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Abstract 

Time fractional diffusion equation currently attracts attention because it is a useful 

tool to describe problems involving non-Markovian random walks. This kind of 

equation is obtained from the standard diffusion equation by replacing the first-order 

time derivative with a fractional derivative of order ( )1,0∈α . In this paper, two 

different implicit finite difference schemes for solving the time fractional diffusion 

equation with source term are presented and analyzed, where the fractional derivative 

is described in the Caputo sense. Numerical experiments illustrate the effectiveness 

and stability of these two methods respectively. Further, by using the Von Neumann 

method, the theoretical proof for stability is provided. Finally, a numerical example is 

given to compare the accuracy of the two mentioned finite difference methods. 
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1  Introduction 

As an extension of the classical integer order differential equation, fractional 

differential equation is a kind of equation which is formed by changing integer 

order derivatives in a standard differential equation into fractional order derivatives. 

It provides a valuable tool for describing materials with memory and hereditary 

properties as well as non-locality and dynamic transmission process of anomalous 

diffusion [1]. Because researching fractional differential equation has important 

scientific significance and great application prospect, so finding some effective 

methods to solve it is an actual and important problem. Various ways to solve 

fractional differential equation analytically have been proposed [2], including 

Green function method, Laplace and Fourier transform method, but most of 

fractional differential equations cannot be solved analytically. Therefore, to develop 

numerical methods for solving fractional differential equation seems to be 

necessary and important. Scholars have put forward many effective numerical 

methods : such as finite difference method, finite element method, random walk 

approach, spectral method, the decomposition method, the homotopy perturbation 

method, the integral equation method, reproducing kernel method, the variational 

iteration method and so many others[3]. In this paper, we will use finite difference 

method to examine the numerical solution of one kind of important fractional 

differential equation----time fractional diffusion equation. The diffusion equation 

describes the spread of particles from a region of higher concentration to a region of 
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lower concentration due to collisions of the molecules and Brownian motion. While 

time fractional diffusion equation is a generalization of the classical diffusion 

equation, which is obtained from the standard diffusion equation by replacing the 

first-order time derivative with a fractional derivative of orderα , with 10 << α . It 

can be used to treat sub-diffusive flow process, in which the net motion of the 

particles happens more slowly than Brownian motion [4]. 

Consider following time fractional diffusion equation with source term : 
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In view of the research objective of this paper, we investigate the current 

research status of time fractional diffusion equation with source term. We mainly 

focus on the discretization technique of time fractional derivative and stability proof 

method. Karatay et al.[6] proposed a method for solving inhomogeneous nonlocal 
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fractional diffusion equation, in which time fractional derivative is defined by 

Caputo definition. This method was based on the modified Gauss elimination 

method. It was proved using the matrix stability approach that the method was 

unconditionally stable. Lin and Xu [7] constructed and analyzed a stable and high 

order scheme to efficiently solve the same model as Karatay et al.[6], but with the 

standard initial condition. The proposed method was based on a finite difference 

scheme in time and Legendre spectral methods in space. Wei et al.[8] presented and 

analyzed an implicit scheme, which is based on a finite difference method in time 

and local discontinuous Galerkin methods in space. Al-Shibani et al.[9] discussed a 

numerical scheme based on Keller box method for one dimensional time fractional 

diffusion equation. The fractional derivative term was replaced by the 

Grünwald-Letnikov formula. Unconditional stability was shown by means of the 

Von Neumann method. Gao et al.[3] considered fractional anomalous sub-diffusion 

equations on an unbounded domain. This paper’ main contribution lies in the 

reduction of fractional differential equations on an unbounded domain by using 

artificial boundary conditions and construction of the corresponding finite 

difference scheme with the help of method of order reduction. The stability of the 

scheme were proved using the discrete energy method.  

In this paper, we will try to use two different discretization formulas to 

estimate time fractional derivative, which are cited from papers Karatay et al.[6], 

Lin and Xu [7] respectively. For the second-order space derivative in this equation, 

we will adopt the classical central difference approximation. Then using the basic 

algebra knowledge to derive two different implicit finite difference schemes, 

which are both effective for solving our problem. Among them, for the first 

scheme, it’s same with the one proposed in paper [6], but [6] considered the 

nonlocal condition and used the idea on the modified Gauss-Elimination method 
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based on matrix form, while we will consider the general case and use the algebra 

knowledge to derive the final implicit scheme. And in paper [6], authors proved 

stability using matrix stability approach, while we will use Von Neumann method. 

