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Abstract 

In the present Paper, the Authors have investigated the pulsatile flow of blood 

through a porous medium with constant permeability, in an inclined artery with 

mild stenosis. The flow of blood is considered to be Newtonian. The presence of 

an azimuthal uniform magnetic field is assumed. The flow takes place under body 

acceleration and a slip velocity is imposed at the stenosed arterial wall. By using 

Perturbation technique, the solutions for the flow field, wall shear stress, 

volumetric flux and the effective viscosity are obtained and their behaviours under 

the influence of various relevant parameters concerning the magnetic field, 

velocity slip, permeability, inclination etc. have been demonstrated pictorially and 
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discussed. It is seen that the applied magnetic field, velocity slip, inclination and 

the permeability of the porous medium have significant influence on the flow field, 

wall shear stress, volumetric flow rate and the effective viscosity. 
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1  Introduction  

The studies related to blood flow through stenosed arteries have garnered 

wide interest in the field of Bio-Medical research. Stenosis or atherosclerosis may 

be defined as the formation of some constriction in the inner arterial wall owing to 

the deposition of lipoproteins and fatty acids (atherosclerotic plaques) in the 

lumen of the artery. Such constrictions lead to considerable change in the flow of 

blood, the pressure distribution and the wall shear stress, thereby impeding the 

normal circulatory processes and consequently leading to cardiovascular diseases. 

Even for mild atherosclerosis, the velocity gradient in the stenosed wall is steep 

owing to the increased core velocity. This results in comparatively large shear 

stress on the arterial wall. Mathematical models of blood flow through arteries 

under diverse physiological situations were presented by several authors like Fung 

[1], McDonald [2], Zamir [3] and David et al. [4]. Theoretical and experimental 

investigations concerning flow of blood through stenosed arteries were presented 

by Young [5], Liu et al. [6], Yao and Li [7] and Mekheimer and El-Kot [8]. The 

human body may be subjected to body accelerations (vibrations) under certain 

situations such as riding a heavy vehicle or flying in a helicopter. This may cause 

health problems like vascular disorders and increased pulse rate. Studies related to 

blood flow under the influence of body acceleration were carried out by several 

research workers such as Sud and Sekhon [9] and El-Shahed [10]. The Pulsatile 

nature of blood flow in arteries may be attributed to the heart pulse pressure 
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gradient. Studies in pulsatile blood flow were carried out by researchers like [10] 

and Elshehawey et al. [11]. The possibility of velocity slip at the blood vessel wall 

was investigated theoretically by Brunn [12] and Jones [13] and experimentally by 

Bennet [14] and Bugliarello and Hayden [15]. The methods to detect and 

determine slip experimentally at the blood vessel wall have been indicated by 

Astarita et al. [16] and Cheng [17] respectively. It was first Kolin [18] and later 

Korchevskii and Marochnik [19] who suggested the scope of electromagnetic 

fields in Bio-Medical studies. Barnothy [20] indicated that for biological systems, 

the heart rate decreases under the influence of an external magnetic field. In 

certain pathological circumstances, the distribution of fatty cholesterol and 

artery-clogging blood clots in the lumen of the coronary artery may be regarded as 

equivalent to a fictitious porous medium. Xu et al. [21] assumed the blood clot as 

a porous medium to investigate the transport characteristics of blood flow in the 

extension of multi-scale model by incorporating a detailed sub model of 

surface-mediated control of blood coagulation (Xu et al. [22, 23]). In general, 

blood is a non-Newtonian fluid. However, it has been established that human 

blood exhibits Newtonian behavior at all rates of shear for hematocrits up to about 

12% [24]. Further, in case of relatively larger blood vessels it is sensible to assume 

that blood has a constant viscosity, since the diameters of such vessels are large 

compared with the individual cell diameters and because shear rates are quite high 

for viscosity to be independent of them. Consequently, for such vessels the 

non-Newtonian character becomes unimportant and blood may be regarded as a 

Newtonian fluid. 

