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Abstract

In this paper, we study the existence of solutions of the abstract
measure differential equations by using the Leray-Schauder’s nonlinear
alternative and distributional Henstock-Kurzweil integral. The distri-
butional Henstock-Kurzweil integral is very general and it includes the
Lebesgue integral and Henstock-Kurzweil integral. The main result of
the paper extends some previously known results in the literature.
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1 Introduction

In this paper, we consider the abstract measure differential equation (AMDE)

dλ

dµ
= f(x, λ(S̄x)), (1.1)

where (X, M, µ) is a measure space, S̄x is a certain measureable set for each

x ∈ X, and dλ
dµ

stands for the distributional derivative of λ ∈ Ca(X, M), f is

a distribution (generalized function).

It is well known that distributional derivative includes ordinary derivative

and approximate derivative. Hence, (1.1) has a universality.

The general AMDE of the form

dλ

dµ
= f(x, λ(S̄x)) (1.2)

with Radon-Nikodym derivative dλ
dµ

and f : Sx × (−a, a) (a is a positive real

number) has been studied extensively in [1,2,4,5,6]. R.R. Sharma in [1] proved

the existence and uniqueness of solution of the equation (1.2) by the princi-

ple of contraction mapping. In [6], the authors considered the existence and

uniqueness of solution of the equation (1.2) applying the Leray-Schauder al-

ternative [7] under Caratháodory conditions. However, as far as we know, few

papers have applied distributional derivatives to study the AMDE. In this pa-

per, by using distributional derivatives, we study the existence of solutions of

AMDE (1.1).

We organize this paper as follows. In section 2, we introduce a general

integral called distributional Henstock-Kurzweil integral or DHK-integral. In

section 3, we will give the statement of the problem and the Leray-Schauder’s

nonlinear alternative that needed later. In section 4, we apply the Leray-

Schauder’s nonlinear alternative to prove the existence of solutions of the

AMDE (1.1).

2 The Distributional Henstock-Kurzweil Inte-

gral

In this section, we present the definition and some basic properties of the

distributional Henstock-Kurzweil integral.
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Define the space

C∞
c = {φ : R→ R | φ ∈ C∞ and φ has compact support in R},

where the support of a function φ is the closure of the set on which φ does

not vanish, denoted by supp(φ). A sequence {φn} ⊂ C∞
c converges to φ ∈ C∞

c

if there is a compact set K such that all φn have supports in K and the

sequence of derivatives φ
(m)
n converges to φ(m) uniformly on K for every m ∈ N.

Denote C∞
c endowed with this convergence property by D. Also, φ is called

test function if φ ∈ D. The dual space to D is denoted by D′ and its elements

are called distributions. That is, if f ∈ D′ then f : D → R, and we write

〈f, φ〉 ∈ R, for φ ∈ D.

For all f ∈ D′, we define the distributional derivative Df of f to be a

distribution satisfying 〈Df, φ〉 = −〈f, φ′〉, where φ is a test function and φ′

is the ordinary derivative of φ. With this definition, all distributions have

derivatives of all orders and each derivative is a distribution.

Let (a, b) be an open interval in R. We define

D((a, b)) = {φ : (a, b) → R | φ ∈ C∞
c and φ has compact support in (a, b)}.

The dual space of D((a, b)) is denoted by D′((a, b)).

Define BC = {F ∈ C([a, b]) | F (a) = 0} is a Banach space with the uniform

norm

‖F‖∞ = max
[a,b]

|F |.
Now we are able to introduce the definition of the DHK-integral.

A distribution f is distributionally Henstock-Kurzweil integrable or briefly

DHK-integrable on [a, b] if f is the distributional derivative of a continuous

function F ∈ BC .

The DHK-integral of f on [a, b] is denoted by (DHK)
∫ b

a
f = F (b), where F

is called the primitive of f and “(DHK)
∫

” denotes the DHK-integral. Notice

that if f ∈ DHK then f has many primitives in C([a, b]), but f has exactly

one primitive in BC .

