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1 Introduction  

Consider the second-order Hamiltonian system 

( ) ( ) ( , ) ( ),
(0) ( ) (0) ( ) 0.

u t Au t F t u h t
u u T u u T

+ −∇ =
 − = − =



 

         [ ]Tt ,0∈ ．                      (1) 

where A is a ( NN × )-symmetric matrix , 1([0, ], )Nh L T R∈ , F(t,.) is continuously 

differentiable for a.e. [ ]Tt ,0∈  and F(.,u) is measurable on [ ]T,0  for each 

NRu∈  

F: RRT N →×],0[  satisfies the following assumption: 

(A) ： ),( xtF  is measurable in t  for every NRx∈  and continuously 

differentiable in x  for  a.e. [ ]Tt ,0∈ , and there exist ],[ ++∈ RRca , 

)],,0([1 +∈ RTLb  

such that 

)()(),(),( tbxaxtFxtF ≤∇+ ． 

Under assumption (A), the existence of periodic solutions is investigated for 

the problem (1) when 0)( =tA , 0)( =th (see[1-4][6-13][15]). Many solvability 

conditions are given, such as the boundedness condition (see[8]), the coercivity 

conditions (see[10]), the convexity condition (see[11]), the sub additive condition 

(see[12]), the periodicity condition (see[15]). 

   In the case IktA 22)( ω= , 0)( =th , where k  is a nonnegative integer, 

T
πω 2

=  and I  is the unit matrix of order N, it has been proved by Mawhin and 

Willem in [7] that problem (1) has at least one solution under the condition that  
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)(),( tgxtF ≤∇  

for some ),0(1 TLg ∈ , Rx∈∀ , and a.e. ],0[ Tt ∈ . When 

∫ ∞→+
T

dttmbtmatF
0

)sincos,( ωω  as ∞→),( ba  in NR 2 . 

   Tang in [9] consider problem (1), where 0=A , 0)( =th , under the sublinear 

nonlinearity condition, that is, );,0(, 1 +∈∃ RTLgf  [ )1,0∈α , such that 

)()(),( tgxtfxtF +≤∇ α . 

for all Rx∈ , and a.e. ],0[ Tt ∈ . The author proved that problem (1) has at least 

one solution when 

∫ +∞→− T
dtxtFx

0

2 ),(α  as ∞→x  in NR . 

Han proved the problem (1) in [14], where IktA 22)( ω= , 0)( =th , has at 

least one solution under the sublinear nonlinearity condition when 

        ∫ ∞→+− T
dttmbtmatFba

0

2 )sincos,(),( ωωα  as ∞→x  in NR . 

Tang proved the problem (1) in [5], where )(tA  is a continuous symmetric 

matrix of order N , 0)( =th , has at least one solution. 

In the present paper, 0h ≠  instead of 0h =  is considered, and A  is a 

)( NN × -symmetric , which is more general than the previous condition. 

Denote that 

(i)suppose }0{)( =∈= AxRxAN N , then 1)(dim ≥= mAN , and 

)(4
2

22

A
T

k δπ
∉ ; 

(ii) },,{)( 21 mspanAN ααα =  mj ,,2,1 =  ∫ =><
T

j dtth
0

0),( α ; 
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(iii) NRx∈∀  ..ea  ],0[ tt∈  ∫ −∞→
− T

dtxtFx
0

2
),(

α
 as  ∞→x  ( ]1,0∈α . 

Set 1
TH  be the Hilbert space, the inner product can be defined as follows 

∫ ∫ ><+><>=<
T T

dttvtudttvtuvu
0 0

)(),()(),(,  . 

Denote the norm by u . It follows from assumption (A) that the functional 

ϕ on 1
TH given by 

∫ ∫ ∫∫ ><++><−=
T T TT

dtuhdtutFdtuAudttuu
0 0 00

2 ,),(,
2
1)(

2
1)( ϕ . 

It is well known that the critical points ofϕ are the solutions of the problem (1). 

 

 

2 Main results and proof 

In this section , main results are given by using Saddle Point Theorem.  

 

 

2.1 Properties 

Theorem 2.1.1：Suppose that ),()(),( xtHxGxtF +=  Satisfying assumption (A) 

and (i), (ii), (iii).There exists 2

24
T

r π
−< , );,0(, 1 +∈ RTLgf , and [ )1,0∈α  such 

that 

2)),()(( yxryxyGxG −−≥−∇−∇                                    (2) 

for all NRyx ∈,  and 
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)()(),( tgxtfxtH +≤∇ α                                           (3) 

for all NRx∈  and  a.e. [ ]Tt ,0∈ . Assume that there exists 0≥M , 0≥N , 

such that  

NyxMyGxG +−≤∇−∇ )()( .                                     (4) 

for all NRyx ∈, . Then problem (1) has at least one solution in 1
TH . 