For the second scheme, compared with paper [7], we adopt the same formula to 

discretize time fractional derivative, but for estimating space derivative, Lin and 

Xu [7] used Legendre spectral methods, while we will use central difference 

approximation. During stability analysis, we will adopt Von Neumann method 

based on mathematical induction to give the proof according to our own cases and 

try to work out the properties about the coefficients of schemes, which will play an 

important role in proving stability. At last, we will make a comparison between the 

exact solutions and the numerical solutions given by these two methods to 

conclude which method is more accurate. 

The structure of this article is as follows: in section 2 and section 3, we 

respectively discuss two different finite difference methods for solving time 

fractional diffusion equation with source term, including their implicit schemes, 

reliability and stability proof. In section 4, numerical results are shown to compare 

the accuracy of the two mentioned methods. 

 

 

2 First Finite Difference Method for Time Fractional Diffusion 

Equation with Source Term 

2.1 Construction of finite difference scheme 

In this part, we will discuss a finite difference approximation according to the 

following ways to discretize time fractional derivative and space second order 
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derivative in time fractional diffusion equation (1) (2) (3). To do this, 

    Let tntn ∆=   ),,2,1,0( Nn = ,   where 
N
Tt =∆  is the time step. 

        xixi ∆=   ),,2,1,0( Mi = ,   where 
M
Lx =∆ is the space step. 

Suppose that ),( ni txu is the exact solution of equation (1) (2) (3) at grid point

),( ni tx , n
iu  denotes the numerical approximation to ),( ni txu . 

The time fractional derivative of orderα is discretized by using Caputo finite 

difference formula, which is a first order approximation appeared in Karatay et 

al.[6] : 
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For the spatial second derivative, central difference approximation is used: 
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Substitute (4) and (5) into equation (1) 
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The following finite difference scheme can be obtained : 
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  For the sake of simplification, let us introduce the notation : 
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So, the first implicit finite difference scheme we’ve derived to solve time 

fractional diffusion equation (1) (2) (3) can be written as follows : 
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where  

      ,1,,2,1 −= Mi   Nn ,3,2= .                             (10) 

 

 

2.2 Numerical experiments for effectiveness  

In this part, we shall illustrate several experiments to show the effectiveness 

and stability of the method presented above. We will check the agreement behavior 

between numerical solution and exact solution by using fixed space step x∆ and 

different time step t∆ . 

    Let us consider following time fractional diffusion equation [10]:
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with the initial condition  

0)0,( =xu ,     10 ≤≤ x .                                        (12)             

and the boundary conditions 

2),0( ttu = ,    2),1( ettu = ,  Tt ≤≤0 .                             (13) 

    The exact solution of this fractional diffusion equation is given by  

                        xettxu 2),( = .                           (14) 

 

  

 
   

Figure 1 :  Comparison between numerical solution and exact solution at 

41025.1 −×=T 1.0=∆x , 5105.2 −×=∆t , 
51025.1

2
1 −×=∆t , 510625.0

4
1 −×=∆t  
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From the figures above, we can see that a relatively good agreement can be 

achieved between numerical solution and exact solution for this particular example. 

This means this method is feasible for the case we consider. In addition, from the 

error results under different time step, we observe that our computation is stable.  

 

 

2.3 Theoretical proof for stability  

Lemma 2.3.1  The coefficients 
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Theorem 2.3.1 Implicit finite difference scheme defined by (9) (10) is 

unconditionally stable. 
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When 2≥n :    
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 Here we use Von Neumann method and apply mathematical induction to 

investigate the stability of the first finite difference scheme (9) (10). 

To do this, we suppose that n
iε can be expressed in the form 
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Hence, for all θ,n , we have  1≤nλ . Therefore, according to Von Neumann’s 

criterion for stability, the implicit finite difference scheme defined by (9) (10) is 

unconditionally stable. 

