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Abstract 

A polynomial time algorithm, which is a modification of the simplex algorithm 

for Linear Programming (LP), is presented for solving Binary Linear 

Programming (BLP) problems. It is an n-step process where n is the number of 

binary variables of the problem. Conditions for existence, uniqueness, 

termination, and optimality are discussed. Three numerical examples are 

presented to explain the details and features of the algorithm. The algorithm 

generates two matrices. One of them is based on the minimum ratio concept of the 

Simplex method. It creates a Ratio Test Matrix from the ratio of corresponding 

elements of b vector and all column vectors. The other matrix, called Correlation 

Matrix, is generated from pseudo inverse estimates of the primal and dual 

variables. These two matrices provide an array of Column Selection Logic to 

assign binary values for variables corresponding to the matrix columns. 
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1 Introduction 

In this paper we present an algorithm for solving Binary Linear 

Programming (BLP) problems. The algorithm is based on pseudo inverse and 

concepts derived from the simplex algorithm for standard Linear Programming 

(LP) problems.  

The BLP is defined in the following way. 

BLP:   Maximize     𝑐𝑇𝑥 

 Subject to 𝐴𝑥 = 𝑏,   𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚, 𝑚 < 𝑛, 𝑥 ∈ {0,1}𝑛       (1) 

The above means that x can take only binary values, 0 or 1, in the solution for the 

matrix equation 𝐴𝑥 = 𝑏. Without loss of any generalities we will assume that the 

matrix A has full row rank, all elements of A are nonnegative (Section 4), and that 

the vector b belongs to the binary range space, as defined later, of columns of A. 

In a similar way the LPLU is defined as 

LPLU:  Maximize     𝑐𝑇𝑥 

 Subject to 𝐴𝑥 = 𝑏,   𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚, 𝑚 < 𝑛, 𝑥 ∈ 𝑅𝑛,  

                                                          0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, . .𝑛                                         (2) 

The difference is that in LPLU all solutions will have positive real values between 

0 and 1, but in BLP only 0 or 1 values are allowed.  

Although the BLP algorithm borrows ideas from the Simplex method but it 

does not carry the pitfalls of the Simplex method with it. However, it should be 

noted that there are variants of the Simplex method that has solved many such 

pitfalls [Vanderbei, p. 32]. LP is considered as polynomial time problem 

[Dasgupta, p. 243], but we are not directly using LP methods, other than verifying 

our results using LPLU. Although Simplex is considered as a non-polynomial time 

algorithm [Luenberger, p.114], even then our BLP algorithm belongs to the 

polynomial time solutions. Once we go through the examples it will be clear that 

BLP algorithm ends in at most n iterations, where n is the number of variables in 
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(1). Like the Simplex method [Vanderbei, p.32] the BLP algorithm presented here 

consists of a class of algorithms under a common basic structure. BLP is 

considered as NP complete problem [Dasgupta, p. 243]. It seems then the BLP 

algorithm presented here will resolve an important issue. 

First we present the algorithm in some details using a pseudo mathematical 

language. Next, we discuss some theoretical results that justify the validity of the 

algorithm. Finally we solve three numerical example problems to explain more 

details of the algorithm, computational techniques, types of tables we may need, 

and some variants for implementations. We also discuss a numerical method for 

generating test problems for our algorithms. This test method actually helps to 

identify how to reverse engineer the solution of BLP. We present one example 

from such class of problems. The algorithm has been tested extensively for these 

kinds of test problems for both small and medium size examples.  

 

 

2 The BLP Algorithm 

We can now state the algorithm using some kind of descriptive language and 

in a hierarchical way using pseudo code. The main program is shown in Code-A0 

in Figure-1 

As we can see that the main program has three sub-programs. The sub-

program 3 has again two more sub-programs, which are marked as 3a and 3b. All 

these subprograms are repeated n times as indicated in the first line. The Loop 

exits if any one of the subprograms 3a or 3b becomes valid. We describe the 

subprograms 1 and 2, using similar pseudo codes, as in Code-A1 and Code-A2 in 

the same Figure-1. 

 

 

 

 
 
 



32                                                                                                              BLP Algorithm  

2.1 Process Ratio Test Matrix (RTM) 

This part of the algorithm creates a matrix �𝑟𝑖𝑗� . The idea is borrowed from 

the Simplex method, but we create an entire matrix. Each element of the RTM is 

obtained by dividing the corresponding elements of b vector by the elements of 

the a vectors, which are the columns of the A matrix, as shown in the second line 

in the Code-A1. There are three possible values for 𝑟𝑖𝑗  which we analyze next. 

If  𝑟𝑖𝑗  is less than 1 then the j-th component of x cannot be set to 1, that is, xj 

cannot have a value of 1. This is because the ratio means aij is greater than bi and 

𝑎𝑖𝑗 𝑥𝑗 >  𝑏𝑖 will violate the constraint i. Thus xj must be assigned as 0. This is 

shown in line four of the Code-A1. It is clear that this step gives an optimal CSL. 

It is optimal because you cannot increase the variable to 1 to raise the cost value. 

If the ratio is 1, then xj can take both 1 or 0 value. But if we assign 1, then 

no other variables in the i-th constraint can be 1 because 𝑎𝑖𝑗  𝑥𝑗 =  𝑏𝑖 will satisfy 

the constraint with equality. Thus assigning 1 will stop the BLP algorithm and we 

Figure 1: Pseudo code for BLP algorithm 

Code–A0: Main Program 
Repeat n times  

1 Process Ratio Test Matrix (RTM); 
2 Process Reduced Cost Row (rC); 
3 Stop If  

 3a All variables are processed or 
 3b Norm of b is zero 
 

Code–A1: Process Ratio Test Matrix:  �𝑟𝑖𝑗� 
Create RTM 

 𝑟𝑖𝑗 = 𝑏𝑖 𝑎𝑖𝑗⁄ ,   𝑎𝑖𝑗 ≠ 0  
 If ∃  𝑟𝑖𝑗 < 1 
  Set  𝑥𝑗 = 0, 𝑐𝑗 = 0,   𝑎𝑗 = 0  
 If ∃  𝑟𝑖𝑗 = 1 

  Decide if 𝑥𝑗 = 1 is possible or ignore 
 ∀ 𝑟𝑖𝑗 > 1 
  Do nothing and exit subprogram 
 

Code–A2: Process Reduced Cost Row:  rC 
𝐴𝑥 = 𝑏  ⇒ 𝑋𝑒 = 𝐴−𝑏 ;    If 𝑋𝑒 is binary Stop. 
𝐴𝑇𝑦 = 𝑐 ⇒ 𝑌𝑒 = 𝐴−𝑇𝑐 

 Correlation Matrix =  𝑅𝑖𝑗 = 𝐴𝑏𝑠�𝑌𝑒𝑖 ∗ 𝑋𝑒𝑗� 
 Max row = 𝑟𝑗 = 𝑀𝑎𝑥�𝑅𝑖𝑗, ∀𝑖�, for ∀𝑗 
 Reduced cost row =  𝑟𝐶𝑗  = 𝑟𝑗 ∗ 𝑐𝑗 ,    𝑐𝑗 ≠ 0 

 Max Index = ��𝑘| 𝑟𝐶𝑘 = 𝑀𝑎𝑥�𝑟𝐶𝑗 ,∀𝑗�� 
 

𝑥𝑘 = 1, 𝑏𝑖+1 = 𝑏𝑖 − 𝑎𝑘 ,  𝑐𝑘 = 𝑎𝑘 = 0 
Setup for next iteration 
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will exit. If that is acceptable then the result is optimal and we have found and 

optimal CSL in this step. If that is not acceptable, then we can set the variable to 0, 

or ignore the variable for now, and the future steps will take care of it. This is 

mentioned in line 6 of Code-A1. Examples illustrate these cases in a better way. 

