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1 Introduction

The inverse Weibull distribution has been used to model degradation of

mechanical components such as pistons, crankshafts of diesel engines, as well

as breakdown of insulating fluid to mention just a few areas. The usefulness

and applications of inverse Weibull (IW) distribution in various areas includ-

ing reliability, and branching processes can be seen in Keller and Kamath

(1982)and in references therein. The authors used the distribution to describe

the degradation phenomena of mechanical components such as pistons, crank

shaft of diesel engines. The model also provides a reasonably good fit to data

on times to breakdown of an insulating fluid, subject to constant tension, Nel-

son (1982). Additional results on the inverse Weibull distribution including

work on reliability and tolerance limits, Bayes 2-sample prediction, and maxi-

mum likelihood and least squares estimation are given by Calabria and Pulcini

(1989, 1994, 1990). In this note, we generalize the inverse Weibull distribution

via the gamma distribution function. There are several generalizations of dis-

tributions including those of Eugene et al. (2002) dealing with the beta-normal

distribution, as well results on the moments of the beta-normal distribution

given by Gupta and Nadarajah (2004). Famoye et al. (2005) discussed and

presented results on the beta-Weibull distribution. Kong and Sepanski (2007)

developed the beta-gamma distribution. Results on the length-biased inverse

Weibull can be seen in Kersey and Oluyede (2012). Additional results on the

generalizations of the inverse Weibull and related distributions with applica-

tions are given by Oluyede and Yang (2014).

In this note, we present and analyze the gamma-inverse Weibull (GIW)

distribution. First, we discuss some properties of the inverse Weibull distribu-

tion. The inverse Weibull (IW) cumulative distribution function (cdf) is given

by

F (x; α, β) = exp

[
− (α(x− x0))

−β

]
, x ≥ 0, α > 0, β > 0, (1)

where α, x0 and β are the scale, location and shape parameters, respectively.

Often the parameter x0 is called the minimum life or guarantee time. When

α = 1 and x = x0 + α, then F (α + x0; 1, β) = F (α + x0; 1) = e−1 = 0.3679.

This value is in fact the characteristic life of the distribution. In what follows,

we assume that x0 = 0, and the inverse Weibull cdf becomes

F (x; α, β) = exp[−(αx)−β], x ≥ 0, α > 0, β > 0. (2)
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The corresponding inverse Weibull probability density function (pdf) is given

by

f(x; α, β) = βα−βx−β−1exp(−(αx)−β), x ≥ 0, α > 0, β > 0. (3)

Note that when α = 1, we have the Fréchet distribution function. Also, for

the inverse Weibull pdf, we have the following relationship:

xf(x; α, β) = βF (x; α, β)(− ln(F (x; α, β)), x ≥ 0, α > 0, β > 0. (4)

Zografos and Balakrishnan (2009), proposed the gamma-generated family.

Based on a baseline continuous distribution F (x) with survival function F (x) =

1− F (x) and pdf f(x), they defined the gamma-generated cdf and pdf as

K(x) =
1

Γ(δ)

∫ − log F (x)

0

tδ−1e−tdt, x ∈ R, δ > 0, (5)

and

k(x) =
1

Γ(δ)
[− log(F (x))]δ−1f(x), (6)

respectively, where Γ(δ) is the gamma function. Ristić and Balakrishnan

(2011) proposed an alternative gamma-generator defined by the cdf and pdf

given by

G(x) = 1− 1

Γ(δ)

∫ − log F (x)

0

tδ−1e−tdt, x ∈ R, δ > 0, (7)

and

g(x) =
1

Γ(δ)
[− log(F (x))]δ−1f(x), (8)

respectively. We will work with the family of distributions defined by Ristić

and Balakrishnan (2011). The motivations for this new family of distribu-

tions were given in Ristić and Balakrishnan (2011), that is for n ∈ N, the

last equation above is the pdf of the nth lower record value of a sequence of

i.i.d. variables from a population with density f(x). Ristić and Balakrishnan

(2011) considered the exponentiated exponential (EE) distribution with cdf

F (x) = (1 − e−λx)α, where α > 0 and λ > 0, (see Gupta and Kundu (1999)

for details) in equation (7), obtained and studied the gamma-exponentiated

exponential (GEE) model. In this note, we obtain a natural extension for

the inverse Weibull distribution, which we called the gamma-inverse Weibull

(GIW) distribution.
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In section 2, we present the gamma-inverse Weibull (GIW) distribution

and its sub models. This section also contains further analysis of the distribu-

tion including the quantile function, shapes and stochastic orders, hazard and

reverse hazard functions. The moments and moment generating function are

given in section 3. Mean deviations, Lorenz and Bonferroni curves are given in

section 4. Section 5 contains some additional useful results including entropies.

