish the 

immune system, causing the protective immunity response to become deleterious 

to the host. A dynamic model is developed to depict the interaction between 

viruses and immune system response under this scenario. Rather general and 

nonlinear specifications are allowed in the growth rate of the antibodies and 

antibodies’ kill rate. Some stylized prognosis possibilities are generated by the 

model. It also yields the interesting outcome in which the slightly infected may die 

of the disease while the seriously infected may survive. Treatment simulation is 

also considered.  
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1  Introduction  
The interaction between viruses and the immune system is known to be 

varied and complex. A virus could trigger an autoimmune response of the infected 

host by eliciting antiviral antibodies. Many viruses have developed survival tactics 

to evade or diminish the immune system that functions to protect the host. In 

addition, the fundamental protective response can become deleterious to the host’s 

body. For instance, antibody response may generate cross reaction between viral 

and self protein, causing molecular mimicry of the host by the virus. There is 

convincing evidence that molecular mimicry can lead to tissue damage (see [1, 2]). 

Moreover, the possibility of antibody cross-reactivity between virus and host was 

found at the genetic level by [3]. The overlap between autoimmune and antiviral 

antibody gene repertoires may cause autoimmune diseases (see [4-7]). Damaging 

immune response to AIDS virus infection are found by [8, 9]. Deleterious immune 

responses are also found in malaria patients (see [10]) and mice (see [11]).  

 This paper develops a dynamic model to depict the interaction between 

viruses and the immune system response. In particular, the interaction between the 

virus and the host’s immune system has the following characteristics. An increase 

in virus population or concentration increases the production of antiviral 

antibodies. The protective immune response causes cross reactivity between the 

virus and the host, and produces deleterious effects. One of these effects is that the 

disturbed immune system aids the growth of the virus, perhaps through 

mechanisms like the incorporation of cellular protein into viral protein in the 

course of viral replication. This translates into the scenario that increased antiviral 

antibodies decreases the demise rate of the virus.  

 The model is developed along the line of the interactive models [12-17]. 
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Dynamic interactive models on viral infection can be found in [18-20]. In the 

present model, some interesting prognosis possibilities could be generated. 

Section 2 presents the dynamics of virus growth and immunity response. The 

growth trajectories of virus and antibodies are derived in Section 3. Various 

prognosis possibilities generated by the model are discussed in Section 4. 

Treatment simulation is considered in Section 5. Some concluding remarks are 

given in Section 6. 

 

 

2  Dynamics of Virus Growth and Immunity Response  

In this section, we formulate the dynamics of virus growth and immunity 

response in a mathematical model. Let )(tv  denote the population or 

concentration of viruses at time t, and )(tu  the amount of antiviral antibodies. 

The evolution of viruses and immunity response are hypothesized to be governed 

by the simultaneous equations: 

   )()]([)()( tutvf
dt

tdutu δ−== ,                     (1) 

   [ ] )()](),([)()( tvtvtuga
dt

tdvtv −== , 0)( 00 ≥= vtv  and 0)( 00 ≥= utu .   (2) 

Equation (1) characterizes the growth dynamics of antibodies. The function 

)]([ tvf  reflects the amount of antibodies induced by virus population )(tv . The 

positive parameter δ  represents the natural degradation rate of antibodies, and a 

is the nonnegative natural reproduction rate of the virus. The inducement function 

)]([ tvf  exhibits the following characteristics:    

(i)  0)( >vf , 0)0( ≥= Ff ,  

(ii) 0)(' >vf , and 0)('' >vf .                                 (3) 

Characteristic (ii) in (3) shows that (a) the presence of viruses induces the 

production of antibodies, and (b) in the absence of virus antibodies may still be 
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generated. Characteristics (ii) demonstrates that (a) the higher the population of 

the virus the higher the amount of antibodies induced, and (b) the marginal rate of 

antibodies inducement increases with the virus population. Property (b) in (3) 

reflects that with cross reactivity the immune system becomes increasingly 

sensitive to the virus. 

Equation (2) characterizes the growth dynamics of the virus. The natural 

reproduction rate of virus is a . The term [ ])](),([ tvtug  represents the antibodies’ 

kill rate of the virus which depends on the amount of antibodies and the virus 

population. The function )](),([ tvtug  is supposed to have the following features:  

(i) 0),( <vugu , 0),( <vuguu , and 0),( ≥vug  for 0≥u  and 0≥v ; 

(ii) 0),( >vugv , 0),( =vugvv  and 0),( =vuguv ; 

(iii) 0),0( >vg .                                               (4) 

Feature (i) in (4) shows that (a) an increase in antibodies would decrease the 

antibodies’ kill-rate of virus because of deleterious immunological effects, (b) (the 

negative) increment of the antibodies’ kill-rate would decrease as antibodies 

increase, and (c) the antibodies’ kill-rate remains non-negative.  

