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Abstract 

Positive solution of singular nonlinear ( , )k n k− conjugate boundary value problem 

is studied by employing a priori estimates, the cone theorem and the fixed point 

index. 
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1  Introduction 

   In this paper, we are concerned with positive solutions for singular (k,n-k) 

conjugate boundary value problem 

,10),()()()1( )( <<=− − xyfxhxy nkn λ                   (1.1)   
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10,10,0)1(,0)0( )()( −−≤≤−≤≤== knjkiyy ji            (1.2)   

where 11 −≤≤ nk is a positive number and 0>λ is a parameter. Our assumptions 

throughout are: 

   1( )H ( )h x is a nonnegative measurable function defined in (0,1) and do not 

vanish identically on any subinterval in (0,1) and 

∫ <−< −1

0
)()1(0 dsshss kkn ∞+<−∫ −−−1

0

11 )()1( dsshss kkn ; 

 2( )H :[0, ) [0, )f +∞ → +∞ is a nondecreasing continuous function    

      and ( ) 0f y > , for 0y > ; 

3( )H (0) 0f > , +∞=
+∞→ y

yf
y

)(lim ;  

   By a positive solution ( )y x of the problem (1.1), (1.2) , we means 

that ( )y x satisfies 

(i) 1 1 1( ) C [0,1) C (0,1] C (0,1)k n k ny x − − − −∈   , ( ) 0f y > >0 in (0,1) and (1.2) holds; 

  (ii) ( 1) ( )ny x− is locally absolutely continuous in (0,1) and 

              ( )( 1) ( ) ( ) ( ( ))n k ny x h x f y xλ−− =  a.e. in (0,1) . 

If for a particularλ the conjugate boundary value problem (1.1), (1.2) has a 

positive solution ( )y x , thenλ is called an eigenvalue and ( )y x a corresponding 

eigenfunction of (1.1), (1.2) . We let Λ be the set of eigenvalue of the 

problem (1.1), (1.2) , i.e. 

             Λ = {λ >0; (1), (2) has a positive solution }. 

The conjugate boundary value problem (1.1), (1.2) has been studied 
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extensively, for detail,see, for instance,[1 11]− and references therein. For special 

case of 1λ = , the existence results of positive solution of (1.1), (1.2) has been 

established in [1 4]− .As for twin positive solutions, several studies to the 

problem (1.1), (1.2) can be found in [5 7]− . For the case of 0λ > , eigenvalue 

intervals characterizations of theproblem 

The equations in (1.1), (1.2) has been discussed in[8 11]− . In this paper, we 

only use fixed point index and fixed point theorem in cone which allow us to 

establish not only existence of positive solution but also multiplicity of positive 

solutions of the problem (1.1), (1.2) under weaker conditions. In fact, we may allow 

that h possesses strong singularity at 0,1x = , for example, 

1 1( ) (1 )n k kh x x xα β− − + − − += −   

with 0 ,α<  1β < satisfies 1( )H . Our results generalized and extend some known 

theorems and improve the work of some author of the above references[8 11]− . 

 

 

2  Preliminary Notes 

To obtain positive solutions for the problem (1.1), (1.2) , we state some 

properties of Green’s function for (1.1), (1.2) . 

   As shown in[4] , the problem (1.1), (1.2) is equivalent to the integral equation 

∫=
1

0
))(()(),()( dssyfshsxGxy λ                   (2.1)   



16            Positive solutions of singular (k,n-k) conjugate boundary value problem 

where 










≤≤≤−+
−−−

≤≤≤−+
−−−=

∫

∫
− −−−

− −−−

.10,)(
)!1()!1(

1

,10,)(
)!1()!1(

1

),(
)1(

0

11

)1(

0

11

sx knk

xs kkn

sxdtxstt
knk

xsdtsxtt
knksxG    (2.2)        

   Moreover, the following results have been recently offered by Kong and 

Wang[4] . 

Lemma 1  For any ]1,0[, ∈sx , we have 

                ),()(),()()( sgxsxGsgx βα ≤≤                    (2.3)   









≤≤≤

≤≤≤
−≤

∂
∂

.10,)(

,10,
1

)(
),(

sx
s

sng

xs
s
sng

x
sxG                   (2.4)    

where 

1
)1()(

−
−

=
−

n
xxx

knk
α ,

},min{
)1()(

11

knk
xxx

knk

−
−

=
−−−

β ,
)!1()!1(

)1()(
−−−

−
=

−

knk
ssxg

kkn
. 

   Let )(min
]

4
3,

4
1[

x
x

αα
∈

= , )(max
]1,0[

x
x

ββ
∈

=  and 
β
αγ = . Define the cone in Banach 

space ]1,0[C  give by 

                }0)(C[0,1];)({: ≥∈= xyxyP , 

                })(minC[0,1];)({:
4
3,

4
1

yxyxyK
x

γ≥∈=




∈

. 