For all 𝑟𝑖𝑗 > 1 there is nothing that can be done, so skip the algorithm 

described in Code-A1 and begin examining the process described by Code-A2. 

This is the last line of Code-A1. 

Code-A1 of the column selection logic (CSL) may assign values to many 

variables in a single iteration, as illustrated by examples. As a database 

management process, we set the cost coefficient corresponding to each assigned x 

variable to zero, so that we do not process the same column in any future iteration. 

Also we remove the corresponding columns from the matrix A. More details of 

the process are available from the computer programs and examples. 

 

 

2.2 Process Reduced Cost Row 

This is the second most important sub-function of the BLP algorithm. Like 

in simplex method, we find a reduced cost row and then from this row we select 

the optimal cost element and the optimal column. This then becomes the optimal 

column selection logic (CSL) for this step. This step is described in Code–A2. 

In the simplest case, the reduced cost row can be just the original cost row 

vector. That is, the elements rj = 1 in line 5 of Code–A2. But in a general case we 

can multiply each cost element by a weight rj derived from some meaningful 

process. As an example we choose a correlation matrix. This correlation matrix 

estimates how x and y vectors are related to matrix A and how they create the 

vectors b and c respectively. The idea behind this comes from the duality theorem 

of standard LP program and has been explained in some details in the test problem 

generation method (Section 4). 
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In a standard LPLU, the b vector is created by a linear combination of 

columns of A matrix. That is, each element in a row A is multiplied by the 

corresponding element of x to produce a factor 𝑎𝑖𝑗  𝑥𝑗  for the corresponding 

element of b. Similarly each element of A is multiplied by a corresponding 

element of y to get a factor for the corresponding element of c. This relationship 

comes from the law of conservation that relates A, b, c, x, and y as pointed out in 

[Dantzig, p. 33]. Since we are dealing with BLP as opposed to LPLU, we try to 

estimate these factors from the correlation matrix elements obtained from the 

corresponding pseudo matrices.  

The formulation of a mathematical model is not dependent on the nature of 

solution. This formulation should be based on the laws of nature, i.e. conservation 

of mass, energy, forces, voltage, current etc. Any mathematical model that violates 

the laws of nature is fictitious and hypothetical. Thus correlation concept will 

always be there, be it LPLU or BLP. However, rather than correlation matrix, 

depending on the problem, a better or simpler algorithm for the CSL may be 

feasible, as illustrated by examples. 

The first line of Code-A2 gets an estimate for x using pseudo-inverse. If the 

estimate of x is a binary vector then we have found the solution and the BLP 

algorithm ends. For, this binary vector can be used for the solution of the 

remaining x variables. We claim that this binary vector is the optimal vector. We 

show later that if the number of columns of the matrix is k ≤ m, then this binary 

solution is unique. This happens because a full rank matrix always has k ≤ m 

number of independent columns. The rest of the lines in Code-A2 will be skipped. 

It is clear that this step gives an optimal CSL. If however k is greater than m, 

then we should ignore the binary solution and continue with the rest of the steps in 

the algorithm. 

If there is no binary vector then we estimate y and create the correlation 

matrix Rij as defined in lines 2 and 3 in Code-A2. Then create the reduced cost 

row as shown in line 5 of the Code-A2. The rest of the rows of the table are self 
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evident. It should be clear from this algorithm for Code-A2 that this is an optimal 

procedure for this step, i.e. an optimal CSL, since it selects, like in the Simplex 

method, the variable that gives the maximal value for this part of the BLP. 

 

 

3 Theoretical Framework 

First we define some basic notations and terminologies to refresh the 

communication channels with all readers. These are well known and simple 

definitions. 

 

Definition 3.1 Column Selection Logic (CSL) is a logic or an algorithm that 

selects a column of the matrix A of the BLP defined by (1). It is a method of 

assigning a specific value, 0 or 1, to a variable xj . 

 

Assumption Let us assume that this CSL is an optimization process at each step.  

 

Then we show that an application of a finite sequence of such CSL finds the 

optimal solution of the BLP problem (1). If each CSL is a polynomial time 

algorithm then the entire BLP algorithm is also a polynomial time algorithm. 

 

Definition 3.2 Assume that the matrix A of (1) consists of the following m-

dimensional columns of A 

𝐴 = { �𝑎𝑖| 𝑎𝑖  ∈ 𝑅𝑚, 𝑖 = 1,⋯ , 𝑛}. 

The Binary Range Space ℬ of A is defined as all binary linear combinations of 

columns of A, that is, 

ℬ = { �𝑤| 𝑤 =  ∑ 𝑥𝑖 ∗ 𝑎𝑖𝑛
𝑖=1 ,  𝑥𝑖 ∈ {0,1},  𝑎𝑖 ∈ 𝐴 }  
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Definition 3.3 We define the feasible region of (1) without the binary constraints 

as: 

𝐹 = { �𝑥| 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0, 𝑥 ∈ 𝑅𝑛} 

That is, F represents all positive vectors in the n-dimensional real vector space 

satisfying (1) with less than equal to condition.  

 

Definition 3.4 Similarly, the n-cube is defined as the n-dimensional hyper cube U, 

with length of each side being 1 along each axis. Thus U can be written as: 

𝑈 = { �𝑥|  𝑥 ∈ 𝑅𝑛, 0 ≤ 𝑥𝑖 ≤ 1, ∀𝑖 = 1⋯𝑛} 

 

Definition 3.5 The corner points of U can be defined as a sequence of n binary 

digits or bits 

𝐶 = { �𝑥|  𝑥 ∈ 𝑅𝑛, 𝑥𝑖 ∈ {0,1}, ∀𝑖 = 1⋯𝑛}. 

Observe that 𝑥 ∈ {0,1}𝑛  means that x is a corner point of U. 

 

Existence  It is clear that if F and C do not intersect then there cannot exist any 

solutions to the BLP problem (1). Thus an optimal solution to (1) will exist only 

when F contains some corner points of C. One of these corner points will be the 

optimal solution. And therefore we do not need to analyze the corner points of the 

feasible region F. The unboundedness of F does not also affect the solutions of (1), 

as long as F has a non-empty intersection with C. 

 

Theorem 3.1 If a solution to (1) exists then it has an optimal solution. The optimal 

solution is always bounded, as long as the coefficients of the objective hyper plane 

are bounded. 

Proof The proof of Theorem 3.1 is very trivial. By definition all solutions of (1) 

are the corner points of C. If any of the corner points are inside the feasible region 

F, then the solutions to (1) exists. Since the feasible corner points of U are finite in 

number, all of them can be enumerated to find the maximal value to the BLP 
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problem (1). Since all corner points are bounded, and they are finite in number, 

the objective values for each corner point is finite and bounded, since the 

coefficients are bounded.                                                                                        □     

 

The following theorem is very fundamental to the CSL based algorithms for the 

BLP. Without loss of generality we can state 

 

Theorem 3.2 Let 𝑢 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛−1, 𝑥𝑛},  𝑥1 = 1, 𝑣 = {𝑥2,⋯ , 𝑥𝑛−1, 𝑥𝑛}, 𝑥𝑖 ∈

{0,1}. Then 𝑢 is a binary solution of the equation 

 𝐴𝑥 = 𝑏, 𝐴 = {𝑎1,𝑎2,𝑎3,⋯𝑎𝑛}, 𝑅𝑎𝑛𝑘[𝐴] = 𝑚, 𝑏 ∈ ℬ (3) 

If and only if  𝑣 is the binary solution of 

 𝐵𝑥 = 𝑏 − 𝑎1,   𝐵 = {𝑎2,𝑎3,⋯𝑎𝑛}  (4) 

Proof As before the proof is very trivial also. Since  𝑢 is a solution of (3) we can 

write 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏 

As 𝑥1 = 1, the last expression reduces to 

𝑎1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏  or 

𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏 − 𝑎1 

This clearly indicates that 𝑣 is a solution of (4). Conversely if  𝑣 is the solution of 

(4) then we have 

𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏 − 𝑎1 , choosing 𝑥1 = 1 we can write 
 

𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏 − 𝑎1𝑥1  or  𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯𝑎𝑛𝑥𝑛 = 𝑏 

That is, 𝑢 is a solution of (3).                                                                                   □ 

 

 The above theorem is true for any 𝑥𝑖 and not just for 𝑥1. It is also true for 

more than one variable fixed at predefined binary values. The theorem holds also 

for 0 values for the variables. In case of 0 values we just do not have to subtract 
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the columns from the b vector. It should be recognized that the above theorem is 

in general not correct for real number solutions of x.  