Property (b) reflects the fact that protective immune response causes cross 

reactivity and produces deleterious effects which aid the growth of the virus, 

perhaps through mechanisms like the incorporation of cellular protein into viral 

protein in the course of viral replication. As stated in Section 1, this translates into 

the scenario that increased antiviral antibodies decreases the demise rate of the 

virus.  

Feature (ii) in (4) shows that (a) an increase in virus increases the antibodies’ 

kill-rate due to an increase in the catch-able rate, (b) the increment of the 

antibodies’ kill-rate brought about by an increase in virus is not affected by 

changes in the virus population, and (c) the (negative) increment of the antibodies’ 

kill-rate brought about by an increase in antibodies is not affected by changes in 

the virus population. 
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 Feature (iii) shows that in the absence of antibodies, the natural death rate of 

virus is ),0( vg  which depends on its population. With 0),( >vugv , the natural 

death rate increases as congestion increases. Moreover, we denote the level of 

virus such that its natural reproduction rate a  equals its natural death rate 

),0( vg  by nv . 

One can readily verify that given nonnegative 0v and 0u  at initial time 0t , 

0)( ≥tu  and 0)( ≥tv  for all ),[ 0 ∞∈ tt . 

 

 

3  Growth Trajectories of Virus and Antibodies 

 

The growth trajectories of virus and antibodies can be analyzed in the phase 

space. First, the isocline 0=u  is the locus )(uv ε=  which satisfies the 

condition 0)( ≡− uvf δ . The slope of isocline 0=u  in the positive quadrant of 

the u-v phase space can be obtained readily as: 

0
)]([')('0

>==
= ufvfdu

dv
u ε

δδ



.           (5) 

With 
du

udu )()(' εε =
)('

0
vfdu

dv

u

δ
==

=

, the derivative of the slope of isocline 

0=u  in (5) can be obtained as: 
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εεδ



.        (6)  

Condition (6) shows that the isocline 0=u  resembles the graph of a strictly 

concave function in the positive quadrant of the u-v phase space. 

 The demarcation lines yielding 0=v  include (i) the axis 0=v , and (ii) the 

isocline 0=v  represented by the locus )(uv ϑ=  which satisfies the condition 

0)( ≡− vuga  in the positive quadrant of the u-v phase space. The slope of the 
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isocline 0=v  represented by the locus )(uv ϑ=  can be obtained readily as: 

0
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, the derivative of the slope of isocline 
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Condition (8) shows that the isocline 0=v  resembles the graph of a strictly 

convex function in the positive quadrant of the u-v phase space. 

 Given that both isoclines are positively sloped while the isocline 0=u  is 

strictly concave and the isocline 0=v  is strictly convex, they may (a) intersect 

with each other twice, or (b) intersect just once, or (c) never intersect with each 

other. At the point where the isoclines intersect, both the virus and antibodies 

cease to grow, and a stationary point (steady state) appears. In the following two 

subsections, we first consider the prime case in which the isoclines intersect twice 

and depict various dynamics and outcomes generated. Then we consider the 

peripheral case in which the isoclines intersect once or do not intersect at all. 

 

 

3.1. The prime case -- isoclines intersect twice 

In the case when the isoclines 0=u  and 0=v  intersect with each other 

twice the two stationary points (steady states) are denoted as ),( ** vu  and 
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),( **** vu  in Figure 1. The types of steady state these stationary points represent 

are provided in Property 1 below. 

Property 1.  The point ),( ** vu  is a stable node and ),( **** vu  is a saddle point. 

Proof.  The variational matrix of system (1)-(2) is: 

=V












−−−
−

),(),(),(
)('

vugvvugavug
vf

vu

δ
.           (9) 

At a stationary point, 0),( =− vuga , and the trace of V is  

)(VTr = 0),( <−− vvugvδ ,                          (10) 

which is always negative; and the determinant of V is  

V = ),()('),( vugvfvvug uv +δ .                (11) 

Furthermore, at a stationary point, the term: 

VVTr 4)]([ 2 −  2]),([ vvugv−−= δ )],()('),([4 vugvfvvug uv +− δ  

              2]),([ vvugv−= δ 0),()('4 >− vugvf u .         (12) 

 At ),( ** vu , the slope of the isocline 0=u  is steeper than that of the 

isocline 0=v , therefore  

>=
=

)('
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, and 

the determinant of V is  

V = ),()('),( vugvfvvug uv +δ 0> .              (13) 

Given that )(VTr <0 and V >0 and VVTr 4)]([ 2 − >0, both eigenvalues of V are 

real and negative. Hence, the stationary point ),( ** vu  is a stable node. 