The space of DHK-integrable distributions is defined by

DHK = {f ∈ D′((a, b)) | f = DF for some F ∈ BC}.
With this definition, if f ∈ DHK then, for all φ ∈ D((a, b)),

〈f, φ〉 = 〈DF, φ〉 = −〈F, φ′〉 = −
∫ b

a

Fφ′.
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Remark 2.2. Integrals defined in the same way have also been proposed in

other papers. For example, Ang [3] defined an integral in the plane and called

it the G-integral, and Talvila [10] defined the AC-integral on the extended

real line. In fact, these two integrals are equivalent to the DHK-integral for

one-dimensional intervals.

The following result is known as the fundamental theorem of calculus.

Lemma 2.3. [10,Theorem 4].

(a) Let f ∈ DHK , and define F (t) = (DHK)
∫ t

a
f . Then F ∈ BC and

DF = f .

(b) Let F ∈ C([a, b]). Then (DHK)
∫ t

a
DF = F (t)− F (a) for all t ∈ [a, b].

Example 2.4. We know that the primitive function F of the HK-integral

function f is ACG∗ (generalized absolutely continuous; see [11,12]). In [12,

Example 6.6], Lee pointed out that if F is a continuous function and pointwise

differentiable nearly everywhere on [a,b], then F is ACG∗. Furthermore, if

F is a continuous function which is differentiable nowhere on [a,b], then F is

not ACG∗. Therefore, if F ∈ C([a, b]) but is differentiable nowhere on [a,b],

then DF exists and is DHK-integrable but not HK-integrable. Conversely, if

F is ACG∗ then it also belongs to C([a, b]). Therefore, F ′ is not only HK-

integrable but also DHK-integrable. Here F ′ denotes the ordinary derivative

of F .

This example shows that the DHK-integral includes the HK-integral, and

hence the Lebesgue and Riemann integrals.

Some other results about the distributional derivative and the DHK-integral

are given below.

For f ∈ DHK and F ∈ BC with DF = f , we define the Alexiewicz norm

by

‖f‖ = ‖F‖∞ = max
[a,b]

|F |.

The following result has been proved.

Lemma 2.5. [10, Theorem 2] With the Alexiewicz norm, DHK is a Banach

space.

It is known that there is a pointwise ordering in C([a, b]) (so it is with

BC), that is, u ≤ v in C([a, b]) if and only if u(t) ≤ v(t) for every t ∈ [a, b].
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We now impose a partial ordering on DHK : for f, g ∈ DHK , we say that

f º g(or g ¹ f) if and only if f − g is a positive measure on [a,b]. By this

definition, if f, g ∈ DHK then

(DHK)

∫ b

a

f ≥ (DHK)

∫ b

a

g, where f º g. (2.2)

According to the definition of this ordering, we also have the result.

Lemma 2.6. [3, Corollary 1]. If f1, f2, f3 ∈ D′((a, b)), f1 ¹ f2 ¹ f3, and if

f1 and f3 are DHK-integrable, then f2 is also DHK-integrable.

We say that a sequence {fn} ⊂ DHK converges strongly to f ∈ DHK if

‖fn − f‖ → 0 as n →∞. The following two convergence theorems hold.

Lemma 2.7. [3, Corollary4, Monotone convergence theorem for the DHK-

integral]. Let {fn}∞n=0 be a sequence in DHK such that f0 ¹ f1 ¹ · · · ¹
fn ¹ · · · , and that (DHK)

∫ b

a
fn → A as n → ∞. Then fn → f in DHK and

(DHK)
∫ b

a
f = A.

Lemma 2.8. [1, Corollary 5, Dominated convergence theorem for the

DHK-integral]. Let {fn}∞n=0 be a sequence in DHK such that fn → f in D′.

Suppose that there exist f−, f+ ∈ DHK satisfying f− ¹ fn ¹ f+ for all n ∈ N.

Then f ∈ DHK and limn→∞(DHK)
∫ b

a
fn = (DHK)

∫ b

a
f .

3 Statement of the problem

Let X be a linear space on R. For each x ∈ X, defined

Sx = {αx : −∞ < α < 1}, S̄x = {αx : −∞ < α ≤ 1}.