In section 6, results on the estimation of the parameters of the GIW distribu-

tion are presented. Applications are given in section 7, followed by concluding

remarks.

2 GIW Distribution and Sub-models

In this section, the GIW distribution and some of its sub-models are pre-

sented. The mode, quantile function, hazard and reverse hazard functions are

also presented. Let λ = α−β and consider the inverse Weibull (IW) distribution

given by

F
IW

(x; λ, β) = exp[−λx−β], x ≥ 0, λ > 0, β > 0. (9)

Inserting the IW distribution in equation (7) gives the GIW survival function

G(x) =
1

Γ(δ)

∫ − log(exp[−λx−β ])

0

tδ−1e−tdt =
γ(− log(exp[−λx−β]), δ)

Γ(δ)
, (10)

for x > 0, λ > 0, β > 0, δ > 0, where γ(x, δ) =
∫ x

0
xδ−1e−tdt is the lower

incomplete gamma function. The cdf of the GIW distribution is given by

G(x) = 1−G(x). The corresponding pdf is given by

g
GIW

(x) =
βx−1

Γ(δ)
[λx−β]δ exp[−λx−β], (11)

for x > 0, λ > 0, β > 0, δ > 0. If a random variable X has the density above,

we write X ∼ GIW (β, λ, δ). ¿From here on we will set g
GIW

(x) = g(x).

2.1 Shapes and Stochastic Orders

In this section, we present the mode and discuss the shape, as well as

stochastic orders of the GIW distribution. To obtain the mode, we solve the
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equation d ln(g(x))
dx

= 0, for x. Note that

ln(g(x)) = ln(β) + δ ln(λ)− (βδ + 1) ln(x)− λx−β − ln(Γ(δ)),

so that the mode occurs at x0 =

(
λδ

1+βλ

) 1
β

. Note that limx→0 g(x) = 0, and

limx→∞ g(x) = 0.

Let Xi be distributed according to GIW (λ, β, δ), with cdf and pdf Gi and

gi, respectively, i = 1, 2. We say X2 is stochastically greater than X1 in likeli-

hood ratio if g2(x)/g1(x) is an increasing function of x. It is well known that

likelihood ratio order implies failure rate order which in turn implies stochastic

order, see Shaked and Shanthikumar (1994) for additional details.

• If β1 = β2 and δ1 = δ2, then X2 is stochastically greater than X1 with

respect to likelihood ratio order if and only if λ2 > λ1.

• If β1 = β2 and λ1 = λ2 then X2 is stochastically larger than X1 with

respect to likelihood ratio order if and only if δ1 > δ2.

Note that
g2(x)

g1(x)
=

β2x
−1(λ2x

−β2)δ2 exp(−λ1x
−β2)(Γ(δ2))

−1

β1x−1(λ1x−β1)δ1 exp(−λ1x−β1)(Γ(δ1))−1
.

If β1 = β2, and δ1 = δ2, then

K(x) =
λ2

λ1

exp(x−β(λ1 − λ2)),

is such that K ′(x) = λ2

λ1
exp(−x−β(λ2−λ1))βx−β−1(λ2−λ1) > 0, if and only if

λ2 − λ1 > 0. Similarly, if β1 = β2 and λ1 = λ2, then X2 is stochastically larger

than X1 with respect to likelihood ratio order if and only if δ1 > δ2.

2.2 Quantile Function

The quantile function is the solution of the equation

γ(− log(exp[−λx−β]), δ)

Γ(δ)
= 1− u,

that is, λx−β = γ−1((1− u)Γ(δ), δ) and

x = Q(u) = G−1(u) =

[
γ−1((1− u)Γ(δ), δ)

λ

]−1/β

,
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Figure 1: Graphs of GIW cdf and density

where u is uniformly distributed on the interval (0, 1).

The graphs of the cdf and pdf of the GIW for selected values of the model

parameters are given below.

2.3 GIW Sub-models

Some of the sub-models of the GIW distribution are listed below:

• When δ = 1, we have the inverse Weibull (IW) distribution.