It is clear that the CSL will stop after n iterations, if after each step the cost 

coefficient for the selected variable is set to zero. Thus CSL must be based on the 

non-zero cost elements. 

 

Theorem 3.3 The CSL algorithm ends in less than equal to n number of iterations, 

where n is the number of variables in the BLP problem (1). 

Proof The CSL algorithm always selects a column that has nonzero cost value in 

the reduced cost row. After it selects a column, the process automatically sets the 

cost to zero, for that column in the cost row, as a data base management step of 

the software. Setting the cost to zero indicates that the column is to be eliminated 

from all future steps. Thus within n steps all elements of the reduced cost row in 

Table-A2 will become zero and the process will stop. 

As the columns of A matrix are subtracted from the b vector, as stated in 

Theorem 3.2, the values of b vector reduces. This step will eventually make many 

columns of A larger than b. Thus the CSL will set all of their costs to zero in one 

step, because of the ratio test matrix of Code-A1. This process will reduce the 

number of steps to less than n.  

If the CSL uses pseudo inverse then at some point in the chain of iterations, 

the CSL may encounter binary values from the pseudo inverse. This process then 

also will set many variables to 0 and 1 in one single step. Thus the CSL algorithm 

ends in at most n number of steps.                                                                           □      

 

Theorem 3.4 The CSL algorithm finds the optimal solution for the BLP. 

Proof Because there are only two choices, at each iteration the CSL algorithm 

assigns a 0 or an 1 value to one of the variables 𝑥𝑖 . In this process the algorithm 

moves, at each step, from higher dimensional hyper space to the next lower 

dimensional hyper space. It is also clear that in this process the CSL algorithm is 
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climbing up along the corner points of the n-cube, because the cost functional is 

increasing and is going away from origin. Since the optimal solution is always a 

corner point of the n-cube, at every step the cost functional increases its value or 

remains same, it never goes down. Thus when the process ends the algorithm finds 

the optimal solution. 

Let us assume that u and v are two bit patterns or corner points of C 

claiming to be the optimal solutions. Without loss of generality we can assume 

that cost coefficients are arranged in a decreasing order. Let k be the first bit 

position where u and v differ, that is, u has a 0 and at that same location v has an 

1. This means v gives a higher value for the objective function. Now this cannot 

happen, because it is assumed that the CSL gives higher value at each step. 

Therefore u must be same as v.                                                                                □     

 

Theorem 3.5 The CSL is a polynomial time algorithm. 

Proof The computationally involved most complicated step in the CSL logic is the 

evaluation of pseudo inverse of A matrices at each step. In the simplest case of 

pseudo inverse, the process will evaluate the matrix directly from the relation 

𝐴− = 𝐴′ (𝐴𝐴′)−1. This step takes two matrix multiplications and one matrix 

inversion. It is well known [Trahan] that they are polynomial time algorithms.  

Thus an iteration of the CSL logic involves only polynomial time computations. 

Therefore the entire BLP algorithm presented is a polynomial time process.         □ 

 

The foundation of the CSL algorithm is based on an assumption which is 

established by the following matrix rank theorem. 

 

Theorem 3.6 Let the matrix A be as in (1) with full row rank m. Then every set of 

k ≤ m column vectors of A is independent. 

Proof Since the matrix A has full row rank m, we can then write 
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 ∑ 𝑐𝑖𝐴𝑖𝑚
𝑖=1 = 0   𝑜𝑟 ∑ 𝑐𝑖𝑚

𝑖=1 {𝑎𝑖1,𝑎𝑖2, … 𝑎𝑖𝑛} = {0, 0, … , 0} ,   𝑛 − 𝑡𝑢𝑝𝑙𝑒  (5) 

Where ci = 0, are linear combination coefficients of the rows Ai of the m x n 

matrix A. Let us choose any set of k ≤ m columns of the matrix, for these columns 

we can derive from (5) 

∑ 𝑐𝑖𝑚
𝑖=1 �𝑎𝑖𝑗1 ,𝑎𝑖𝑗2 , … 𝑎𝑖𝑗𝑘� = {0, 0, … , 0} , 𝑘 − 𝑡𝑢𝑝𝑙𝑒  

The above then gives k simultaneous equations, one for each one of the k 

columns. 

 𝑐1𝑎1𝑗1 + 𝑐2𝑎2𝑗1 + ⋯+ 𝑐𝑚𝑎𝑚𝑗1 = 0 

(6) 
 𝑐1𝑎1𝑗2 + 𝑐2𝑎2𝑗2 + ⋯+ 𝑐𝑚𝑎𝑚𝑗2 = 0 

 … 

 𝑐1𝑎1𝑗𝑘 + 𝑐2𝑎2𝑗𝑘 + ⋯+ 𝑐𝑚𝑎𝑚𝑗𝑘 = 0 

Multiplying each equation by an arbitrary constant {𝑢1,𝑢2, …𝑢𝑘} and summing 

them together we can write as 

 𝑢1 ∑ 𝑐𝑖𝑎𝑖𝑗1
𝑚
𝑖=1 + 𝑢2 ∑ 𝑐𝑖𝑎𝑖𝑗2

𝑚
𝑖=1 + ⋯+ 𝑢𝑘 ∑ 𝑐𝑖𝑎𝑖𝑗𝑘

𝑚
𝑖=1 = 0  (7) 

Observe that (6) and (7) are equivalent, since u variables are arbitrary. To prove 

that the k columns are independent we must show that 

𝑏1𝑎1𝑗1 + 𝑏2𝑎1𝑗2 + ⋯+ 𝑏𝑘𝑎1𝑗𝑘 = 0 

𝑏1𝑎2𝑗1 + 𝑏2𝑎2𝑗2 + ⋯+ 𝑏𝑘𝑎2𝑗𝑘 = 0 

… 

𝑏1𝑎𝑚𝑗1 + 𝑏2𝑎𝑚𝑗2 + ⋯+ 𝑏𝑘𝑎𝑚𝑗𝑘 = 0 

Multiplying each equation by an arbitrary constant {𝑣1, 𝑣2, … 𝑣𝑚} and summing 

them together we can write as 

 𝑏1 ∑ 𝑣𝑖𝑎𝑖𝑗1
𝑚
𝑖=1 + 𝑏2 ∑ 𝑣𝑖𝑎𝑖𝑗2

𝑚
𝑖=1 + ⋯+ 𝑏𝑘 ∑ 𝑣𝑖𝑎𝑖𝑗𝑘

𝑚
𝑖=1 = 0  (8) 

 

 

Comparing the coefficients of each matrix element, in (7) and (8), we find, for 

example, that 
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𝑎1𝑗1:  𝑢1𝑐1 = 𝑏1𝑣1  𝑜𝑟  0 = 𝑏1𝑣1 𝑜𝑟  𝑏1 = 0 

Similarly we can show that all b values will be zeros. This shows that the k 

columns are independent.                                                                                         □ 

 

 

4 Test Problems 

The algorithm has been tested on various problems. Many problems were 

taken from standard textbooks and published literature. However, majority of test 

problems were constructed using a specific method described here. The 

Mathematica software tools have been used for many of our problems. One of the 

important requirements of the test problems is that it must have a proven known 

optimal solution; so that the results of the algorithm can be compared. And the 

other important factor is that the matrix A must be of full row rank, i.e., rank (A) = 

m, where m is the number of rows. 
 