Let M be a σ-algebra in X, containing the sets S̄x for all x ∈ X, and let

µ be a positive σ-finite measure on M.

For a measure space (X, M), Ca(X, M) denotes the space of all countably

additive scalar functions on M. Define a norm ‖ · ‖ on Ca(X,M) by

‖λ‖ = |λ|(X), (3.1)
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where |λ| is a total variation measure of λ and is given by

|λ|(X) = sup
∞∑
i=1

|λ(Ei)|, Ei ⊂ X, (3.2)

where the supremum is taken over all possible partitions {Ei : i ∈ N} of X.

It is known that Ca(X,M) is a Banach space with respect to the norm ‖ · ‖
defined by (3.1).

Let X0 ⊂ X and x0 ∈ X0 be fixed, and let M0 be the smallest σ-algebra

in X0 containing S̄x0 − Sx0 and the sets S̄x for x ∈ X0 − Sx0 .

Given a λ ∈ Ca(X0,M0) with λ ¿ µ, consider the abstract measure

differential equation (AMDE) in (1.1)

dλ

dµ
= f(x, λ(S̄x)),

where dλ
dµ

is a distributional derivative of λ, f : Sx × (−a, a) → R, and f is

DHK-integral for each λ ∈ Ca(X0,M0).

Definition 3.1. Let α0 ∈ (−a, a), a measure λ ∈ Ca(X0,M0) will be

called a solution of AMDE (1.1) on X0 with initial data [S̄x0 , α0] if

(1)λ(S̄x0) = α0,

(2)λ(E) ∈ (−a, a), E ∈M0,

(3)λ(E) = (DHK)
∫

E
f(x, S̄x)dµ0 for E ⊂ X0−Sx0 , where µ0 is the restric-

tion of µ on M0.

In the following section we shall prove the main existence theorem for

AMDE (1.1) under suitable condition on f . We will use the following form of

the Leray-Schauder’s nonlinear alternative. See Dugundji and Granas [7] for

details.

Theorem 3.1. Let B(0, r) and B[0, r] denote respectively the open and

closed balls in a Banach space X centered at the origin 0 of radius r, for some

r > 0. Let T : B[0, r] → X be a completely continuous operator. Then either

(1) the operator equation Tx = x has a solution in B[0, r], or

(2) there exists an u ∈ X with ‖u‖ = r such that u = pTu for some

0 < p < 1.
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4 Existence Theorem

In this section, we shall study the AMDE in (1.1)

dλ

dµ
= f(x, λ(S̄x)),

where dλ
dµ

denotes the distributional derivative of λ ∈ Ca(X,M), and f is

a distribution. Through this section, we denote by DHK the space of DHK-

integrable functions and by ′(∗) ∫ ′
the *-integral.

We now impose some assumptions on the distribution f .

(D1) f(·, λ(·)) is DHK-integrable for every fixed λ ∈ Ca(X,M),

(D2) f(x, ·) is continuous for all x ∈ Sx,

(D3) there exist f−, f+ ∈ DHK , for all x ∈ Sx, we have

f− ¹ f(x, ·) ¹ f+.

We are now ready to give our main result.

Theorem 4.1. Let α0 ∈ (−a, a), x0 ∈ X0. If the distribution f in AMDE

(1.1) satisfies assumptions (D1)− (D3), then there exist a solution of (1.1) on

X0 with initial date [S̄x0 , α0].

Proof Let M = supE{|(DHK)
∫

E
f−| , |(DHK)

∫
E

f+|}, E ⊂ X0 − Sx0 (E ∈
M0), then

|(DHK)

∫

E

f−| ≤ M, |(DHK)

∫

E

f+| ≤ M. (4.2)

By (2.2), (4.2) and condition (D3), we get

|(DHK)

∫

E

f | ≤ M.