• When λ = 1, we have the gamma-Fréchet (GF) distribution.

• When δ = λ = 1, we have the Fréchet (F) distribution.

• When β = 2, we have gamma-inverse Rayleigh (GIR) distribution.

• When β = 2, δ = 1, we have inverse Rayleigh (IR) distribution.

• When β = 1, we have the gamma-inverse exponential (GIE) distribution.

• When δ = β = 1, we get the inverse exponential (IE) distribution.

2.4 Hazard and Reverse Hazard Functions

In this section, the hazard and reverse hazard functions of the GIW dis-

tribution are presented. Let X be a continuous random variable with cdf F,
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and pdf f, then the hazard function, reverse hazard function and mean resid-

ual life functions are given by hF (x) = f(x)/F (x), τF (x) = f(x)/F (x), and

δF (x) =
∫∞

x
F (u)du/F (x) respectively. The functions hF (x), δF (x), and F (x)

are equivalent (Shaked and Shanthikumar (1994)). The hazard and reverse

hazard functions are

hG(x) =
βx−1[λx−β]δ exp[−λx−β]

γ(− log(exp[−λx−β]), δ)
,

and

τG(x) =
βx−1[λx−β]δ exp[−λx−β]

Γ(δ)− γ(− log(exp[−λx−β]), δ)

for x ≥ 0, λ > 0, β > 0, δ > 0, respectively. We apply Glaser’s (1980) Lemma

to the GIW distribution. Note that

η(x) =
−g′(x)

g(x)
= (βδ + 1)x−1 − λβx−β−1,

and η′(x) = 0 implies x0 =

(
λβ(β+1)

βδ+1

)1/β

. Consequently, there exists x0 such

that η′(x) > 0 for 0 < x < x0 and η′(x) < 0 for x > x0, so that hG(x) is upside

down bathtub (UBT) shape.

The graphs of the hazard function for four combinations of the values of

the model parameters are presented Figure 2. The plots of the hazard rate

function show various shapes including, uni-modal and upside down bathtub

shapes with four combinations of the values of the parameters. This attractive

flexibility makes the GIW hazard rate function useful and suitable for non-

monotone empirical hazard behaviors which are more likely to be encountered

or observed in real life situations.

3 Moments and Moment Generating Function

In this section, we obtain moments for the GIW distribution. The rth raw
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Figure 2: Graph of GIW Hazard Rate Function

moment is obtained as follows:

E(Xr) =

∫ ∞

0

xrg(x; β, λ, δ)dx

=
1

Γ(δ)

∫ ∞

0

xrβx−1[λx−β]δ exp[−λx−β]dx

=
λ

r
β Γ(δ − r

β
)

Γ(δ)
,

for β > r, where we have used the substitution u = λx−β in the integral. Let

Cr = Γ(δ− r
β
) and C0 = Γ(δ), then the mean, variance, coefficient of variation

(CV), coefficient of Skewness (CS) and coefficient of Kurtosis (CK) are readily

obtained. The mean and variance are given by

µ = E(X) =
λ

1
β Γ(δ − 1

β
)

Γ(δ)
=

λ
1
β C1

C0

, (20)

and

σ2 = E(X2)− [E(X)]2 =
λ

2
β [C0C2 − C2

1 ]

C2
0

,
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respectively. The coefficient of variation (CV), coefficient of skewness (CS)

and coefficient of kurtosis (CK) are given by

CV =
σ

µ
=

√
C0C2

C2
1

− 1,

CS =
E[(X − µ)3]

σ3
=

C2
0C3 − 3C0C1C2 + 2C3

1

[C0C2 − C2
1 ]3/2

and

CK =
E[(X − µ)4]

σ4
=

C3
0C4 − 4C2

0C1C3 + 6C0C
2
1C2 − 3C4

1

(C0C2 − C2
1)2

,

respectively. Recall the Taylor’s series expansion of the function etx, that

is etx =
∑∞

j=0
(tx)j

j!
, so the moment-generating function (MGF) of the GIW

distribution for |t| < 1, is given by

MX(t) = E(etX)

=
1

Γ(δ)

∞∑
j=0

tj

j!

∫ ∞

0

βxj−1[λx−β]δ exp[−λx−β]dx

=
1

Γ(δ)

∞∑
j=0

(tλ
1
β )j

j!
Γ

(
δ − j

β

)
, β > j.