Definition 4.1 The set of functions {𝑔1(𝑡), 𝑔2(𝑡), … ,𝑔𝑛(𝑡), } is linearly 

dependent on an interval I if there are scalars  𝑐1, 𝑐2, … , 𝑐𝑛 not all zero such that 

𝑐1𝑔1(𝑡) + 𝑐2𝑔2(𝑡) + ⋯+ 𝑐𝑛𝑔𝑛(𝑡) = 0 

for all t in I. Otherwise the set is linearly independent [Farlow, p.179].  
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To create such an A matrix of any given size with m independent rows, we 

selected m independent functions, and then sampled them n times to produce the 

elements of the m x n matrices [Das]. All these functions are defined over a fixed 

time interval. Thus, as n increases the sample interval decreases. To show that the 

algorithm can handle a problem of reasonable size we have considered one 

problem with m = 10 rows, and so we have 10 functions. These functions are 

listed in Figure-2. It is clear that there are many choices of independent functions. 

Observe that all functions produced only nonnegative numbers.  

We define the parameters of the above functions as 

𝑇 = 0.001,   𝑓0 =
1
𝑇

 , 0 ≤ 𝑡 ≤ 𝑇 

The equal sample interval is dT = T/n. The first sample starts at t = dT. The 

characteristics of the problem sets are quite dependent on the types of functions 

and the way they are sampled. 

We have used random number generator for creating arbitrary binary 

solution vector x. To create a n-bit binary sequence, we used an integer of size 2𝑛. 

Then we generated a random integer number within that size, starting with a given 

seed value for the random generator. Finally we converted the random integer to a 

binary number with n-digits. We multiply A by this binary number x to get the b 

vector. So our BLP algorithm takes these A and b matrices and solves for the x. 

The solution will be correct only when it matches the known random x vector.  

To ensure optimality, we used another random sequence of m real numbers 

for the dual variable y for the standard linear programming problem. Then we use 

𝑔1(𝑡) = 1 + Sin(2 𝜋 𝑓0 𝑡) 𝑔2(𝑡) = 1 + Cos(2 𝜋 𝑓0 𝑡)    

𝑔3(𝑡) = 1 − 𝑒−3000𝑡    𝑔4(𝑡) = 1 + Cos(4 𝜋 𝑓0 𝑡)    

𝑔5(𝑡) = 1 + Sin(4 𝜋 𝑓0 𝑡)    𝑔6(𝑡) = 1 + Sin( 𝜋 𝑓0 𝑡) 

𝑔7(𝑡) = 1 + Cos( 𝜋 𝑓0 𝑡)    𝑔8(𝑡) = 1 + Cos(6 𝜋 𝑓0 𝑡)    

𝑔9(𝑡) = 1 + Sin(6 𝜋 𝑓0 𝑡)    𝑔10(𝑡) = 𝑒−3000𝑡    

 
Figure 2: A set of Independent Functions 



Subhendu Das                                                                                                         43
   

𝐴𝑇𝑦 = 𝑐 to generate the cost vector c. This will automatically ensure that the x 

vector is the optimal solution for the LPLU, because the variables so selected will 

satisfy the optimality condition: 
 

𝑦𝑇𝑏 = 𝑐𝑇𝑥 = 𝑦𝑇𝐴𝑥 = 𝑧 

Such a LPLU problem will always have binary vector x as the optimal 

solution. Therefore that same binary vector x will also be the optimal solution of 

the corresponding BLP problem. It is clear that we are using a sufficient condition 

and not as a necessary condition. 

In addition to satisfying the above condition, we will also use LP software 

with 0≤x≤1 bounded variables condition to produce and therefore verify the same 

binary solution. In some examples we will see that LPLU will not give the binary 

solutions, but will give the same optimal value z. This will happen because 

condition for LPLU is not binary, it only satisfies bounds. Under this situation we 

will show that the BLP algorithm can still give the correct binary solution. For 

some of the problems, we verified the results using direct enumeration of all 

binary vectors.  

It should be realized that this method of problem generation follows an 

important law of nature, as pointed out by [Dantzig, p. 33]. That is the law of 

conservation. This law is same as: material balance or law of conservation of 

mass, energy, force etc. It is also same as Kirchoff’s current and voltage laws of 

electric circuit theory. Thus a BLP problem example may be hypothetical or 

unrealistic or impractical if it violates the law of conservation. This law is also 

reflected in the relationship between the primal and the dual variables. Thus the 

coefficients in A, b, and c cannot be arbitrarily changed; they are related by this 

law. 

We have chosen non-negativity of elements of A to keep the computer 

program simpler. Our objective was not to venture for creating a commercially 

robust program. The focus is to provide a high level concept of the algorithm by 

eliminating complexities arising from negativities of A, b, and c parameters. The 
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algorithm, once understood, can be easily customized for all such special cases. 

As we have seen that the solution of BLP does not depend of the nature of the 

feasible region and its corner points, which are defined by the A, b, and c 

matrices. The solution depends on the existence of corner points of the unit cube 

inside the feasible region. 

It is always possible to add an equation with all positive coefficients for all 

variables to all the equations to make all A matrix elements nonnegative. However 

this may produce right hand side b vector with negative elements. This kind of b 

vector can always be replaced by a linear combination of vectors from the first 

quadrant. We can then solve all equations separately and then combine them 

linearly to find the original solution. Thus matrix equations with positive 

coefficients are really not a constraint on the principle behind the BLP algorithm. 

We should realize that in nature there are no negative numbers. Negative numbers 

are products of human imagination, and therefore abstract and artificial. 

 

 

5 Numerical Examples 

In the following subsections we provide three numerical examples to 

illustrate the algorithm and the nature of tables it may require. The problems are: 

(a)  An example generated using the method described in test problems 

(m < n) 

(b) An OR Library example taken from a website (m > n) 

(c)  A 0-1 Knapsack problem taken from a standard text book (m = 1) 

This exercise is not designed to prove the algorithm. They are provided to 

illustrate the details of the algorithm. Note that the algorithm is a complicated 

computer program. It has many variants and adjustments depending on the nature 

of the problem. All computer programs require customization to make things work 

for individual problems. These examples are presented to explain such details. 
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The algorithm is documented at high level or at conceptual level. Even then 

it may appear cryptic. This is true for all computer programs. More details we add 

more cryptic the algorithm will look. We have taken a hierarchical and modular 

approach in describing the algorithm; which is a well known concept in software 

engineering. This method allows every lower level to be smaller and simpler. 

 

 

5.1 A 3R5C Example 

First we illustrate our algorithm, using an example generated by the method 

described in the previous section on Test Problems. The first three functions were 

used with five samples to produce the following A matrix. The matrix A has 3 

rows and 5 columns, and hence the name 3R5C. 
 

A: 

3R5C 

1.000000000 0.8138079236 0.2112777074 0.02508563094 0.5125428155 

0.6545084972 0.09549150281 0.09549150281 0.6545084972 1.000000000 

0.4748286925 0.7354202041 0.8784358579 0.9569245129 1.000000000 

 

Initial values for the vectors b and c are given below and are labeled as B0 and C0. 
  