We define the operator PT:P →  by 

       ∫=
1

0
))(()(),(:))(( dssyfshsxGxTy λ .                 (2.5)  

Lemma 2  Suppose that 1 3( ) ( )H H− hold. Then PT:P →  is a completely 
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continous mapping and KT(P)⊂ .Moveover, for Ky∈ we have 

           )1,0(]1,0()1,0[))(( 111 n-n-k-k- CCCxTy ∈ ,                (2.6)    

         )1,0(.a.e))(()()()()1( )( ∈=− − xxyfxhxTy nkn λ ,          (2.7)   

           10,10,0)1()(,0)0()( )()( −−≤≤−≤≤== knjkiTyTy ji .   (2.8)    

Proof. We only prove KT(P)⊂ . The proof of the remainder of Lemma 2 can be 

found in[4] . 

For Py∈ ,by employing (2.3) and (2.5) we have 

           ∫
∈∈

≥
1

0]
4
3,

4
1[]

4
3,

4
1[

))(()()()(min))((min dssyfshsgsxTy
xx

αλ  

                       ∫∈
≥

1

0]1,0[
))(()(),(max dssyfshsxG

xβ
λα  

                       Tyγ= , 

this implies KT(P)⊂ . 

From the Lemma 1, we know that KT(K)⊂ and fixed point of T in K is a 

solution of (1.1), (1.2) and vice versa.                                   □       

 

 

3  Main Results  

The main results of this paper are as follows. 

Theorem 1 Assume that 1 3( ) ( )H H− hold. Then there exists a number *λ  with 

+∞<< *0 λ  such that 
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(i) (1.1), (1.2) has two positive solution for *),0( λλ ∈ ; 

(ii) (1.1), (1.2) has a positive solution for *λλ = ; 

(iii) (1.1), (1.2) has no positive solution for )*,( +∞∈ λλ . 

The following theorem will be used in our proof. 

Theorem 2 [13]  Let E  be a Banach space, and EK ⊆ a cone in E . For 

0>ρ ,define };{ ρρ ≤∈= uKuK .Assume that : K KρΦ →  is a compact map 

such that u uΦ ≠  for };{ ρρ =∈=∂∈ uKuKu . 

( )a If u u≤ Φ  for ρKu ∂∈ , then ( , , ) 0i K KρΦ = ; 

( )b If u u≥ Φ  for ρKu ∂∈ , then ( , , ) 1i K KρΦ = . 

Lemma 3  Suppose that 1 3( ) ( )H H− hold. Ifλ is sufficiently large, then Λ∉λ . 

Proof.  if Λ∈λ , then the problem (1.1), (1.2) has a positive solution )(xyλ , and 

Lemma 2 means that Kxy ∈)(λ  is a fixed point of T .It follows from 

+∞=
+∞→ y

yf
y

)(lim  that there exists a 0>M such that yyf ≥)( for all My ≥ . 

   If 
γλ
My ≥ , since Myxy

x
≥≥

∈
λλ γ)(min

]
4
3,

4
1[

, we get 

                 ∫∈
=

1

0]1,0[
))(()(),(max dssyfshsxGy

x λλ λ  

                     ∫
∈

≥ 4
3

4
1

]
4
3,

4
1[

))(()(),(min dssyfshsxG
x

λλ  

                     ∫
∈

≥ 4
3

4
1

]
4
3,

4
1[

)()()()(min dssyshsgx
x

λαλ  
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                     ∫≥ 4
3

4
1 )()( dsshsgyλλαγ  

Thus, ∫ −≤ 4
3

4
1

1))()(( dsshsgαγλ ,which contradicts withλ sufficiently large. 

If 
γλ
My < , then  

              ∫
∈

≥>
1

0]
4
3,

4
1[

))(()()()(min dssyfshsgxyM
x

λλ αλ
γ

 

                       ∫≥
1

0
)()()0( dsshsgfλα , 

i.e. ∫ −≤
1

0

1))()()0(( dsshsgfM αγλ ,which is also contradiction.               □ 

Lemma 4 Suppose that 1 3( ) ( )H H− hold. Then there exists a 00 >λ such 

that Λ⊂],0( 0λ . 

Proof.  Let }1;{1 <∈= yKyK ， choose ∫ −=
1

0

1
0 ))()()1(2( dsshsgfβλ . For 

1y K∈∂ = }1;{ =∈ yKy  and ],0( 0λλ ∈ , using 1 2( ), ( )H H and (2.3) we have 

            ))(( xTy  ∫∈
≤

1

0]1,0[
))(()(),(max dssyfshsxG

x
λ  

                     ydsshsgf =<≤ ∫ 1)()()1(
1

00βλ , 

i.e. yTy <||||  for 1Ky ∂∈ . Thus, Theorem 2 implies 1),,( 1 =KKTi . Hence, 

T has a fixed point )(xyλ in 1K  and it satisfies 

            )(xyλ ∫=
1

0
))(()(),( dssyfshsxG λλ  

                  ∫≥
1

0
)()()()0( dsshsgxf αλ , 

this shows that )(xyλ  is a positive solution of problem (1.1), (1.2) .           □ 
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Lemma 5  Suppose that 1 3( ) ( )H H− hold. Let Λ= sup*λ , then Λ∈*λ . 