In view of the aforementioned facts, we may cite the works done by 

Elshehawey et al. [11], Nagarani and Sarojamma [25], Shehawey and EL Sebaei 

[26], Tzirtzilakis [27], etc.  

The aim of the present study is to investigate theoretically the nature of a 

pulsatile blood flow through a mildly stenosed artery under the combined 

influence of an azimuthal uniform magnetic field, slip velocity, body acceleration 
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and permeability, when the artery is inclined to the vertical. The investigation is 

carried out by treating blood flow as Newtonian. 

 

 

2  The formulation of the Problem 

For the present problem, we consider an axially symmetric, laminar, 

one-dimensional and fully developed flow of blood, through an inclined and 

constricted circular artery, in the presence of a time-dependent pressure gradient, 

body acceleration and a uniform circular (azimuthal) magnetic field of moderate 

intensity. Thus, the induced magnetic field is negligible. We assume that this 

constricted artery has a rigid wall and that the artery is filled with a porous 

medium of constant permeability. Further, the artery is inclined to the vertical and 

a slip velocity is imposed at the stenosed region of the arterial wall. Here, blood is 

assumed as a Newtonian fluid and the corresponding flow is considered to be 

Newtonian. The flow configuration is presented pictorially, in the section for 

figures. 

Following Nagarani and Sarojamma [25], the geometry of an arterial stenosis is 

presented as: 

( )
0

0

0

1 cos , for
2

, for

sd zL z d
dR z

L z d

π  
− + ≤  =  

 >

                             (1) 

Where ( )R z  is the radius of the artery in the stenosed region, L  is the constant 

arterial radius in the non-stenosed region, 0d  is the half-length of the stenosis 

and sd  is the greatest height of the stenosis such that sd
L

 is less than unity for a 

mild stenosis. For a low Reynolds number flow through an artery with mild 

stenosis, we may omit the radial velocity since it is very small (Nagarani and 
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Sarojamma [25]).    

In cylindrical coordinate system ( ), ,r zθ , the momentum equation governing 

the flow is deduced from Navier-Stokes equations of motion and presented as 

under: 

( )
22

2
1 1 1cosu P u u u B uF t g

t z r r Kr

σ υβ υ
ρ ρ ρ

 ∂ ∂ ∂ ∂
 = + − + + − −
 ∂ ∂ ∂∂ 

          (2) 

0P
r

∂
=

∂
                                                         (3) 

Where u  denotes the velocity along the z - axis, P  the pressure, ρ  the 

density, t  the time, ( )F t  the body acceleration, B  the applied magnetic field 

in azimuthal ( θ ) direction, υ  the kinematic viscosity, σ  the electrical 

conductivity, g  the acceleration due to gravity, β  the angle of inclination of 

the artery with the vertical  and K  the permeability of the porous medium. 

The relevant boundary conditions are as under: 

 ( )atsu V r R z= =                                                 (4) 

0 at 0u r
r

∂
= =

∂
                                                   (5)  

Where sV  is the slip velocity at the stenosed region of the arterial wall. 

When 0,t >  periodic body acceleration ( )F t  is imposed on the flow and this 

may be presented as under (Nagarani and Sarojamma [25]): 

( ) ( )00 cosF t f tω θ= + ,                                            (6)                                                                                    

Where 0 2 bFω π= , 0f  and bF  being respectively the amplitude of body 

acceleration and frequency (in Hertz) of body acceleration. Also, θ  is the lead 

angle with respect to the heart action. bF  is taken to be so small that wave effect 
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may be omitted (Nagarani and Sarojamma [25]).   

Further, for 0,t ≥  the pressure gradient is assumed as: 

( ) ( ) ( ) ( )0 1

,
cos P

P z t
P z P z t

z
ω

∂
− = +

∂
                                  (7) 

Where ( ) ( )0 1,P z P z  are respectively the steady state pressure gradient and the 

amplitude of the oscillatory part of the pressure gradient. Further, 2P Pfω π=  

where Pf  is the pulse rate frequency. 