Example 5.1 

B0 2.351436370 2.404508497 3.167173409   

C0 1.034693911 0.8100068609 0.8731983764 1.358575743 1.717000249 

X0  {1,1,0,1,1} z0= 4.920276764   

Y0 0.104971 0.779101 0.884097   

 

 

Randomly generated binary solution vector X0, and the associated optimal 

cost z0 are reproduced in the table. For the sake of completeness, the dual random 

variable Y0 is also mentioned. 
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This problem can be solved by the standard LPLU algorithm of the 

Mathematica Software tool. It gives the same binary result that our problem 

formulation method selected. Thus the result of the BLP algorithm has been 

validated, for this example, by the Simplex method also. Our algorithm is best 

illustrated using tabular forms like in simplex method for LP. The first one, Table-

1A, shows the setup of the initial data. 

The Table-1A shows the given matrix data placed in a specific form. The 

problem variable names X1-X5 are displayed in row-3. The last column represents  

 

 
 

 

 

 

the given B0 vector. The elements of the B0 vector are also placed in a diagonal 

matrix, as slack variable coefficients, labeled S1-S3. The last row represents the 

cost vector C0. The given optimal solution is recorded in row-1, for the purpose of 

monitoring the status of iterations of our algorithm. Initially all problem variables 

are set to 0 and all slack variables are set to 1. These are shown in row-2. At this 

time, in Table-1A, all equations are satisfied; and therefore we have a feasible 

solution.  

At each iteration we create a matrix �𝑟𝑖𝑗�, called Ratio Test Matrix (RTM), 

an idea borrowed from the Simplex method, to determine the feasibility of all 

possible solutions. This matrix is shown in Table-1B. The column-X1 of Table-1B 

is obtained by dividing corresponding elements of B0 by the first column of the A  

Example 5.1 
Table-1B: Ratio Test Matrix �𝑟𝑖𝑗� 

X1 X2 X3 X4 X5 B0 
2.35 2.88 11.1 93.7 4.58 2.35 
3.67 25.1 25.1 3.67 2.40 2.40 
6.67 4.30 3.60 3.30 3.16 3.16 

Table-1A:  Setup of given data      x0= {1,1,0,1,1}      z0 = 4.920 
0 0 0 0 0 1 1 1  
X1 X2 X3 X4 X5 S1 S2 S3 B0 
1.00 0.81 0.21 0.02 0.51 2.35   2.35 
0.65 0.09 0.09 0.65 1.00  2.40  2.40 
0.47 0.73 0.87 0.95 1.00   3.16 3.16 
1.03 0.81 0.87 1.35 1.71 0 0 0 C0 
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Example 5.1 

Table-1D: Reduced Cost Row �𝑟𝐶𝑗� 
  X1 X2 X3 X4 X5 
1 Col-Max 0.96 0.61 0.35 0.58 1.02 
2 C0 1.03 0.81 0.87 1.35 1.71 
3 Product 0.99 0.50 0.30 0.79 1.75 
4 Max-loc     x 
 a b c d e f 

 

matrix. Thus the element in the first location of column-X1 is obtained from 

2.3514/1.000. As long as all elements of the RTM are greater than 1, the problem 

is considered as feasible. If any entry becomes less than 1, then that variable 

cannot be set to 1, and therefore its value must be 0. If a value becomes exactly 

equal to 1, then more advanced logic can be used to decide the value of the 

corresponding column variable. In this paper we ignore that step. As we can see, 

from Table-1B, that the problem is feasible at this iteration. 

Next we compute the pseudo inverse of the A matrix to estimate the primal 

variable X and the dual variable Y. We get them from the following relations: 

 
 

𝑋𝑒 = 𝐴−𝐵0   𝑎𝑛𝑑  𝑌𝑒 = 𝐴−𝑇𝐶0 (9) 

In (9) 𝑋𝑒 and 𝑌𝑒 are the estimates for X and Y respectively; 𝐴− and 𝐴−𝑇 are the 

pseudo inverse and its transpose for the matrix A. As we show below, in each 

iteration A matrix will change in size, but not in values, we have to estimate X and 

Y in all iterations. Therefore we have to compute 𝐴− also, for each iteration. In 

each iteration we create a correlation matrix, called �𝑅𝑖𝑗�, by using the following 

relations: 
 

 Table-1C: Correlation Matrix {𝑅𝑖𝑗} 
  X1 X2 X3 X4 X5 B0 
1 𝑋𝑒/𝑌𝑒 1.08 0.70 0.39 0.65 1.15  
2 0.10 0.11 .073 .041 .069 0.12 2.35 
3 0.77 0.84 0.54 0.30 0.51 0.90 2.40 
4 0.88 0.96 0.61 0.35 0.58 1.02 3.16 
5 C0 1.03 0.81 0.87 1.35 1.71  
 a b c d e f g 
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 𝑅𝑖𝑗 = 𝐴𝑏𝑠� 𝑋𝑒𝑗 ∗ 𝑌𝑒𝑖�    𝑖 = 1, …𝑚,   𝑗 = 1, …𝑛 (10) 
 

The following is a little description of the Table-1C. We hope, to an attentive 

reader it will be self evident. Row-1 represents the estimate of X vector; and 

Column-a for the estimate of the Y vector. The shaded matrix is the corresponding 

correlations. Row-5 is the original cost vector C0 and Column-g is the original 

RHS vector B0. From Table-1C we create our next Table-1D, called the reduced 

cost row, rC.  

The elements in Row-1 of Table-1D are the maximum of corresponding 

columns of the Correlation Matrix R given in the previous Table-1C. Each row 

element is multiplied by the corresponding cost vector elements of C0. The C0 is 

repeated in Row-2 and the product is given in Row-3. The maximum of Row-3 is 

marked by x in Row-4. Thus X5 will be assigned as 1 for its value. All other 

variables still remain 0. Observe that, for the initial step, the maximum of C0 and 

Row-3 are at same location in Column-f. However, this will not be so in all 

iterations. This ends the first iteration. In each iteration we decide a value for at 

least one variable. Thus the algorithm will end at most after n iterations. Note that 

in this step this is an optimal CSL, because this gives the highest value for the 

reduced cost, just like in the standard Simplex method. 

The next iteration is initialized in the following way and is shown in Table-

2A. Since we have selected X5 as 1, we subtract elements of this column from the 

corresponding diagonal elements of the artificial variables. The values for the 

artificial variables always remain as 1. The column for X5 is removed from the 

Table-2A; the cost element for X5 is set to 0, for the data base management 

information. We repeat the C0 row and call it Ci for the iteration. Table-2A now 

takes the new form as shown. 

Our next step will be to create the Ratio Test Matrix and present it as Table-

2B. This time however, the ratios will be created using the modified diagonal  
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Table-2A:  Iteration 2, Initial setup.       X0= {1,1,0,1,1}        
Z0 = 4.92027 

0 0 0 0 1 1 1 1  
X1 X2 X3 X4 X5 S1 S2 S3 B 
1.00 0.81 0.21 0.02  1.83   2.35 
0.65 0.09 0.09 0.65   1.40  2.40 
0.47 0.73 0.87 0.95    2.16 3.16 
1.03 0.81 0.87 1.35 0    Ci 
1.03 0.81 0.87 1.35 1.71 0 0 0 C0 

 

Example 5.1 
Table-2B: Ratio Test Matrix {𝑟𝑖𝑗} 

X1 X2 X3 X4 X5 Bi 
1.8
3 

2.2
5 

8.7
0 

73.
3 

 1.83 

2.1
4 

14.
7 

14.
7 

2.1
4 

 1.40 

4.5
6 

2.9
4 

2.4
6 

2.2
6 

 2.16 

 

elements of the artificial variables. We have represented the diagonal elements of 

the artificial variable coefficients as column in Bi. In Table-2B there are no entries 

with values less than 1. So we ignore this step. Next we find the pseudo inverse of 

the matrix in Table-2A and the corresponding estimates of primal and dual 

variables using Bi and Ci values shown in Table-2C. Then we compute the 

correlation matrix R as shown in Table-2C. 