 

      

Theorem 2.1.2：Suppose that ),()(),( xtHxGxtF +=  satisfying assumptions (A) 

(i), (ii), (iii) and (2), and there exist ),( RRCB N∈ , 

such that 

)()()( yxByGxG −≤∇−∇ .                                         (5) 

for all NRyx ∈, . Assume that there exists );,0(1 +∈ RTLg  such that 

)(),( tgxtH ≤∇ .                                                  (6) 

for all NRx∈  and  a.e. [ ]Tt ,0∈ . Then problem (1) has at least one solution in 

1
TH . 

 

 

2.2 Proof of theorem 

   For 1
THu∈ , let ∫=

T
dttu

T
u

0
)(1  and )()()(~ tututu −= . The one has 

       ∫≤
∞

T
dttuTu

0

22 )(
12

~
        (Sobolev inequality) . 

and 
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       ∫∫ ≤
TT

dttuTtu
0

2
2

22

0
)(

4
)(~



π
   (Wirtinger inequality) .  

By counting, it can be obtained that 

dtvhvutFvAuvuvu
T

),),,(,,(),(
0

><+>∇<+><−><>=′< ∫ ϕ . 

let ∫ ∫ ><−=
T T

dtuAudttuuq
0 0

2 ,
2
1)(

2
1)(   

        >−<=>+<−= ∫ uuKIdtutuIAu
T

,)(
2
1),()(

2
1

2
1

0

2 . 

where 11: TT HHK →  is the linear self-ad joint operator defined, using Riesz 

representation theorem, by 

∫ >=<>+<
T

vKudttvtuIA
0

,)(),()(    

),( 1
THvu ∈ . The compact imbedding of 1

TH  into )],,0([ NRTC  implies that K  

is compact. By classical spectral theory, 1
TH  can be decomposed into the 

orthogonal sum of invariant subspaces for KI −   

+− ⊕⊕= HHHHT
01  

where )(0 NINH −=  and +H  and −H  are such that, for some 0>δ , 

2

2
)( uuq δ

−≤   if −∈Hu  

2

2
)( uuq δ
≥    if +∈Hu  

that is  
2

2
)( uuq δ
≥   if 1

THu∈ . 

 

2.2.1Proof of Theorem 1. 

Step 1.  We prove that ϕ  satisfies the (PS) condition. 
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Suppose that }{ nu  is a (PS) sequence for ϕ ; that is, 0)( →′ nuϕ as ∞→n  

and )}({ nuϕ  is bounded.  

From Wirting’s inequality that  

2
1

0

22
1

2

2
2
1

0

2 ))(()1
4

(~))(( ∫∫ +≤≤
T

n

T
dttuTudttu 

π
 .                         (7) 

Combining (3) and Sobolev’s inequality that  

∫ −
T

dtutHtutH
0

)),())(,((  

= ∫ ∫ >+∇<
T

dsdtuusutH
0

1

0
~),~,(  

∫ ∫∫ ∫ ++≤
TT

dsdttutgdsdttuusutf
0

1

00

1

0
)(~)()(~~)( α  

∫ ∫∫ ++≤
TT

dsdttutgdttuuutf
0

1

00
)(~)()(~)~)((2 αα  

∫ ∫∞∞∞
++≤

T T
dttgudttfuuu

0 0
)(~)(~)(2 αα  

2 2
2

2

2
2 12

2 2 0 0 0

3(4 )
4

4 ( ( ) ) 2 ( ) ( )
3(4 )

T T T

rT u
T

T u f t dt u f t dt u g t dt
rT

α α

π
π
π

π

∞

+

∞ ∞

−
≤

+ + +
− ∫ ∫ ∫



 

         

1 12 2 22 2 22 2
1 2 32 0 0 0

4 ( ) ( ( ) ) ( ( ) ) (8)
16

T T TrT u t dt c u c u t dt c u t dt
ααπ

π

+−
≤ + + +∫ ∫ ∫  

for all THu 1∈  and some positive constants 1c  2c  and 3c . 