At ),( **** vu , the slope of the isocline 0=v  is steeper than that of the 

isocline 0=u , therefore  
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the determinant of V is  
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V = ),()('),( vugvfvvug uv +δ 0< .         (14) 

Given that )(VTr <0 and V <0 and VVTr 4)]([ 2 − >0, the eigenvalues of V 

are real but of opposite signs. Hence, the stationary point ),( **** vu  is a saddle 

point.                  � 

 

 Since ),( **** vu  is a saddle point, there exists a separatrix in the form of a 

pair of stable branches, )(uv φ=  and )(uv φ= , along which points will move 

towards the saddle point (see [21]). These stable branches are depicted by the 

dotted line arrows in Figure 1.  

 

 
       Figure 1: Phase portrait of virus concentration and antibodies level,  

               where 0=u  and 0=v  intersect with each other twice 

 

 The movements of virus population and antibodies level are depicted by the 

arrows in Figure 1. We use )(uv φ=  to denote the locus of the separatrix. 

Trajectories starting in the region to the left of the separatrix )(uv φ=  will 
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eventually settle at the stable node ),( ** vu . Trajectories starting in the region to 

the right of the separatrix )(uv φ=  will eventually go out of bounds. Trajectories 

starting along the stable branches will eventually settle at the saddle point 

),( **** vu . 

 

 

3.2. Peripheral case – one or no intersection 

In this subsection, we first consider the case in which 0=u  and 0=v  

intersect just once, and then the case in which the isoclines do not intersect with 

each other.  

(a) Isoclines intersect just once 

Consider the case in which the isoclines 0=u  and 0=v  intersect with each 

other just once at ),( zz vu  as in Figure 2. Note that at ),( zz vu , where the slopes 

of the isoclines are equal, that is ==
=

)('
0

vfdu
dv

u

δ



),(
),(

0
vug
vug

du
dv

v

u

v

−
=

=

, the 

determinant of the variational matrix V is   

V = ),()('),( vugvfvvug uv +δ 0= .                  (15) 

Therefore one of the eigenvalues of V is zero while the other is negative, 

hence ),( zz vu  is neither a stable node nor a saddle point. Instead, it is an 

improper node (unstable steady state) at which 0=u  and 0=v . The movements 

of virus population and antibodies level are depicted by the arrows in Figure 2.  

There are trajectories moving towards the stationary point ),( zz vu  and there 

are also trajectories that will go out of bounds.  
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        Figure 2: Phase portrait of virus concentration and antibodies level,        

                where 0=u  and 0=v  intersect with each other once 

 

 (b) Isoclines do not intersect 

In the case when 0=u  and 0=v  do not intersect with each other, the 

movements of virus population and antibodies level are depicted by the arrows in 

Figure 3.  

 
       Figure 3: Phase portrait of virus concentration and antibodies level, 

               where 0=u  and 0=v  do not intersect with each other 

 

Any trajectory starting in the interior of the positive quadrant of the u-v phase 

space will eventually go out of bounds.  
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4  Prognosis Possibilities   

The course of development of many virus infections could be very complex 

and varied due to deleterious immunity response of the infected host subject. In 

the sequel, we use the dynamic interactive model of viruses and deleterious 

immunity response in (1) – (2) to generate outcomes which reflects some stylized 

prognoses. 

Consider first the prime case when 0=u  and 0=v  intersect twice. The 

u-v phase space in Figure 1 can be divided into nine regions: I, II, III, IV, V, VI, 

VII, VIII and IX. 

 Nine different prognoses can be obtained as follows: 

(i) Region I. If the infected host is diagnosed to have virus concentration and 

antibodies level belonging to states in this region, both virus concentration 

and antibodies level will grow until they reach the stable steady state 

),( ** vu .  

(ii) Region II. If the infected host is diagnosed to have virus concentration and 

antibodies level belonging to states in this region, both virus concentration 

and antibodies level will decline until they reach the stable steady state 

),( ** vu .  

(iii) Region III. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region, virus concentration 

will grow and antibodies level will drop until either (a) they arrive at a 

point on the isocline 0=v  and then both of them will decline until the 

stable steady state ),( ** vu  is reached, or (b) they arrive at a point on the 

isocline 0=u  and then both of them will rise until the stable steady state 

),( ** vu  is reached. 