Once we have the correlation matrix, we can then create the reduced cost 

Example 5.1:     Table-3A:  Iteration 3,  X0= {1,1,0,1,1},  Z0 = 4.920 
1 0 0 0 1 1  
X1 X2 X3 X4 X5 Bi B0 
 0.81380 0.21127 0.02508  0.83889 2.35143 
 0.09549 0.09549 0.65450  0.75000 2.40450 
 0.73542 0.87843 0.95692  1.6923 3.16717 
0 0.81000 0.87319 1.35857 0  Ci 
1.03469 0.81000 0.87319 1.35857 1.71700 0 C0 
 

Table-2C: Correlation Matrix {𝑅𝑖𝑗} 
 X1 X2 X3 X4 X5 Bi 
𝑋𝑒/𝑌𝑒 1.19 0.66 0.39 0.79   
0.104 0.12 0.07 0.04 0.08  1.83 
0.779 0.92 0.52 0.30 0.62  1.40 
0.884 1.05 0.59 0.34 0.70  2.16 
Ci 1.03 0.81 0.87 1.35 0  
C0 1.03 0.81 0.87 1.35 1.71  
 

Example 5.1 
Table-2D: Reduced Cost Row 

  X1 X2 X3 X4 
1 Col-Max 1.05 0.59 0.34 0.70 
2 Ci 1.03 0.81 0.87 1.35 
3 Product 1.08 0.47 0.30 0.96 
4 Max-loc x    
 a b c d e 
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row. This is shown in Table-2D. Row-3 is the product of corresponding elements 

of Row-1 and Row-2 of Table-2D. Note that this time Ci max, which is in 

column-e, has not been selected by the BLP algorithm. The X1 variable will now 

have value 1 and will be eliminated from the process in the next iteration. 

Since we are not using the artificial variables as diagonal elements, we can 

represent them as a column vector and call it Bi, the iterations of B0. This will 

help to reduce the size of the Table-3A as shown. 

The next step is to create the pseudo inverse of the matrix in Table-3A. This 

A is a 3x3 matrix. We also compute estimates of the primal and the dual variables 

using Bi and Ci values shown in Table-3A. However now we get an interesting 

result. The estimate for the primal variables becomes all binary, and is given 

below: 

𝑋𝑒 = {1.0000, 0, 1.0000}  

Which gives X2=1, X3=0, and X4=1. Thus our process ends here and our results 

match with the original values we selected during the problem design phase. The 

final Z0 value can be computed using the cost values. In many other problems, the 

process steps can be reduced by the ratio test matrix also. We will present an 

example later for this situation. 

Summarizing, we can see that the algorithm contains the following steps for 

each iteration. More details will be given later, after we illustrate with more 

examples. 

(a) Create the ratio test matrix to find if any element is less than 1. This will help 

to set those column variables to 0. 

(b) Create pseudo inverse of the A matrix, estimate the primal and dual variables, 

and create a correlation matrix using the estimates. This step may end the 

process, if it gives binary values for 𝑋𝑒. 

(c) Create a max row by selecting maximal elements of each column from 

correlation matrix. Multiply this row by the corresponding cost values from 

C0. We call it the reduce cost row. 
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(d) Select the max element from this reduced cost row. This selected column 

variable will have a value of 1. 

(e) Update the tables for next iteration, by subtracting the selected column of the 

A matrix from B0 vector. Set the cost element to 0 corresponding to the 

selected variables. Remove the column from the A matrix. 

(f) Continue as above from step (a) until we process all n variables. 

 

 

5.2 An OR Library Problem 

The following problem is taken from the operations research (OR) database 

library [Beasley]. In the problem the matrix A has more number of rows than 

columns. The matrices for the problem are given by the following tables. Notice 

that it is a less than equal to problem, as oppose to R3C5 problem, which had 

equality only. The optimal solution vector x0 and the optimal cost z0 are also 

given. The problem is stated as 

 
Example 5.2:  OR-Lib Problem,  Initial given data 

B0 80 96 20 36 44 48 10 18 22 24 
C0 100 600 1200 2400 500 2000  
X0 = {0, 1, 1, 0, 0, 1},   Z0=3800 

 

𝑀𝑎𝑥 𝑧 = 𝑐𝑇𝑥,     𝐴𝑥 ≤ 𝑏, 𝑥 ∈ {0,1}𝑛, 𝑛 = 6 

 

 

OR-Lib Prob.  Matrix A0 
8 12 13 64 22 41 
8 12 13 75 22 41 
3 6 4 18 6 4 
5 10 8 32 6 12 
5 13 8 42 6 20 
5 13 8 48 6 20 
0 0 0 0 8 0 
3 0 4 0 8 0 
3 2 4 0 8 4 
3 2 4 8 8 4 
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The LPLU approach of Mathematica fails to solve this problem. But the BLP 

algorithm presented gives the correct solution. The solution has been verified 

using direct enumeration as well.  

We present the initial data in the following way in Table-1A. Like in the 

case of R3C5 problem, we collapse the slack variables as a column and call it Bi 

vector. We also retain the original B0 at each step, to track the status. First we 

create a ratio test matrix RTM and present it in Table-1B. Each entry in this table 

is a ratio of the following type, using a simplified notation, hopefully will not be 

confusing to the reader. 

 𝑟𝑖𝑗 = 𝑏𝑖
𝑎𝑖𝑗

,    𝑎𝑖𝑗 ≠ 0  (11) 

If any element in the RTM is less than 1 then that column variable must be 

assigned a 0 value. However, if an element is 1 then a complex logic will have to 

be used. 

We can see that the RTM matrix in Table-1B has an entry of 1 in column X4 

and Row-6. Since all numbers in Row-6 are nonzero, therefore X4 cannot be 

assigned a value of 1, because then no other variables can be assigned 1, and the 

algorithm will terminate. So at this step we decide to assign a 0 value to X4. This 

assignment does not affect Bi vector. The iteration step ends here, because we 

have selected one variable.  

Example 5.2 
Table-1B: Ratio Test Matrix RTM 
 X1 X2 X3 X4 X5 X6 
1 10 6.67 6.15 1.25 3.63 1.95 
2 12 8 7.38 1.28 4.36 2.34 
3 6.67 3.33 5 1.11 3.33 5 
4 7.2 3.6 4.5 1.12 6 3 
5 8.8 3.84 5.5 1.05 7.33 2.2 
6 9.6 3.69 6 1 8 2.4 
7 X X X X 1.25 X 
8 6 X 4.5 X 2.25 X 
9 7.33 11 5.5 X 2.75 5.5 
10 8 12 6 3 3 6 
 
 

Table-1A: Given database X0=011001,      Z0=3800 
0 0 0 0 0 0 1  
X1 X2 X3 X4 X5 X6 Bi B0 
8 12 13 64 22 41 80 80 
8 12 13 75 22 41 96 96 
3 6 4 18 6 4 20 20 
5 10 8 32 6 12 36 36 
5 13 8 42 6 20 44 44 
5 13 8 48 6 20 48 48 
0 0 0 0 8 0 10 10 
3 0 4 0 8 0 18 18 
3 2 4 0 8 4 22 22 
3 2 4 8 8 4 24 24 
100 600 1200 2400 500 2000   
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Example 5.2:    Table-2A:   Iteration 2, Initial matrix setup,    X0=011001,      Z0=3800 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1  

X1 X2 X3 X4 X5 X6 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 B0 

8 12 13  22 41 80          80 

8 12 13  22 41  96         96 

3 6 4  6 4   20        20 

5 10 8  6 12    36       36 

5 13 8  6 20     44      44 

5 13 8  6 20      48     48 

0 0 0  8 0       10    10 

3 0 4  8 0        18   18 

3 2 4  8 4         22  22 

3 2 4  8 4          24 24 

100 600 1200 0 500 2000 0 0 0 0 0 0 0 0 0 0 Ci 

100 600 1200 2400 500 2000 0 0 0 0 0 0 0 0 0 0 C0 

 Next we create the Table-2A as shown. For this specific problem, we use 

two different matrices for pseudo inverses. To explicitly show them we present the 

diagonal form again.To take the pseudo inverse and estimate the primal variable 

𝑋𝑒 we consider the entire matrix including the diagonal elements, but eliminate 

column X4. This will produce an estimate with 15 elements in the vector. We then 

chop the last 10 elements, and consider the remaining 5 elements to create the 

 