We make the following non-dimensional substitutions: 

( )
( ) 0

0
2

4, , , , , , ,P
P

s
s

R zz r d uz R z r t t d u
L L L L P L

ω υ ρω ω
ω

= = = = = = =  

01
0

0 0 00 0

0
0

2
2

2

2 2

2

4 2, , , , , ,

, , , ,
8

Ps
s

E
E

V fPg LB V B
P P PP L P L

B L K dM K d
LL

υ ρρ τ ωτ ε ε
υ

σ µµ
υ ρ υ ρ

′ = = = = = =

= = = =

            (8) 

Where , ,M Kε  and sd  are respectively the Pulsatile Reynolds number or the 

Womersley frequency parameter, Hartmann number or magnetic parameter, the 

permeability parameter and the dimensionless height of the stenosis. The 

remaining quantities relevant to this problem are described at their appropriate 

places.                                                                                                                                                                                                                                                                                            

We substitute the quantities defined in (8) into (1), (2), (4), (5), (6) and (7) and 

then simplifying, we get the following in non-dimensional forms: 

Non-dimensional form of the geometry of arterial stenosis is: 

( ) 0
0

0

1 1 cos , for
2

1, for

sd z z d
dR z

z d

π  
− + ≤  

=   
 >

                              (9) 

Momentum equation: 
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( ) ( ){ }0
2 4 cos cos 1 cos

1 1

u B t B t
t

ur M u
r r r K

ε ω θ β ε∂ ′= + + + +
∂

 ∂ ∂  + − +   ∂ ∂   

                      (10)  

Subject to the following non-dimensional boundary conditions: 

atsu V r R= =                                                    (11) 

0 at 0u r
r

∂
= =

∂
                                                  (12) 

 

 

3  Method of Solution  

Assuming the Pulsatile Reynolds number ε  to be very small, the velocity 

u  may be approximated by the following series (perturbation technique): 

( ) ( ) ( )0 1
2, , , , , , .......u z r t v z r t v z r tε= + +                               (13) 

Substituting (13) in (10), (11) and (12) and equating the coefficients of 0ε  and 
2ε  and then neglecting the terms containing higher powers of ε , we obtain: 

( ) 0
0

1 10 4 vh t r M v
r r r K

 ∂∂  = + − +   ∂ ∂   
                               (14)                                                           

0 1
1

1 1v vr M v
t r r r K

 ∂ ∂∂  = − +   ∂ ∂ ∂   
                                   (15)                                                                    

Where ( ) ( ) ( )0cos cos 1 cosh t B t B tω θ β ε′= + + + + . 

The corresponding boundary conditions are as under: 

0 1, 0 atsv V v r R= = =                                             (16) 

0 10 , 0 at 0v v r
r r

∂ ∂
= = =

∂ ∂
                                          (17) 

The solution of the equations (14), (15) subject to the boundary conditions (16), 

(17) are as under: 
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( )0 1 0
1 4

1
v c J r i M h t

K M
K

 
  
 = + +       +    

,  where 

( )

1

0

4
1

1

sV
h t M

Kc
J Ri M

K

 
 
 −

  +    =
  +     

, 

( ) ( )1v V r h t′= , where ( )h t′  represents the derivative of ( )h t with respect to t ; 

( )

( )

( )
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1 4
4 1 1

4
4 1

V r
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K
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Where, ( )
1

0
0

2

2

1
1
2 1

r J x i M
K

r x dx
J x i M

K

ψ

  +     =
  +     

∫ . 

Consequently, the non-dimensional axial velocity ( ), ,u z r t  is given by: 

( ) ( ) ( )0 1
2, , , , , ,u z r t v z r t v z r tε= + . 

 

 

3.1 Non-dimensional Wall Shear Stress 

Assuming the constricted wall of this artery to be rigid, the non-dimensional 

wall shear stress τ  at r R=  is given by: 

0

2
P L
ττ = , 
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Where 
r R

u
r

τ υ ρ
=

 ∂
= −  

∂ 
 is the dimensional wall shear stress at r R= .  