4 Mean Deviations, Lorenz and Bonferroni Curves

In this section, we present the mean deviation about the mean, the mean

deviation about the median, Lorenz and Bonferroni curves. Bonferroni and

Lorenz curves are income inequality measures that are also useful and applica-

ble to other areas including reliability, demography, medicine and insurance.

The mean deviation about the mean and mean deviation about the median

are defined by

D(µ) =

∫ ∞

0

|x− µ|g(x)dx, D(M) =

∫ ∞

0

|x−M |g(x)dx,

respectively, where µ = E(X) and M = Median(X) = G−1(1/2) is the median

of G. These measures D(µ) and D(M) can be calculated using the relation-

ships:

D(µ) = 2µG(µ)− 2µ + 2

∫ ∞

µ

xg(x)dx = 2µG(µ)− 2

∫ µ

0

xg(x)dx,
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and

D(M) = −µ + 2

∫ ∞

M

xg(x)dx = µ− 2

∫ M

0

xg(x)dx.

Lorenz and Bonferroni curves are given by

L(G(x)) =

∫ x

0
tg(t)dt

E(X)
, and B(G(x)) =

L(G(x))

G(x)
,

or

L(p) =
1

µ

∫ q

0

tg(t)dt, and B(p) =
1

pµ

∫ q

0

tg(t)dt,

respectively, where q = G−1(p). Let T (x) =
∫ x

0
tg(t)dt, and set u = λt−β, then

T (x) =
λ1/β

Γ(δ)

∫ ∞

λx−β

uδ− 1
β
−1e−udu =

λ1/βΓ(δ − 1/β, λx−β)

Γ(δ)
.

Consequently, the mean deviation about the mean is D(µ) = 2µG(µ)−2T (µ),

where µ is obtained from equation (12), and the mean deviation about the

median is D(M) = µ− 2T (M), where M = G−1(1/2). Lorenz and Bonferroni

curves are given by

L(G(x)) =
λ1/βΓ(δ − 1/β, λx−β)

µΓ(δ)
, and B(G(x)) =

λ1/βΓ(δ − 1/β, λx−β)

G(x)Γ(δ)
,

respectively, for β > 1.

5 Some Measures of Uncertainty

In this section, we present Shannon entropy and Rényi entropy for the GIW

distribution. The concept of entropy plays a vital role in information theory.

The entropy of a random variable is defined in terms of its probability distri-

bution and can be shown to be a good measure of randomness or uncertainty.

5.1 Shannon Entropy

Shannon entropy is given by H(g(X; β, λ, δ)) = EG(− log(g(X; β, λ, δ))).
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That is,

H(g(X; β, λ, δ)) = − log

[
β

Γ(δ)

]
+ (1 + βδ)

∫ ∞

0

log(x)g(x)dx

− δ log(λ)

∫ ∞

0

g(x)dx +

∫ ∞

0

λx−βg(x)dx

= − log

[
β

Γ(δ)

]
+ δ +

log(λ)

β
− (βδ + 1)Γ′(δ)

βΓ(δ)
.

5.2 Rényi Entropy

Rényi entropy is an extension of Shannon entropy. Rényi entropy is defined

to be

IR(v) =
1

1− v
log

(∫ ∞

0

[g(x; β, λ, δ)]vdx

)
, v 6= 1, v > 0.

Rényi entropy tends to Shannon entropy as v → 1. Note that Rényi entropy

is given by

IR(v) =

(
1

1− v

)
log

[
βv−1

[vδΓ(δ)]v

∫ ∞

0

βx−v[λvx−β]δvexp[−λvx−β]

]
dx

=

(
1

1− v

)
log

[
βv−1(λv)

1−v
β

[vδΓ(δ)]v
Γ

(
δv +

v − 1

β

)]
, v 6= 1, v > 0.

6 Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample of size n from the GIW(λ, β, δ) dis-

tribution. The log-likelihood function, L is given by

L = log[l(β, λ, δ)] = n log(β)− n log(Γ(δ)) + nδ log(λ)

− (βδ + 1)
n∑

i=1

log(xi)− λ

n∑
i=1

x−β
i .

The elements of the score vector are given by

∂L

∂β
=

n

β
− δ

n∑
i=1

log(xi) + λ

n∑
i=1

log(xi)

xβ
i

,
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∂L

∂λ
=

nδ

λ
−

n∑
i=1

x−β
i ,

and
∂L

∂δ
=
−nΓ′(δ)

Γ(δ)
+ n log(λ)− β

n∑
i=1

log(xi).