(iv) Region IV. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region, virus concentration 

will drop and the level of antibodies will rise until either (a) they arrive at a 
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point on the isocline 0=v  and then both of them will decline until the 

stable steady state ),( ** vu  is reached, or (b) they arrive at a point on the 

isocline 0=u  and then both of them will rise until the stable steady state 

),( ** vu  is reached. 

(v) Region V. If the infected host is diagnosed to have virus concentration and 

antibodies level belonging to states in this region, virus concentration will 

grow and antibodies level will drop until they arrive at a point on the 

isocline 0=u . Then both of them will rise continuously and go out of 

bounds eventually.  

(vi) Region VI. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region, virus concentration 

will drop and antibodies level will rise until they arrive at a point on the 

isocline 0=v . Then both of them will rise continuously and eventually go 

out of bounds.  

(vii) Region VII. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region, both virus 

concentration and antibodies level will rise continuously and go out of 

bounds eventually.  

(viii) Region VIII. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region – that is the lower 

stable branch, virus concentration will rise and antibodies level will drop 

until they reach the saddle point steady state ),( **** vu . 

(ix) Region IX. If the infected host is diagnosed to have virus concentration 

and antibodies level belonging to states in this region – that is upper stable 

branch, virus concentration will drop and antibodies level will rise until 

they reach the saddle point steady state ),( **** vu . 

Thus, for virus-antibodies combinations in regions I to IV, they will 

eventually settle at the stable node ),( ** vu . For virus-antibodies combinations in 
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regions V to VII, they will grow out of bounds eventually. For with 

virus-antibodies combinations in region VIII or region IX, their conditions will 

settle at the saddle point steady state ),( **** vu  eventually.     

Once a steady state is reached, virus concentration and antibodies level will 

remain there until new virus infection occurs. Consider the case when the stable 

steady state ),( ** vu  has been attained and there was a new virus infection 

leading to a change in the virus-antibodies combination. If the virus-antibodies 

combination after the new infection is within regions I to IV, the stable node will 

be restored eventually. If the virus-antibodies combination after the new infection 

is in regions V to VII, the virus-antibodies combination will either go 

out-of-bounds. Finally, if the virus-antibodies combination after the new infection 

is along the stable arms it will eventually settling at the saddle point ),( **** vu .  

Interesting results mimicking actual cases can be generated by the model. For 

instance, some hosts with initially mild infection (with low level of virus) may die 

of the disease eventually. This would happen if the initial virus-antibodies 

combination of the host is in the low virus part of Region V. Similarly, some hosts 

who are initially seriously infected (with high virus concentration) may eventually 

survive. This would happen if the initial virus-antibodies combination of the host 

is in the high virus part of Region IV. 

Next we consider the peripheral case when the isoclines intersect once or do 

not intersect. We first examine the case when the isoclines intersect only once as 

in the u-v phase space in Figure 2. The following prognoses can be made.  

(x) Depending on the starting point, initially virus concentration and 

antibodies level may rise together or move in opposite directions, and 

subsequently both of them will rise and eventually go out of bounds.      

(xi) Depending on the starting point, initially virus concentration and 

antibodies level may rise together or move in opposite directions, and 

eventually both of them will rise together towards the steady state 
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),( zz vu . 

Now, we consider the case when the isoclines 0=u  and 0=v  do not 

intersect with each other. Since all trajectories in the interior of the positive 

quadrant of the u-v phase space will eventually go out of bounds, the following 

prognoses can be made. 

(xii) The viral infection is absolutely fatal. Irrespective to the starting point, the 

virus concentration and antibodies level will go out of bounds eventually.      

 

 

5  Treatment Simulation 
In this section, we consider simulated effects of medical treatment on the 

growth of the virus and antibodies. Consider the simple scenario that medication 

can reduce the natural reproduction rate of virus. Equation (1) becomes:  

[ ] )()](),([)]([)( 1 tvtvtugtmatv −−= ϖ ,       (16) 

where )(1 tm  is the level of medication applied to reduce virus growth at time t, 

and )]([ 1 tmϖ  is the effect of the medication on the natural reproduction rate of 

the virus. It is assumed that am ≤≤ )(0 1ϖ  for all possible levels of 1m .  

 Simultaneously, another medication can be used to reduce the sensitivity of 

the immune system in producing antibodies in response to virus intrusion. 

Equation (2) becomes: 

   )()]([)]([)( 2 tutvftmtu δθ −= ,        (17) 

where )(2 tm  is the level of medication applied to alleviate immunity sensitivity 

at time t,  and )]([ 2 tmθ )1,0[∈  represents the effect of medication on the 

sensitivity of the immune system.   