Consequently, we get: 

0 121 1
2 2r R r R r R
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r r r
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= = =

      ∂ ∂∂
= − = − +      ∂ ∂ ∂       
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1

0
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1 14
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3.2 Non-dimensional Volumetric Flow Rate 

The dimensionless volumetric flow rate ( ),Q z t  may be defined as under: 

( )
( )

0
4

8 ,
,

Q z t
Q z t

L P

υ ρ

π
= , where ( ),Q z t  is the dimensional volumetric flow rate 

and is given by ( ) ( )
0

, 2 , ,
R

Q z t r u z r t d rπ= ∫ . 

Consequently, ( ) ( ) 0 1
0

, 4 , ,
R

Q z t r u z r t dr I I= = +∫  , where, 
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0 0 1 1
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2
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1 0

2
4

41 1
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ψ= − −
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. 

 

 

3.3 Non-dimensional Effective Viscosity     

Following Pennington and Cowin [28], the effective viscosity Eµ  in 

dimensional form may be expressed as follows: 

( ) ( )( )
( )

( )
( )

0

4

4

,

1 cos
,,

EE

P z t
R z

z t R
Q z tQ z t

π
ε

µ µ

 ∂
 −
 ∂ + = ⇒ =  

Where Eµ  is the non-dimensional effective viscosity.  
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4  Results and Discussion 

In order to get an insight into the biological and physical aspects of this 

problem, we obtain the profiles of the axial velocity, wall shear stress, volumetric 

flow rate and the effective viscosity, and we examine their behaviors under the 

influence of the various non-dimensional parameters relevant to this problem. The 

data-tabulation involved in this problem is carried out with the aid of Python(x, y) 

v2.7.6.0, using the packages: cmath, mpmath and numpy. For all the figures, we 

take 00.2, 0.3z d= = , 0.2ε =  and 
3
πθ = . Clearly, [ ]0, Rr∈  and using (9) 

and then noting that 0z d<  for the aforementioned choice of 0,z d , we find that 

0.9375R = . Thus, for our choice of 0,z d , [ ]0, 0.9375r∈ . 

The Figures 1, 2, 3 and 4 demonstrate the nature of the non-dimensional axial 

velocity u  against r , under the effect of M , sV , t , β , , ,B B ω′ , 0ε  and K . It is 

inferred that u  decreases as each of M , β , B  and ω  increases whereas a rise 

in each of sV , B′ , 0ε  and K  leads to an increase in u . Also, from Figure 2, it 

is observed that as t  increases from 1t =  to 5t =  i.e. as tω  rises from 

4
t πω =  to 5

4
t πω = , u  increases. However, as t  further increases from 5t =  

to 8t =  i.e. as tω  further rises from 5
4

t πω =  to 8
4

t πω = , u  decreases. 

From (8), we note that 0t tω ω= . Hence, u  rises and then falls with the change 

in the period of the body acceleration ( )F t . From all the above mentioned 

figures it is obvious that the velocity is greatest on the axis ( 0r = ) and least at the 

stenosed wall ( r R= ). As r  increases within [ ]0, R , u  decreases from some 

maximum value at the axis and attains the dimensionless slip velocity su V=  at 

the stenosed wall.  

The behaviours of dimensionless wall shear stress τ  versus time parameter 
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t  under the effects of the parameters M , sV , β , , ,B B ω′ , 0ε , sd and K  are 

depicted in the figures 5, 8 and 9. It is noted that the wall shear stress falls with the 

rise in each of M , sV , β , ω  and sd . On the other hand, the shear stress 

exhibits a growth with the increase in each of B′ , 0ε  and K . However, a 

growth in B  causes τ  to initially rise for smaller values of t  and then 

decrease for comparatively larger values of t . This may be attributed to the 

periodic nature of the body acceleration as well as the pressure gradient. 