The maximum likelihood estimates, Θ̂ of Θ = (β, λ, δ) are obtained by

solving the nonlinear equations ∂L
∂β

= 0, ∂L
∂λ

= 0, and ∂L
∂δ

= 0. These equations

are not in closed form and the values of the parameters β, λ, δ must be found

by using iterative methods.

The mixed second partial derivatives of the log-likelihood function are given

by

∂2L

∂β2
=
−n

β2
− λ

n∑
i=1

[log(xi)]
2

xβ
i

,

∂2L

∂β∂λ
=

n∑
i=1

log(xi)

xβ
i

,
∂2L

∂β∂δ
= −

n∑
i=1

log(xi),

∂2L

∂λ2
=
−nδ

λ2
,

∂2L

∂λ∂δ
=

n

λ
,

and
∂2L

∂δ2
= n

[
(Γ′(δ))2 − Γ(δ)Γ′′(δ)

(Γ(δ))2

]
.

The elements of the information matrix are given by the negative expected

values of the second mixed partial derivatives. These are given below:

I11 = −E

[
∂2L

∂β2

]
=

n

β2

(
1 + δ[log(λ)]2 +

Γ′′(δ + 1)− 2 log(λ)Γ′(δ + 1)

Γ(δ)

)
,

I12 = −E

[
∂2L

∂β∂λ

]
=

n

λβ

[
Γ′(δ + 1)

Γ(δ)
− δ log(λ)

]
,

I13 = −E

[
∂2L

∂β∂δ

]
=

n

β

[
log(λ)− Γ′(δ)

Γ(δ)

]
,

I22 = −E

[
∂2L

∂λ2

]
=

nδ

λ2
, I23 = −E

[
∂2L

∂λ∂δ

]
= −n

λ
,
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and

I33 = −E

[
∂2L

∂δ2

]
= n

{
Γ′′(δ)Γ(δ)− [Γ′(δ)]2

[Γ(δ)]2

}
.

6.1 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the pa-

rameters of the GIW distribution. The expectations in the Fisher Information

Matrix (FIM) can be obtained numerically. Let Θ̂ = (λ̂, β̂, δ̂) be the maximum

likelihood estimate of Θ = (λ, β, δ). Under the usual regularity conditions and

that the parameters are in the interior of the parameter space, but not on

the boundary, we have:
√

n(Θ̂ − Θ)
d−→ N3(0, I

−1(Θ)), where I(Θ) is the

expected Fisher information matrix. The asymptotic behavior is still valid if

I(Θ) is replaced by the observed information matrix evaluated at Θ̂, that is

J(Θ̂). The multivariate normal distribution N3(0, J(Θ̂)−1), where the mean

vector 0 = (0, 0, 0)T , can be used to construct confidence intervals and con-

fidence regions for the individual model parameters and for the survival and

hazard rate functions.

The likelihood ratio (LR) test can be used to compare the fit of the GIW

distribution with its sub-models for a given data set. In fact, to test δ = 1,

the LR statistic is ω = 2[ln L(λ̂, β̂, δ̂)− ln L(λ̃, β̃, 1)], where λ̂, β̂, and δ̂ are the

unrestricted estimates, and λ̃ and β̃ are the restricted estimates. The LR test

rejects the null hypothesis H0 if ω > χ2
η, where χ2

η denotes the upper 100η%

point of the χ2 distribution with 1 degree of freedom.

7 Applications

In this section, we illustrate the usefulness and application of the GIW

distribution to real data sets. We fit the density functions of the gamma-inverse

Weibull (GIW), inverse Weibull (IW), gamma- inverse exponential (GIE), and

gamma-inverse Rayleigh (GIR) distributions.

The first data set from Bjerkedal (1960) represents the survival times, in

days of guinea pigs injected with different doses of tubercle bacilli. The data
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set consists of 72 observations and are listed below: 12, 15, 22, 24 ,24, 32, 32,

33, 34, 38, 38, 43,44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60,

61, 62, 63, 65, 65, 67, 68,70, 70, 72, 73, 75, 76,76, 81, 83, 84, 85, 87, 91, 95,

96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258,

258, 263, 297, 341, 341, 376.