It follows from (2) and Writinger’s inequality, it can be obtained that  

dtuGtuG
T

∫ −
0

))())(((  

= ∫ ∫ +∇
T

dsdttutusuG
0

1

0
))(~)),(~((  

= ∫ ∫ ∇−+∇
T

dsdttuuGtusuG
0

0

1
))(~),())(~((  
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= ∫ ∫ ∇−+∇
T

dsdttusuGtusuG
s0

0

1
))(~),())(~((1  

∫ ∫ ∫−≥−≥
T T

dtturTdsdtturs
0

0

1 0

2
2

2
22 )(

8
))(~( 

π
,                 (9) 

for all THu 1∈ . Hence we obtain 

∫ >∇<
T

nn dttututH
0

)(~)),(,(  

2
1

0

2
3

2
1

0

2
2

2
10

2
2

22

))(())(()(
16

4
∫∫∫ +++

−
≤

+ T

n

T

nn

T

n dttucdttucucdtturT


α
α

π
π . 

and 

∫ ∫−≥>∇<
T T

nnn dtturTdttutuG
0 0

2
2

2

)(
8

)(~)),(( 

π
, 

for all n. Hence we have  

>′<≥ nnn uuu ~),(~ ϕ  

= ∫ ><+>∇<+><−><
T

nnnnnnn dtuhuutFuAuuu
0

)~,~),,(,~,( 

  

= ∫ ∫∫ ∇+><−
T T

nnn

T

n dttutuGdtuAudttu
0 00

2 ))(~)),(((~,)(  

             ∫ ∇+
T

nn dttututH
0

))(~)),(,(( ∫ ><+
T

n dttuh
0

)(~,  

∫∫ ∫ ><+><−≥
T

n

T T

n dttuhdtuAudttu
00 0

2
)(~,~,)(~

  

             ∫∫ ∇+∇−
T

nn

T

nn dttutuGdttututH
00

))(~),((())(~)),(,((  

∫ −
−

−+≥
T

nnnLn ucdtturTtuhu
0

2
1

2
2

22
2 )(

16
4)(~~

2
1 α

π
πδ   

             ∫∫∫ −−−
+

T

n

T

n

T

n dtturTdttucdttuc
0

2
2

2
2
1

0

2
3

2
1

0

2
2 )(

8
))(())(( 

π

α

.      

∫∫∫ −
−

−+≥
T

nn

T

L

T
ucdtturTdttuhdttu

0

2
1

2
2

22
2
1

0

2

0

2 )(
16

4))(()(
2
1 α

π
πδ   
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∫∫∫ −−−
+

T

n

T

n

T

n dtturTdttucdttuc
0

2
2

2
2
1

0

2
3

2
1

0

2
2 )(

8
))(())(( 

π

α

 

    2
1

0

2
3

2
1

0

2
2

2
10

2
2

22

))(())(()()
16

4
2
1( dttucdttucucdtturT T

n

TT

∫∫∫ ′−−−
+

−≥
+



α
α

π
πδ    

    
1 1

2 2 2 22 2
1 2 30 0 0

1 ( ) ( ( ) ) ( ( ) )
2

T T T

nu t dt c u c u t dt c u t dt
α

αδ
+

′≥ − − −∫ ∫ ∫          (10)        

for large n . By (7) and (10), it can be obtained that  

4
2
1

0

2 ))(( cdttuuc
T

nn −≥ ∫ 

α .                                         (11) 

for some 0>c , 04 >c , and all large n . 

Combimng (4), Wirtinger’s inequality and Cauchy-Schwarz inequality that  

∫ −
t

nn dtuGtuG
0

))())(((  

= ∫ ∫ >+∇<
T

nnn dsdttutusuG
0

1

0
)(~)),(~(  

= ∫ ∫ >∇−+∇<
T

nnnn dsdttuuGtusuG
0

1

0
)(~),())(~(  

= ∫ ∫ >∇−+∇<
T

nnnn dsdttusuGtusuG
s0

1

0
)(~),())(~(1  

∫ ∫ +≤
T

nn dsdttuNtusM
0

1

0

2 ))(~)(~(  

2
1

2

0

2

0
))(~()(~

2
dttuTNdttuM

n

T

n

T

∫∫ +≤  

2
1

0

2

0

2
2

2

))((
2

)(
8 ∫∫ +≤

T

n

T

n dttuTNTdttuMT


ππ
 .                  (12) 

for all n . From the boundedness of )}({ nuϕ , (8),  (11) and (12) that 

)(5 nuc ϕ≤ = ∫∫∫∫ ><++><−
T

n

T

n

T

nn

T

n dtuhdtutFdtuAudttu
0000

2 ,),(,
2
1)(

2
1

  