The profiles for the non-dimensional volumetric flow rate Q  against time 

parameter t  under the influence of the parameters M , sV , β , , ,B B ω′ , 0ε , 

sd and K  are demonstrated in the figures 6, 10 and 11. It is observed that the 

volumetric flow rate registers a drop with the growth in each of M , β ,ω  and 

sd . But an augmentation in each of sV , B′  and K  leads to a corresponding 

increase in Q . Also, a rise in each of B  and 0ε  causes Q  to rise for 

relatively smaller values of t  and then leads Q  to fall for comparatively larger 

values of t . This is attributable to the periodic nature of the body acceleration and 

the pulsatile nature of the pressure gradient. 

The effects of the quantities M , sV , β , , ,B B ω′ , 0ε , sd and K  on the 

dimensionless effective viscosity Eµ  against time t  are depicted in the Figures 

7, 12 and 13. Clearly, Eµ  exhibits a growth with a rise in each of M , β  and ω . 

However, an increase in each of sV , B′ , K  and sd  leads to a fall in Eµ . 

Moreover, an augmentation in B  causes Eµ  to decrease for smaller values of 

t  and then leads to an increase for relatively larger values of t . This is due to the 

periodic body acceleration and the pulsatile pressure gradient. Furthermore, a 

growth in 0ε  causes Eµ  to increase for smaller values of t  and then leads to a 

decrease for moderate values of t . Thereafter, for comparatively larger values of 

t , Eµ  again registers a growth as 0ε  increases. This is due to the pulsatile 
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nature of the pressure gradient. 

 

 
Schematic figure of an inclined stenosed artery with azimuthal magnetic field 
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Figure 1: Velocity u  against r , under the effect of M  and sV  for K →∞  
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Figure 2: Velocity u  against r , under the effect of t  and β  for K →∞  
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Figure 3: Velocity u  against r , under the effect of , ,B B ω′  and 0ε  for 
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Figure 4: Velocity u  against r , under the effect of K  for 3, 0.8,M B= =  
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Figure 5: Shear stress τ  against t , under the effect of K  for 0.04,sV =  

0.25,sd = 0 0.8, 0.8,Bε = = 0.5,B′ = , 3
4

Mπω == , 8
πβ =  

0

0,2

0,4

0,6

0,8

1

1,2

0 0,1 0,3 0,5 0,7 0,9375

u

r

1K =5K =

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,3 0,6 1 1,5 2

τ

t

1K =
10K =



N. Ahmed, D. P. Barua and D. J. Bhattacharyya 17  

 
  Figure 6: Flow rate Q  against t , under the effect of K  for 0.04,sV =   
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 Figure 7: Effective viscosity Eµ  against t , under the effect of K  for  
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Figure 8: Shear stress τ  against t , under the effect of , ,sM V β  and sd  for  
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Figure 9:  Shear stress τ  against t , under the effect of , ,B B ω′  and 0ε  for  
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Figure 10: Flow rate Q  against t , under the effect of , ,sM V β  and sd  for  

         0 0.8, 0.8,Bε = = 0.5,B′ = ,
4
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Figure 11: Flow rate Q  against t , under the effect of , ,B B ω′  and 0ε  for  

         3, 0.04,sM V= = 0.25,sd = ,
8
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Figure 12: Effective viscosity Eµ  against t , under the effect of , ,sM V β , sd   

         for 0 0.8, 0.8,Bε = = 0.5,B′ = ,
4
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Figure 13: Variation of effective viscosity Eµ  against t , under the effect of  

         , ,B B ω′ , 0ε  for 3, 0.04,sM V= = 0.25,sd = ,
8

Kπβ →∞=  

 

0

0,5

1

1,5

2

2,5

3

0 0,3 0,6 1 1,5 2

Eµ

t

0

0

0

0

0

S1: = 0.8, = 0.5, = 0 84
S2: =1, = 0.5, = 0 84
S3: = 0.8, =1.5, = 0 84
S4: = 0.8, = 0.5, = 0 89
S5: = 0.8, = 0.5, = 1 54

B B , .

B B , .

B B , .

B B , .

B B , .