The second data set consists of the number of million of revolutions before

failure of each of 23 ball bearings in a life testing experiment, see Lawless,

(1982, p. 228). The observations are listed below: 17.88, 28.92, 33.00, 41.52,

42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.44, 68.88, 84.12, 93.12,

98.64, 105.12, 105.84, 105.84, 127.92, 128.04, 173.4.

Estimates of the parameters of GIW distribution (standard error in paren-

theses), Akaike Information Criterion (AIC), Consistent Akaike Information

Criterion (AICC), Bayesian Information Criterion (BIC) are given in Table 1

for the first data set and in Table 2 for the second data set.

Table 1: Estimates of Models for Guinea Pigs Data

Estimates Statistics

Model λ β δ −2 log L AIC AICC BIC

GIW(λ, β, δ) 159.15 0.1569 80.9857 780.5 786.5 786.9 793.3

(340.99) (.2535) (261.02)

IW(λ, β, 1) 283.84 1.4148 1 791.3 795.3 795.5 799.9

(125.63) (0.1173)

GIR(λ, 2, δ) 1349.19 2 0.6167 799.8 803.8 804.0 808.4

(277.20) (0.0865)

IR(λ, 2, 1) 2187.94 2 1 813.5 815.5 815.5 817.7

(257.85)

GIE(λ, 1, δ) 130.13 1 2.1652 785.2 789.2 789.4 793.8

(22.7656) (0.3368)

IE(λ, 1, 1) 60.0975 1 1 805.3 807.3 807.4 809.6

(7.0826)

Plots of the fitted densities and the histogram of the data are given in
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Table 2: Estimates of Models for Ball Bearings Data

Estimates Statistics

Model λ β δ −2 log L AIC AICC BIC

GIW(λ, β, δ) 268.48 0.1626 137.23 226.5 232.5 233.7 235.9

(380.32) (0.1715) (289.59)

IW(λ, β, 1) 1240.59 1.8344 1 231.6 235.6 7236.2 237.8

(1231.77) (0.2693)

GIR(λ, 2, δ) 2218.59 2 0.9886 231.9 235.9 236.5 238.2

(740.02) (0.2564)

IR(λ, 2, 1) 2244.37 2 1 231.9 233.9 234.1 235.1

(276.98)

GIE(λ, 1, δ) 202.51 1 3.6783 228.3 232.3 232.9 234.6

(61.3048) (1.0392)

IE(λ, 1, 1) 55.0551 1 1 243.5 245.5 245.6 246.6

(11.4798)

Figure 3 for the guinea pigs data, and Figure 4 for the ball bearings data.

The LR statistic of the hypothesis H0: IW (λ, β, 1) against Ha: GIW (λ, β, δ),

is ω = 791.3− 780.5 = 10.8. The p-value is 1.02× 10−3 < 0.001. Therefore, we

reject H0 in favor of Ha. There is a significant difference between IE and IW

distributions with ω = 13.7 and p-value=0.000214. Thus, reject H0 in favor of

Ha. A test of H0: GIE vs Ha : GIW shows that ω = 4.7 and p-value=0.03016.

Thus, we reject H0 in favor of Ha. The values of the statistics AIC, AICC

and BIC show that the GIW distribution is a “better” fit for the guinea pig

survival times data.

For the second data set, the LR statistic for the hypothesis H0: GIE(λ, 1, δ)

against Ha: GIW (λ, β, δ), is ω = 228.3 − 226.5 = 1.8. The p-value is 0.1797.

Therefore, there is no significant difference between GIE and GIW distribu-

tions. There is also no significant difference between GIR and IR distribu-

tions. There is a significant difference between GIE and IE distributions with

ω = 15.2 and p-value=0.0000967. A test of H0: IW vs Ha : GIW shows that
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Figure 3: Histogram and Fitted Density for Guinea Pig Data

ω = 5.1 and p-value=0.02393. Thus, we reject H0 in favor of Ha. However, the

values of the statistics AIC, AICC and BIC are smaller and show that the GIE

distribution is a “better” fit for the ball bearings data.

8 Concluding Remarks

We have presented and developed the mathematical properties of a new

class of distributions called the gamma-inverse Weibull (GIW) distribution

including the hazard and reverse hazard functions, moments, entropy, mean

deviations, Lorenz and Bonferroni curves, Fisher information and maximum

likelihood estimates. Applications of the proposed model to real data in order

to demonstrate the usefulness and applicability of this new class of distribu-

tions are also presented.
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Figure 4: Histogram and Fitted Density for Ball Bearings Data
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