Proof. Without loss of generality, let ∞
=1}{ nnλ be a monotone increasing sequence 

and *lim λλ =
∞→

nn
, where Λ∈nλ . We claims that the corresponding positive 

solution sequence ∞
=1)}({ nxy

nλ  is uniformly bounded. In fact, from 

+∞=
+∞→ y

yf
y

)(lim ,there exists a 0M >  such that ( )f y Ny≥ for all y M≥ , 

where N is chosen so that 1)()(4
3

4
1 >∫ dssgshN nαγλ , If 

γλ
My

n
≥ , then 

Myy
nn

x
≥≥

∈
λλ γ

]
4
3,

4
1[

min , hence we obtain 

            ≥||||
n

yλ ∫
∈

1

0]
4
3,

4
1[

))(()(),(min dssyfshsxG
n

x
n λλ  

                 ∫≥ 4
3

4
1 )()()( dssyshsgN nn λαλ  

∫≥ 4
3

4
1 )()(|||| dsshsgyN

nn λαγλ  

||||
n

yλ> , 

which is a contradiction. Thus, there exists a number L with 0 L< < +∞ such that 

Ly
n
≤|||| λ  for all n . 

   In addition, using 1( )H and (2.4) , we have 

           ≤′ ||||
n

yλ ∫ ∂
∂1

0
))(()(),( dssyfsh

x
sxG

nn λλ  

               

))()1()()1((
)!1()!1(

)(* 1 1

0

1 ∫∫ −+−
−−−

≤ −−−−

x

kknx kkn dsshssdsshss
knk
Lnfλ  
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Qdsshss
knk
Lfn kkn :)()1(

)!1()!1(
)(*2 1

0

11 =−
−−−

≤ ∫ −−−λ , 

this shown that ∞
=1)}({ nxy

nλ is equicontinous. Ascoli-Arzela theorem claims that 

∞
=1)}({ nxy

nλ  has a uniformly convergent subsequence, denoted again 

by ∞
=1)}({ nxy

nλ , and ∞
=1)}({ nxy

nλ converges to )(* xy uniformly on [0,1] . 

Inserting )(xy
nλ into (2.1) and letting ∞→n , using the Lebesgue dominated 

convergence theorem, we obtain  

∫=
1

0

** ))(()(),(*)( dssyfshsxGxy λ . 

Therefore, )(* xy is a positive solution of (1.1), (1.2) and Λ∈*λ .            □ 

Lemma 6 Suppose that 1 3( ) ( )H H− hold.Then the problem (1.1), (1.2) has two 

positive solution for *),0( λλ ∈ . 

Proof.  As shown in[9], it follows from 2( )H and uniform continous of ( )f y that 

there exists a 0>δ  such that 

            
1 *

0
( )( ) ( , ) ( ) ( ( )) ( )Ty x G x s h s f y s ds y xλ δ= < +∫           (3.1)   

Let })()(];1,0[)({ * δδ +<<−∈=Ω xyxyCxy , thenΩ is a bounded open subset 

in [0,1]C and ΩK is a bounded open subset in K and Ω∈ Kxy )(* . It is clear 

that  

                })()(0;)({ *
__

δ+≤≤∈=Ω xyxyKxyK  . 

   Consider the homotopy 

*)1(),( tyTytytH +−=  

it is obvious that 
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×]1,0[:H
__

)( ΩK K→  

is completely continous. For )(]1,0[),(
__
Ω×∈ Kyt , form (3.1) we have  

              δ+<+−<+−= **** )1()1(),( ytyyttyTytytH . 

Hence Ω∈ KytH ),( .Thus, we get yytH ≠),(  for )(]1,0[),( Ω∂×∈ Kyt . 

   By the homotopy invariance and normality of the fixed point index we obtain  

              1),,(),,( * =Ω=Ω KKyiKKTi                    (3.2)   

this shows thatT has a fixed point )()1( xyλ in ΩK and )()1( xyλ is a positive solution 

of (1.1), (1.2). 

From +∞=
+∞→ y

yf
y

)(lim , there exists a R1>0 such that yyf η≥)(  for all 

1Ry ≥ , where η  is chosen so that 1)()(4
3

4
1 >∫ dsshsgηγαλ . Let 

}1,max{ *1 ++= δ
γ

yRR , then for RKy ∂∈ , since 1
]

4
3,

4
1[

)(min RRyxy
x

≥=≥
∈

γγ , 

we have  

           ∫∈
=

1

0]1,0[
))(()(),(max|||| dssyfshsxGTy

x
λ  

                 ∫
∈

≥ 4
3

4
1

]
4
3,

4
1[

)()()()(min dssyshsgx
x

ηαλ  

                 ydsshsgy >≥ ∫ 4
3

4
1 )()(ηλαγ , 

thus, Theorem 2 implies  

                 0),,( =KKTi R                                 (3.3)   

Consequently, the additivity of the fixed point index and (3.2), (3.3)  together 
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implies  

                 1)),(\,(
__

−=Ω KKKTi R  , 

therefore, T  has another fixed point )()2( xyλ  in )(\
__
ΩKKR , and )()2( xyλ  is 

also a positive solution of (1.1), (1.2) . 

Up to now, the proof of theorem is complete.                         □ 
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