 Consider the case where constant dosages of medication, 1m̂  and 2m̂ , are 

applied. Therefore ϖϖϖ ˆ)ˆ()]([ 11 == mtm  and θθθ ˆ)ˆ()]([ 22 == mtm  for all 

time t within the treatment period. 
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 With medical treatment being applied to reduce the virus growth, the isocline 

0=v  is on the locus [ ] 0)](),([ˆ =−ϖ− tvtuga . While the isocline 0=v  before 

medication is on the locus [ ] 0)](),([ =− tvtuga . Given that 0),( >vugv , the 

after-medication isocline 0=v  is below the before-medication isocline 0=v  in 

the vu −  phase space in Figure 1. The term wv  is used to denote the level of 

virus such that its after-medication reproduction rate ϖ̂−a  equals its natural 

death rate ),0( vg . 

 After medical treatment has been applied to alleviate immunity sensitivity, 

δθ /)(ˆ vfu =  along the isocline 0=u . Before treatment, δ/)(vfu =  along the 

isocline 0=u . Hence, after-medication, at every value of v, the value of u shrinks 

by the proportion θ̂ . Therefore, after medical treatment is applied to alleviate 

immunity sensitivity, the after-medication isocline 0=u  will shifts to the left of 

the before-medication isocline 0=u  in the vu −  phase space in Figure 1.  

    Moreover, the slopes of the after-medication isoclines,
),(
),(

0
vug
vug

du
dv

v

u

Med

v

−
=

=

 

and 
)('ˆ

0 vfdu
dv

Med

u θ
δ

=
=

 , are again positive.        

 Following the analysis in Section 3, one can readily show that the isocline 

0=u  is strictly concave and the isocline 0=v  is strictly convex. The 

movements of virus population and antibodies level after medication are depicted 

by the arrows in Figure 4. Again following the analysis in section 3 one can 

establish that the point ),( ** vu  is a stable node and ),( **** vu  is a saddle point.

 Since ),( **** vu  is a saddle point, there exists a separatrix )(uv ψ= , along 

which points will move towards the saddle point. Trajectories starting in the 

region to the right of )(uv ψ=  will eventually go out of bounds. Trajectories 

starting in the region to the left of )(uv ψ=  will eventually settle at the stable 
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node ),( ** vu . 

 

 
Figure 4: Phase portrait of after-medication virus concentration  

                and antibodies level 

 

The main objective of medication is to stop virus concentration from going 

out of bounds (assuming that the virus-antibodies combination of the infected host 

is already in an area that will send both virus concentration and antibodies level 

out of bounds). A necessary condition for medication to be effective is that the 

virus-antibodies combination is on the left of the after-medication separatrix. Once 

the virus-antibodies combination has been restored to the region on the left of the 

before-medication separatrix, medication can be taken off and the virus-antibodies 

combination will settle at the natural stable steady-state ),( ** vu  in Figure 1. 

 

 

6  Concluding Remarks 

In this paper, we developed a dynamic model depicting the interaction 
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between viruses and the immune system response. Rather general and nonlinear 

specifications are allowed in the growth rate of the antibodies and antibodies’ kill 

rate. Some interesting prognosis possibilities generated by the model are examined 

and treatment simulation is considered. In sum, the model developed leads to 

phase diagrams which yield interesting features that reflect the behaviors of 

viruses and antibodies.  

 In addition, the evolutionary dynamics of viruses and immunity response can 

take on more general structures with:  

      )](),([ˆ)( tvtuftu = ,                      (18) 

      )](),([ˆ)( tvtugtv = ,   0)( 00 ≥= vtv , 0)( 00 ≥= utu ,          (19) 

satisfying  

0
0

>
=udu

dv


, 0
0

<








=

du
du
dvd

u

; 0
0

>
=vdu

dv


, 0
0

>








=

du
du
dvd

v

; and  

the isocline 0=u  has a positive intercept along the −u axis and the isocline 

0=v  has a positive intercept along the −v axis, 0],[ˆ <vuf  for the set of ),( vu  

below the isocline 0=u ,  0],[ˆ >vuf  for the set of ),( vu  above the isocline 

0=u , 0],[ˆ >vug  for the set of ),( vu  below the isocline 0=v , and 

0],[ˆ <vug  for the set of ),( vu  above the isocline 0=v , 

 Last but not least, the diagrammatic result in the analysis provides a 

nontrivial addition to the existing two interacting species portrays in population 

biology like the classic Lotka-Volterra predator-predator cycles and limit cycles.  
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