πω ε

πω ε

πω ε

πω ε

πω ε

′ =

′ =

′ =

′ =

′ =

S2

S5

S1

S3

S4



24                     MHD pulsatile slip flow of blood through porous medium … 

5  Conclusion 

In view of the above flow model and the subsequent observations, we arrive 

at the following conclusions: 

[5.1]  For this inclined artery, the imposition of the magnetic field causes a 

decrease in each of axial velocity of blood, wall shear stress and the 

volumetric flow rate. But the effective viscosity of blood rises as the 

magnetic field increases. This shows that the applied azimuthal magnetic has 

considerable scope in the field of treating cardiovascular diseases resulting 

from stenosis. The use of an azimuthal magnetic field can aid in effectively 

controlling the blood velocity and minimizing the large shear stress on the 

stenosed arterial wall. The axial velocity profiles are parabolic in shape. 

[5.2]  In case of this inclined artery, the imposition of the slip velocity leads to a 

growth in each of axial velocity of blood and the volumetric flow rate. Thus, 

the blood flow rate is enhanced. But, the wall shear stress and the effective 

viscosity decrease with the imposition of the slip velocity. Hence, slip 

inducing medical drugs may be beneficial in effectively controlling the wall 

shear stress and the effective viscosity of blood in a stenosed artery. 

[5.3]  As the angle of inclination increases, the blood velocity, the wall shear 

stress and the volumetric flow rate decrease whereas the effective viscosity 

increases. 

[5.4]  In this inclined artery, a rise in the permeability of the medium causes each 

of axial blood velocity, wall shear stress and the volumetric flow rate to 

increase and the effective viscosity to decrease. In certain pathological 

conditions, the distribution of fatty cholesterol and artery-clogging blood 

clots in the lumen of the coronary artery may be represented by a fictitious 

porous medium. Therefore, an augmentation in the permeability of such 

porous media can enhance the blood flow rate in a stenosed artery. This may 

be achieved through the development of proper medical procedures and by 
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developing medical drugs that enhance the permeability in a stenosed / 

clogged artery. 

[5.5]  In the inclined artery, a growth in the height of arterial stenosis causes a 

corresponding decrease in each of wall shear stress at the stenosed region of 

the arterial wall, blood flow rate and the effective viscosity. Hence, the blood 

flow rate in the stenosed artery may be enhanced by reducing the height of 

stenosis i.e. by unblocking clogged arteries. This again calls for developing 

suitable medical procedures and medical drugs. 

[5.6]  As B  (relative effectiveness of the periodic body acceleration to the 

pulsatile pressure gradient) rises, the axial blood flow velocity decreases. But 

the wall shear stress and the volumetric flow rate initially increase and then 

again decrease, as B  increases. However, the effective viscosity initially 

drops and then again rises, with the augmentation in B . The fluctuating 

trends in case of shear stress, the flow rate and the effective viscosity are 

attributable to the periodic body acceleration and the pulsatile pressure 

gradient. Patients with cardiovascular problems should avoid situations 

demanding excessive body accelerations. 

[5.7]  Each of axial blood velocity, shear stress and blood flow rate exhibits a 

growth whereas the effective viscosity registers a drop as B′  (relative 

effectiveness of body force per unit volume of blood to the pulsatile pressure 

gradient) increases. Therefore, an increase in the total blood volume may lead 

to increased arterial wall shear stress. 

[5.8]  Each of axial blood velocity, shear stress and blood flow rate registers a fall 

whereas the effective viscosity exhibits a rise with the rise in ω  (relative 

effectiveness of the frequency of body acceleration to the pulse rate 

frequency). 

[5.9]  A rise in 0ε  (relative effectiveness of the amplitude of the oscillatory part 

of pressure gradient to the steady state pressure gradient) leads to an 

augmentation in axial blood velocity and the shear stress. On the other hand, 
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due to a rise in 0ε , the volumetric flow rate and the effective viscosity 

exhibit an increasing and a decreasing trend versus time. This is due to the 

pulsatile nature of the pressure gradient. 

It may be noted that the above results and the ensuing conclusions are presented 

under the selected range of data. 
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