 

 

3  Second Finite Difference Method for Time Fractional    

   Diffusion Equation with Source Term 

3.1 Construction of finite difference scheme 

In this part, we will introduce another finite difference approximation to solve 

this time fractional diffusion equation (1) (2) (3).Similarly, 

Let   tntn ∆=    ),2,1,0( Nn = , where 
N
Tt =∆  is the time step. 
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     xixi ∆=    ),2,1,0( Mi = , where 
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Lx =∆ is the space step. 

n
iu  denotes the numerical approximation to the exact solution ),( ni txu . 

Use the following formula to discretize the time fractional derivative, which is 

cited from Lin & Xu [7] : 
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    So, the second implicit finite difference scheme we’ve derived to solve time 

fractional diffusion equation (1) (2) (3) can be written as follows: 
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3.2 Numerical experiments for effectiveness  

In this part, we will still use the example (Takaci et al.[10]) mentioned in 

section 2 (11) ~ (14) to check the effectiveness of the second method in the same 

way. 

  

Figure 2 : Comparison of the numerical solution and the exact solution for 

1.0=∆x 5105.2 −×=∆t , 
51025.1

2
1 −×=∆t , 

510625.0
4
1 −×=∆t ,  at time 

41025.1 −×=T  

 

From these figures, we can draw the conclusion that the second scheme can 

also be accepted to solve this particular example. 

 

    

3.3 Theoretical proof for stability 

Lemma 3.3.1  The coefficients αα −− −+= 11)1( jjwj  ( ,2,1,0=j ) satisfy : 

(1) 10 =w , 0>jw ,  ,2,1=j ; 

(2) 01 >− +jj ww ,    .,2,1,0 =j   
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Theorem 3.3.1 Implicit finite difference scheme defined by (27) (28) is 

unconditionally stable. 

Proof : The investigation about stability is completed by Von Neumann method 

utilizing mathematical induction.  
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    Therefore, for all θ,n , we have 1≤nλ . 

    According to the Von Neumann criteria about stability, we can get the 

conclusion that the implicit finite difference scheme (27) (28) is unconditionally 

stable. 
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4 Accuracy comparison of two methods 

In this section, we will construct a comparison of the accuracy of the two 

implicit finite difference schemes discussed in section 2 and section 3 respectively. 

We will still use the previous example to compare exact solution and numerical 

solutions obtained using these two different technique to support the theoretical 

statements. 

 

 

4.1 Numerical experiment 

Remark 4.1.1  The accuracy of the first finite difference scheme is )( 2xo ∆  in the 

spatial grid size and )( to ∆ in the fractional time step [6].  

Remark 4.1.2  The accuracy of the second finite difference scheme is )( 2xo ∆  in  

 

Table 1 : Relative errors of two methods at 41025.1 −×=T , 

1.0=∆x , 510625.0 −×=∆t
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the spatial grid size and )( 2 α−∆to in the fractional time step [7]. 

This means that in theory, the second method will be more accurate than the 

first one. In fact, the following numerical experiment [10] supports this conclusion. 

Clearly, the second method’s solution is more accurate than the first one. 

 

 

5 Conclusions 

In this paper, we have presented two methods for solving time fractional 

diffusion equation with source term. For the second order spatial derivative term in 

this equation, both methods adopted central difference approximation with second 

order accuracy. Whilst, for the time fractional derivative term, two different 

formulae were used to discretize it in these two methods. The first formula is based 

on the relationship between Caputo fractional derivative and Grünwald-Litnikov 

fractional derivative, derived from standard Grünwald-Litnikov formula, which can 

achieve first order accuracy in time. The second formula is derived directly from the 

definition of Caputo fractional derivative by using numerical integration method, 

which can achieve ( 221 <−< α ) order accuracy in time. Based on these two 

different discrete formulae, two implicit finite difference schemes were derived to 

solve our target equation. Numerical experimental work examined that these two 

schemes can both effectively solve our equation, while the second scheme is 

preferable than the first one. With the aid of mathematical induction, by Von 

Neumann method, we proved that these two methods are both unconditionally 

stable. 
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