Consider the space Ca(X0,M0) where M0 is the smallest σ-algebra con-

taining S̄x0 − Sx0 and all the sets of the form S̄x for x ∈ X0 − Sx0 . Let

k = |α0| + M and r > k, r is a real number. Let B[0, r] be a closed ball in

Ca(X0,M0), and for all λ ∈ B[0, r], we have the properties

λ(S̄x0) = α0,

and

‖λ‖ ≤ k.
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Moreover for each λ ∈ B[0, r], we have

|λ(E)| ≤ |λ|(E) ≤ ‖λ‖ ≤ k, E ∈M0. (4.3)

Let T be the mapping defined on B[0, r] by

(Tλ)(E) =

{
α0, for E = S̄x0 ,

(DHK)
∫

E
f(x, λ(S̄x))dµ, for E ⊂ X0 − Sx0 .

Then Tλ ∈ Ca(X0,M0) and

‖Tλ‖ = |α0|+ (DHK)
∫

X0−Sx0
|f(x, λ(S̄x))|d|µ|

≤ |α0|+ M

= k.

Therefore, Tλ ∈ B[0, r], then T (B[0, r]) ⊂ B[0, r], thus T (B[0, r]) is uniformly

bounded in Ca(X0,M0).

Let λ1, λ2 ∈ B[0, r], by (4.3), we have

(Tλ1 − Tλ2)(E) =

{
0, for E = S̄x0 ,

(DHK)
∫

E
[f(x, λ1(S̄x))− f(x, λ2(S̄x))]dµ, for E ⊂ X0 − Sx0 .

By condition (D2), we know, for each ε > 0, there exist δ(ε) > 0, when

|λ1(S̄x)− λ2(S̄x)| < δ, we have

|f(x, λ1)− f(x, λ2)| < ε.

Then

‖Tλ1 − Tλ2‖ = (DHK)
∫

E
|f(x, λ1(S̄x))− f(x, λ2(S̄x))|d|µ| ≤ |µ|(X0 − Sx0) · ε.

This shows that T (B[0, r]) is equiuniformly continuous in Ca(X0,M0). In

view of the Ascoli-Arzelà theorem, T (B[0, r]) is a relatively compact subset of

Ca(X0,M0).

We now need to prove that T is continuous. Let {λn} be a sequence in

B[0, r], and λn → λ. Then according condition (D2),

f(·, λn) → f(·, λ), as n →∞

Thus, by Lemma 2.8. and

lim
m→∞

(DHK)

∫

E

f(x, λm(S̄x))µ = (DHK)

∫

E

f(x, λ(S̄x))dµ.
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Therefore, limm→∞ Tλm = Tλ, which implies that T is continuous. Thus

T is a compact mapping. Hence an application of Theorem 3.1 yields that

either x = Tx has a solution or the operator equation x = pTx has a solution

u with ‖u‖ = r for some 0 < p < 1. We shall show that this later assertion is

not possible. We assume the contrary. Then we have

u(E) = pTu(E) =

{
pα0, for E = S̄x0 ,

p(DHK)
∫

E
f(x, u(S̄x))dµ, for E ⊂ Srx0 − Sx0 .

Hence
|u(E)| = |pα0|+ |p(DHK)

∫
E
|f(x, u(S̄x))dµ|

≤ |α0|+ |(DHK)
∫

E
|f(x, u(S̄x))dµ|

≤ |α0|+ M

= k.

This futher implies that

‖u‖ = |u|(E) ≤ k.

Substituting ‖u‖ = r in the above inequality, this yields r ≤ k, which is a

contradiction to the inequality r > k.

Hence the operator equation λ = Tλ has a solution. Consequently the

AMDE (1.1) has a solution λ0, λ0 is then the solution of AMDE (1.1) on X0

with initial date [S̄x0 , α0]. This completes the proof.

Remark 4.2. In AMDE (1.1), if f satisfies the conditions in Theorem 1

in [1] that there exists a µ-integrable function w such that |f(x, α)| ≤ w(x)

uniformly in α ∈ (−a, a), and f satisfies a Lipschitz condition in α, then f

satisfies Theorem 4.1, thus Theorem 4.1 is an extension of Theorem 1 in [1].
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