Example 5.2 
Table-2B: Correlation Matrix (R),     X0=011001,      Z0=3800 

 X1 X2 X3 X4 X5 X6 Bi 
𝑋𝑒/𝑌𝑒 0.35 0.45 0.50  0.75 0.16  

37.864 13.2 17.3 19.25  28.4 6.33 80 
37.864 13.2 17.3 19.25  28.4 6.33 96 
-701.87 246.3 320.8 356.8  527.5 117.4 20 
1048.7 368.1 479.4 533.2  788.2 175.4 36 
-190.63 66.91 87.15 96.92  143.2 31.88 44 
-190.63 66.91 87.15 96.92  143.2 31.88 48 
459.24 161.2 209.9 233.5  345.1 76.82 10 
235.05 82.51 107.4 119.5  176.6 39.31 18 
-407.12 142.9 186.1 207.0  306.0 68.10 22 
-407.12 142.9 186.1 207.0  306.0 68.10 24 
Ci 100 600 1200 0 500 2000  
C0 100 600 1200 2400 500 2000   
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correlation matrix R. However, to estimate the dual variables, we take only the 5 

columns of the A matrix and the 5 elements of Ci cost vector. Observe that, as 

shown in the table, Ci has one item as 0, corresponding to the X4 column. 

Extended 𝑋𝑒=  

{0.35104,0.45719,0.50846,0.94987,0.75161,0.16728,0.30606,0.27321,0.30241,0.

26141,0.32296,0.24011,0.40634,0.33606,0.39139} 

Reduced 𝑋𝑒 = {0.35104, 0.45719, 0.50846, 0.75161, 0.16728} 

𝑌𝑒= {37.864, 37.864,-701.87, 1048.7,-190.63,-190.63, 459.24, 235.05,-407.12, -

407.12} 

In our computer program we carefully keep track of deleted variables, 

matrix columns, and cost rows. We maintain one tag for all original variables, and 

another one for variables remaining to be processed. The correlation matrix for 

this iteration has the data shown in Table-2B; we take the absolute value of each 

product. From this correlation matrix we can then create the reduced cost row, by 

selecting the maximum element from each column and multiplying them by the 

corresponding cost values. This is shown in the Table-2C.  The Table-2C shows 

that max cost is at column X3. Therefore we assign 1 to variable X3. This will end 

this step and we enter the next iteration beginning with Table-3A. 

Since the variable X3 was 1, the X3 column must be subtracted from the 

diagonal elements corresponding to the slack variables. We do not show the table 

in the diagonal form to reduce paper space; but we process in diagonal form for 

the determination of the estimates of primal and the dual variables and for the 

generation of the reduced cost row. Table-3A shows the initial setup for this 

iteration. 

Example 5.2 
Table-2C: Reduced Cost Row,     X0=011001,      Z0=3800 

 X1 X2 X3 X4 X5 X6 
Col-Max 368.15 479.47 533.24  788.25 175.43 
C0 100.00 600.00 1200.0 2400 500.00 2000.0 
Product 36815. 2.87×105 6.39×105  3.94×105 3.50×105 
Max-loc   x    
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Next we show the Ratio Test Matrix, RTM. However this matrix does not 

contribute anything new this time, because none of the elements is less than or 

equal to 1.  The RTM matrix is shown in Table-3B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-3A:  Iteration 3,  X0=011001,   Z0=3800 
0 0 1 0 0 0 1  
X1 X2 X3 X4 X5 X6 Bi B0 
8 12   22 41 67 80 
8 12   22 41 83 96 
3 6   6 4 16 20 
5 10   6 12 28 36 
5 13   6 20 36 44 
5 13   6 20 40 48 
0 0   8 0 10 10 
3 0   8 0 14 18 
3 2   8 4 18 22 
3 2   8 4 20 24 
100 600 0 0 500 2000  Ci 
100 600 1200 2400 500 2000  C0 

Example 5.2 
Table-3B: Ratio Test Matrix (RTM) 

 X1 X2 X3 X4 X5 X6 
1 8.37 5.58   3.04 1.63 
2 10.3 6.91   3.77 2.02 
3 5.33 2.66   2.66 4.00 
4 5.60 2.80   4.66 2.33 
5 7.20 2.76   6.00 1.80 
6 8.00 3.07   6.66 2.00 
7 0 0   1.25 0 
8 4.66 0   1.75 0 
9 6 9   2.25 4.5 
10 6.67 10   2.5 5.0 
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Next we generate the correlation matrix. Here again, as mentioned before, 

we use both extended matrix and short matrix to estimate 𝑋𝑒 and 𝑌𝑒. We do not 

write the details, as they have been explained in the previous iteration, we just 

present the contents in Table-3C. 

Example 5.2:  Table-3D 
Reduced Cost Row,   X0=011001,  Z0=3800 

 X1 X2 X5 X6 
Col-Max 17.21 21.5 4.63 12.8 
C0 100.0 600. 500. 2000. 
Product 1721. 12932. 2315. 25613. 
Max-loc    x 
 

Table-3C: Correlation Matrix (R),    X0=011001,    Z0=3800 
 X1 X2 X3 X4 X5 X6 Bi 
𝑋𝑒/𝑌𝑒 0.36 0.45   0.09 0.27  
22.92 8.38 10.5   2.25 6.24 67 
22.92 8.38 10.5   2.25 6.24 83 
-5.67 2.07 2.59   0.55 1.54 16 
-18.7 6.84 8.57   1.84 5.09 28 
14.53 5.32 6.66   1.43 3.95 36 
14.53 5.32 6.66   1.43 3.95 40 
33.42 12.2 15.3   3.29 9.10 10 
-47.0 17.2 21.5   4.63 12.8 14 
-26.7 9.78 12.2   2.63 7.27 18 
-26.7 9.78 12.2   2.63 7.27 20 
Ci 100 600 0 0 500 2000  
C0 100 600 1200 2400 500 2000   
 

Example 5.2 
Table-4B: Ratio Test Matrix RTM 

X1 X2 X3 X4 X5 X6 
3.25 2.16   1.18  
5.25 3.5   1.90  
4.00 2.00   2.00  
3.20 1.60   2.67  
3.20 1.23   2.67  
4.00 1.53   3.33  
0 0   1.25  
4.67 0   1.75  
4.67 7.00   1.75  
5.33 8.00   2.00  
 

Table-4A:  Iteration 4,  X0=011001,  Z0=3800 
0 0 1 0 0 1 1  
X1 X2 X3 X4 X5 X6 Bi B0 
8 12   22  26 80 
8 12   22  42 96 
3 6   6  12 20 
5 10   6  16 36 
5 13   6  16 44 
5 13   6  20 48 
0 0   8  10 10 
3 0   8  14 18 
3 2   8  14 22 
3 2   8  16 24 
100 600 0 0 500 0  Ci 
100 600 1200 2400 500 2000  C0 
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Extended 𝑋𝑒 =  

{0.36598,0.45819,0.97238,0.74599,0.098442,0.27224,0.20841,0.24293,0.20721,0

.28649,0.22209,0.36593,0.29015,0.36113} 

Once the matrix R is known we can determine the reduced cost matrix, which is 

shown in Table-3D. The Table-3D selects the variable X6, and we assign a value 

of 1 to it. Thus in the next iteration column-6 gets eliminated. For the next 

iterations we present all the tables sequentially with no or minimal explanations. 