       = dtuGtuGdtuAudttu
T

nn

T

nn

T

n ∫∫∫ −+><−
000

2 ))())(((,
2
1)(

2
1
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        ∫∫∫ ><++−+
T

n

T

n

T

nn dtuhdtutFdtutHtutH
000

,),()),())(,((  

2
1

0

2
2

2
10

2
2

222
2 ))(()(

16
212

2

+

∫∫ ++
+−

+−≤
α

α

π
πδ dttucucdttuMTrTu

T

nn

T

nn 

              ∫∫ ++
+

+
T

nnL

T

n dtutFuhdttucTNT
0

2
1

0

23 ),())((
2

2


π
π  

2
1

0

2
2

2
10

2
2

2222

))(()(
16

2128 +

∫∫ ++
+−+−

≤
α

α

π
πδπ dttucucdttuMTrT T

nn

T

n 

               ∫∫ +′+
+

+
T

nn

T

n dtutFucdttucTNT
0

2
1

0

23 ),())((
2

2


π
π . 

for all large n  and some constant 5c , as −∈Hu . 

It follows from the boundedness of )}({ nuϕ , (8),  (11) and (9) that 

)(6 nuc ϕ≥ = dtuGtuGdtuAudttu
T

nn

T

nn

T

n ∫∫∫ −+><−
000

2 ))())(((,
2
1)(

2
1

  

               ∫∫∫ ><++−+
T

n

T

n

T

nn dtuhdtutFdtutHtutH
000

,),()),())(,((  

2
1

03
2

1

020

2
2

22

))(())(()()
16

4
2
1( ∫∫∫ −−

+
−≥

+ TTT
dttucdttucdtturT



α

π
πδ  

∫+′+
T

nn dtutFuc
0

),( . 

for all large n  and some constant 6c , as +∈Hu . 

Hence }{ nu  is bounded implied by (iii). In fact, if not, we may assume that 

∞→nu  as ∞→n  without loss of generality. 

Then from (9) we have  

−∞>∫
−

∞→
dtutFu

T

nnn 0

2 ),(inflim α   

which contradicts  
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−∞→∫
− dtxtFx

T

0

2 ),(α  . 

Since 1
TH  is self-reflexive，there exists a subsequence of }{ nu  which weakly 

converge u . 

In view of 0)( →′ nuϕ  and }{ uun −  bounded, one has 0))(( →−′ uuu nϕ  

and, hence 0),()( >→−′−′< uuuu nn ϕϕ  )( ∞→n which implies that 

02 →−
Ln uu   

According to Wirtinger’s inquality, we have 01 →−
THn uu   as ∞→n . 

In 1
TH , uun → . Thenϕ satisfies the (PS) condition.. 

Step 2. Some properities of ϕ  are discussed on +⊕ HH 0 . 

Combining (8) and (9) , it can be obtained 

∫∫ −≥−
TT

dtturTdtGtuG
0

2
2

2

0
)(

8
))0())((( 

π
 

and 

dtHtutH
T

∫ −
0

))0())(,((  

2
1

0

2
3

2
1

0

2
20

2
2

22

))(())(()(
16

4
∫∫∫ ++

−
≤

+ TTT
dttucdttucdtturT



α

π
π . 

If ++ ⊕∈+= HHuuu 00 , then 

∫ ∫ ><++>−<= +++ T T
dtuhdtutFuuKIu

0 0
,),(,)(

2
1)(ϕ      

     ∫∫ ><+++≥ ++ TT

H
dtuhdtutHuGu

T 00

2
,)),()((

2
1

1δ  
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2

0

0 0 0

1 ( )
2

( ( ) (0)) ( ( , ) (0)) ,

T

T T T

u t dt

G u G dt H t u H dt h u dt

δ

+

≥

+ − + − + < >

∫

∫ ∫ ∫



2
2 2

20 0

1 12 2
2 2 22 2

2 32 0 0 0

1 ( ) ( )
2 8

4 ( ) ( ( ) ) ( ( ) )
16

T T

T T T

rTu t dt u t dt

rT u t dt c u t dt c u t dt
α

δ
π

π
π

+

≥ −

−
− − −

∫ ∫

∫ ∫ ∫

 

  

1 12 2 2
2 2 2

2 32 0 0 0

8 4 ( ) ( ( ) ) ( ( ) )
16

T T TrT u t dt c u t dt c u t dt
απ δ π

π

+− −
= − −∫ ∫ ∫   . 

and hence ϕ  is bounded below on ++ HH 0 .Hence, if 0=−H ,ϕ  is bounded 

below on TH1  and has a minimum by Proposition 4.4 in [1]. We consider 

0dim >−H . 

Step 3. Some properities of ϕ  are discussed on −H . 

−− ∈= Huu , then 

∫ ∫ ><++>−<=
T T

dtuhdtutFuuKIu
0 0

,),(,)(
2
1)(ϕ  

2
1

0

2
3

2
1

0

2
22

22

0

2
2

2

0

2 ))(())((
16

4)(
8

)(
2 ∫∫∫∫ ++

−
++−≤

+ TTTT
dttucdttucrTdtturTdttu 

α

π
π

π
δ   

= 2
1

03
2

1

020

2
2

222

))(())(()(
16

48
∫∫∫ ++

++− + TTT
dttucdttucdtturT



α

π
πδπ . 

and −∞→)(uϕ  as ∞→u  in −H . 

Step 4. Using the Saddle Point Theorem to complish the proof. 

Let 1
THX = , −− = HX , ++ ⊕= HHX 0 .  

It follows from ∞<−Xdim , there exists 0>R , such that 
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+−
<

XS R

ϕϕ infsup , 

where }{ RuXuSR =∈= −− . 

ϕ  can be proved that satisfies the all conditions of the Saddle Point Theorem. 

Then problem (1) has at least one solution in 1
TH . 

 

2.2.2Proof of Theorem 2： 

First we prove the ϕ  satisfies the (PS) condition. Suppose }{ nu  is a (PS) 

sequence for ϕ . That is )}({ nuϕ  is bounded, that is 0)( →′ nuϕ  as ∞→n  

Using (2) and (6), Sobolev’s inequality and Wiringer’s inequality. We obtain 

>′<≥ nnn uuu ~),(~ ϕ  

          = ∫ ><+>∇<+><−><
T

nnnnnnn dtuhuutFuAuuu
0

)~,~),,(,~,( 

  

          = ∫ ∫∫ ∇−∇+><−
T T

nnn

T

nn dttuuGtuGdtuAudttu
0 00

2 ))(~),())(((~,)(  

               ∫ ∫ ><+∇+
T T

nnn dttuhdttututH
0 0

)(~,))(~)),(,((  

          dtthudttgudtturdttu
T

n

T T T

nnn ∫∫ ∫ ∫ ∞∞
+−−≥

00 0 0

22 )(~)(~)(~)(
2
1

δ  

∫ ∫ ∫−−≥
T T T

nnn dttucdtturTdttu
0 0

2
1

0

2
7

2
2

2
2 ))(()(

4
)(

2
1



π
δ  

          = ∫ ∫−−
T T

nn dttucdtturT
0

2
1

0

2
7

2
2

2

))(()()
42

1( 

π
δ .                 (13) 

for large n  and some positive constant 7c . 

Since 2

24
T

r π
−< , (13) and (7) imply that  
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8
~ cun ≤ .                                       (14) 

for all n  and some positive constant 8c . 

Now it follows from the boundedness of )}({ nuϕ , (5)(6)(14) and Sobolev’s 

inequality that 

)(9 nuc ϕ≤  

        = ∫ ∫ ∫ ∫ ><++><−
T T T T

n dtuhdtutFdtuAudttu
0 0 0 0

2 ,),(,
2
1)(

2
1

  

        = ∫ ∫ ∫+><−
T T T

nn dtutFdtuAudttu
0 0 0

2 ),(,
2
1)(

2
1

  

              ∫∫ ><+−+
TT

nn dtuhdtutFtutF
00

,)),())(,((  

= ∫ ∫ ∫∫ ∇−+∇+><−
T T

nnnn

T

n dsdttuuGtusuGdtuAudttu
0 0

1

00

2 ))(~),())(~((,
2
1)(

2
1

  

               ∫ ∫ ∫ ><++∇+
T T

nnn dtuhdsdttutusutH
0

1

0 0
,))(~)),(~,((  

      ∫ ∫ ∫ ∫∞
++−≤

T T T

nnnn dsdttusBudtutFdttu
0 0 0

1

0
))(~(~),()(

2
1

δ  

            ∫ ∫∞∞ ++
T T

n dtthudttgu
0 0

)(~)(~  

       ∫ ∫∫ ++−≤
T T

nn

T

n dttucdtutFdttu
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some real constants 6c  as +∈Hu . 

So using (iii)(7)(14)(15),we obtain 11cun ≤ , 

for all n  and some positive 11c . Furthermore }{ nu  is bounded by (14). Hence 

the (PS) condition is satisfied. In a way similer to the proof of the Theorem 1, we 

can prove that ϕ  satisfies the other conditions of Saddle Point Theorem. 

Hence Theorem 2 holds, That is the problem (1) has at least one solution in TH1 . 
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