Extended 𝑋𝑒 =  {0.39387,0.51991,0.97459,- 

0.18580,0.26593,0.15428,0.18650,0.089018,0.27121,0.22033,0.35869,0.28442,0.

37387} 

Iteration 4, assigns 1 to the variable X2, as shown in Table-4D. Iteration 5 is 

Example 5.2 
Table-4D: Reduced Cost Row 

 X1 X2 X5 
Col-Max 18.748 24.748 12.658 
C0 100.00 600.00 500.00 
Product 1874.8 14849. 6329.1 
Max-loc  x  
 

Table-4C: Correlation Matrix RXY 
 X1 X2 X3 X4 X5 X6 Bi 
𝑋𝑒/𝑌𝑒 0.39 0.51   0.26   
13.94 5.49 7.24   3.70  26 
13.94 5.49 7.24   3.70  42 
6.622 2.60 3.44   1.76  12 
-12.7 5.02 6.63   3.39  16 
16.80 6.61 8.73   4.46  16 
16.80 6.61 8.73   4.46  20 
47.60 18.7 24.7   12.6  10 
-40.6 15.9 21.1   10.7  14 
-20.8 8.22 10.8   5.55  14 
-20.8 8.22 10.8   5.55  16 
Ci 100 600 0 0 500 0  
C0 100 600 1200 2400 500 2000   
 

Table-5A:  Iteration 5 X0=011001,      Z0=3800 
 0 0 1 0 0 1 1  
 X1 X2 X3 X4 X5 X6 Bi B0 
 8    22  14 80 
 8    22  30 96 
 3    6  6 20 
 5    6  6 36 
 5    6  3 44 
 5    6  7 48 
 0    8  10 10 
 3    8  14 18 
 3    8  12 22 
 3    8  14 24 
Ci 100 0 0 0 500 0   
C0 100 600 1200 2400 500 2000   
 

Example 5.2 
Table-5B: Ratio Test Matrix RTM 

 X1 X2 X3 X4 X5 X6 
1 1.75    0.63  
2 3.75    1.36  
3 2.0    1.0  
4 1.2    1.0  
5 0.60    0.50  
6 1.40    1.16  
7 0    1.25  
8 4.67    1.75  
9 4.0    1.50  
10 4.67    1.75  
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somewhat interesting; it begins with X1 and X5 only, as shown in Table-5A. We 

can see from RTM that both columns of Table-5B have elements which are less 

than 1. Therefore both variables for those columns must be assigned 0 values. This 

terminates the process and we have found the matching optimal solution. 

 

 

5.3 A 0-1 Knapsack Problem 

The following problem is taken from the book [Martello and Toth, p. 21]. It 

has 8 variables, one linear inequality constraint, and one linear objective function. 

Martello-Toth defines, using their notations, the problem in the following way: 

 

Maximize 𝑧 = ∑ 𝑝𝑗𝑥𝑗𝑛
𝑗=1  

Subject to ∑ 𝑤𝑗𝑥𝑗𝑛
𝑗=1 ≤ 𝑐 ,    𝑥𝑗 = 0 𝑜𝑟 1,   𝑗 ∈ 𝑁 = {1, … ,𝑛} 

 

The data for the problem is given by: 

�𝑝𝑗� = (15,100,90,60,40,15,10,1) , �𝑤𝑗� = (2,20,20,30,40,30,60,10),     𝑐 =

102  

The optimal solution, of value 280, is �𝑥𝑗� = (1,1,1,1,0,1,0,0) 

The purpose of this example is to illustrate how the algorithm works for 

single row cases. The objective is not to solve large problems or problems with 

complex characteristics. Computer programs can always be modified to solve any 

problem with special cases as long as the theory is consistent. In this problem we 

do not use the pseudo inverse method, although it can be used, and we have used it 

for this problem successfully. Instead we use the ratio test matrix and derive our 

reduced cost from this data. In iteration one, we begin with Table-1. 
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Example 5.3 

 Table-1: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  0 0 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A 2 20 20 30 40 30 60 10 102 102 

4 Ratio Test 51 5.1 5.1 3.4 2.55 3.4 1.7 10.2   

5 Reduced Cost 765 510 459 204 102 51 17 10.2   

6 Max x          

7 Ci 15 100 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   

 

 

In Table-1 row 3 contains the A matrix as defined in BLP; row 8 is the cost 

vector C; column B0 is the b vector; X1..X8 are the problem variables. In the first 

initial table we have repeated the cost Ci as C0. In the same way we have repeated 

b vector as B0 and Bi. Row 4 shows the ratio test matrix (RTM), in this case it is a 

row only. It is created using the relation Bi/Aj. Thus element at row-4 and col-X1 

is 51 and is obtained from 102/2. We then multiply ratio test row by the 

corresponding cost values on row-7, which is a repeat of row-8. This generates the 

reduced cost shown in row-5. We then identify the maximum value location, 

marked as x, at column X1. Thus we assign 1 to the variable X1. This ends the 

first iteration. Next, update the database by copying the Table-1 as Table-2 as 

shown. 

 

Example 5.3 

 Table-2: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 0 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A  20 20 30 40 30 60 10 100 102 

4 Ratio Test  5 5 3.33 2.5 3.33 1.67 10   

5 Reduced Cost  500 450 200 100 50 16.6 10   

6 Max  x         

7 Ci 0 100 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   
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In Table-2, we indicate 1 at row-1 and column-X1; set 0 for Ci at row-7 

column-X1; and clear remaining parts of column-X1. Also we subtract A matrix 

coefficients from Bi, which now becomes 100. Then we fill the ratio test row by 

dividing 100 by the corresponding row-3 values for A matrix. To derive reduced 

cost we multiply ratio test row by the corresponding Ci elements. The maximum 

of the reduced cost is now located at X2 as shown by the mark x. Thus X2 

becomes 1 now. In the next iteration we repeat the process as shown below. 
 

Example 5.3 

 Table-3: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A   20 30 40 30 60 10 80 102 

4 Ratio Test   4 2.67 2 2.67 1.33 8   

5 Reduced Cost   360 160 80 40 13.3 8   

6 Max   x        

7 Ci 0 0 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   

 

 

 

 

 

 

 

Example 5.3 

 Table-4: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 1 1 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A     40 30 60 10 30 102 

4 Ratio Test     0.75 1.0 0.50 3.0   

5 Reduced Cost           

6 Max           

7 Ci 0 0 0 0 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   
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From Table-3 we see that the variable X3 becomes 1. The next we 

reproduce Table-4. Table-4 represents the fourth iteration. We compute ratio test 

and observe that in columns X5 and X7 the values are less than 1. Thus these two 

variables must be set to 0. We do not need to compute the reduced cost for this 

fourth iteration in Table-4. The next step is to eliminate X5 and X7 columns. The 

result is shown in Table-5. 
 

Example 5.3 

 Table-5: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 1 1 0 1 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A      30  10 0 102 

4 Ratio Test      1.0  3.0   

5 Reduced Cost           

6 Max           

7 Ci 0 0 0 0 0 15 0 1   

8 C0 15 100 90 60 40 15 10 1   

 

The ratio test now shows that X6 has a value of 1.0. If we set this variable as 

1 then the process will stop because no other variables can be 1 anymore. 

Comparing the cost in row-7 we choose 1 for X6 and 0 for X8. We have found the 

optimal solution. Notice that in this case Bi has 0 value. In many problems the 

norm of Bi can be used to terminate the algorithm. In equality problems, with B0 

in binary range space ℬ, final value of Bi must be 0, as in this problem. 

 

 

6 Conclusion 

A polynomial time algorithm for binary linear programs is presented. The 

algorithm and its theoretical foundations are clearly described. Different types of 

numerical examples are solved to explain the details of the theory and its features, 

variants, and capabilities. 
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