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Abstract

Recursive empirical Bayes test rules for parameter of the one-side
truncation distribution family are constructed with asymmetric loss
functions and the asymptotically optimal property is obtained. It is
shown that the convergence rates of the proposed EB test rules can
arbitrarily close to O(n−

1
2 )under suitable conditions.
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1 Introduction

Since Robbin’s pioneering papers [1,2], empirical bayes (EB) approach has

been studied extensively in recent years, the readers are referred to literature

[3-9].
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Usually, EB methods are considered with kernel-type density estimation,

However, in fact we need to use recursive kernel-type density estimation. Thus,

we only calculate addition item when size of the past samples is increased. It

reduce calculation in a certain degree.

Consider the following model

f(x|θ) = u(x)ϕ(θ)I(a<θ<x<b), (1)

where f(x|θ) denotes the conditional probability density function(pdf) of ran-

dom variable(r.v)X, given θ, −∞ ≤ a < θ < b ≤ +∞, u(x) is a nonnegative

integrable functin in (a, b), ϕ(θ) = [
∫ b

θ
u(x)dx]−1.

Assume that G(θ) is the unknown prior distribution of θ. The marginal

density function of X is given by

fG(x) = u(x)

∫ x

a

ϕ(θ)dG(θ) = u(x)v(x), (2)

where v(x) =
∫ x

a
ϕ(θ)dG(θ).

In this paper, we discuss the following hypothesis test problem

H0 : θ ≤ θ0 ⇔ H1 : θ > θ0, (3)

where θ0 is a given constant.

To avoid the influence of two types of possible errors , we adopt asymmetric

loss functions[3]

L(θ, d0) = L0I(θ<θ0), L(θ, d1) = L1I(θ≥θ0),

where L0 = k1(θ − θ0)
2, L1 = k2(θ − θ0)

2 + k3(θ − θ0), ki > 0, i = 1, 2, 3. If

k3 = 0, k1 = k2, the asymmetric loss functions are degenerated squared loss

functions. d = {d0, d1} is action space, d0 and d1 imply acceptance and

rejection of H0.

Let randomized decision function be defined by

δ(x) = P ( accept H0|X = x). (4)

Then, the Bayes risk of test δ(x) is shown by

R(δ(x), G(θ)) =
∫ b

a

∫ x

a
[L(θ, d0)f(x|θ)δ(x) + L(θ, d1)f(x|θ)(1− δ(x))]dG(θ)dx

=
∫ b

a
β(x)δ(x)dx + CG,

(5)
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where

CG =

∫

Θ

L1(θ, d1)dG(θ),

β(x) =
∫ x

a
[L(θ, d0)− L(θ, d1)]f(x|θ)dG(θ)

=
∫ θ0

a
(L0 + L1)f(x|θ)dG(θ)− ∫ x

a
L1f(x|θ)dG(θ)

= 2k2u(x)v1(x) + (k3 − 2k2)u(x)v2(x)− [k2(x− θ0)
2 + k3(x− θ0)]fG(x)

−2(k1 + k2)u(x)v1(θ0) + (k3 − 2k2θ0 − 2k1θ0)u(x)v2(θ0).

(6)

where v1(x) =
∫ x

a
tv(t)dt, v2(x) =

∫ x

a
v(t)dt, fG(x) is defined by (1.2).

By (1.5), Bayes test function is obtained as follows

δG(x) =

{
1, β(x) ≤ 0

0, β(x) > 0
(7)

Further, the minimum Bayes risk of δG(x) is

R(G, δG) =

∫ b

a

β(x)δG(x)dx + CG. (8)

When the prior distribution G(θ) is known and δ(x) = δG(x), R(G) is

achieved. However, G(θ) is unknown, so δG(x) can not be made use of, we

need to introduce EB method. The rest of this paper is organized as follows.

Section 2 presents an EB test. In section 3, we obtain asymptotic optimality

and the optimal rate of convergence of the EB test.

2 Construction of EB Test Function

Under the following condition, we need to construct EB test function:let

X1, X2, · · · , Xn, X be random variable sequence with the common marginal

density function fG(x), whereX1, X2, · · · , Xn are historical sample and X is

current sample. Suppose Cs,α is a class of probability density function and

fG(x) ∈ Cs,α, x ∈ R1, where Cs,α is continuous and bounded function and has

s-th order derivative, satisfying |Cs,α| ≤ α, s ≥ 4.first construct estimator of

β(x).

Let Kr(x)(r = 0, 1, · · · , s−1) be a Borel measurable real function vanishing

off (0, 1) such that

(A1)
1

t!

∫ 1

0

vtKr(v)dv =

{
(−1)t, t = r

0, t 6= r, t = 0, 1, · · · , s− 1
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Denote f
(0)
G (x) = fG(x), f

(r)
G (x) is the r order derivative of fG(x). For

r = 0, 1, · · · , s− 1. similar to ([7]), kernel estimation of f
(r)
G (x) is defined by

f (r)
n (x) =

1

n

n∑
j=1

1

h1+r
i

Kr(
x−Xi

hi

), (9)

where hi > 0, and lim
n→∞

hi = 0.

Let F (x) is distribution function of random variable X. Denote Fn(x) =

1
n

n∑
i=1

I(a < Xi ≤ x),

where Fn(x) is empirical distribution function of random variable X.

The estimator of v1(x), v2(x) are defined as follows

v1n(x) =
1

n

n∑
i=1

Xi
1

u(Xi)
I(a<Xi≤x), (10)

v2n(x) =
1

n

n∑
i=1

1

u(Xi)
I(a<Xi≤x), (11)

Thus, the estimator of β(x) is obtained by

βn(x) = 2k2u(x)v1n(x) + (k3 − 2k2)u(x)v2n(x)− [k2(x− θ0)
2 + k3(x− θ0)]fn(x)

−2(k1 + k2)u(x)v1(θ0) + (k3 − 2k2θ0 − 2k1θ0)u(x)v2(θ0).

(12)

Hence, EB test function is defined by

δn(x) =

{
1, βn(x) ≤ 0,

0, βn(x) > 0.
(13)

Let E stand for mathematical expectation with respect to the joint distri-

bution of X1, X2, · · · , Xn.

Hence, we get the overall Bayes risk of δn(x)

R(δn(x), G) =

∫ b

a

β(x)E[δn(x)]dx + CG, (14)

If lim
n→∞

R(δn, G) = R(δG, G), {δn(x)} is called asymptotic optimality of EB

test function, and R(δn, G) − R(δG, G) = O(n−q), where q > 0, O(n−q) is

asymptotic optimality convergence rates of EB test function of {δn(x)}, before

proving the theorems, we give a series of lemma.

Let c, c1, c2, c3, c4 be different constants in different cases even in the same

expression.
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Lemma 2.1. [10] Let {Xi, 1 ≤ i ≤ n} be negative associated random vari-

ables, with EXi = 0 and E|Xi|2 < ∞, i = 1, 2, · · · , n then

E|
n∑

i=1

Xi|2 ≤ c

n∑
i=1

E|Xi|2.

Lemma 2.2. f
(r)
n (x) is defined by (9). Let X1, X2, · · · , Xn be independent

identically distributed random samples. Assume (A1) holds, ∀x ∈ Ω.

(I) When f
(r)
G (x) is absolute continuous function, max

1≤i≤n
|hi| → 0 and

n( min
1≤i≤n

hi)
2r+1 →∞, then

lim
n→∞

E|f (r)
n (x)− f

(r)
G (x)|2 = 0.

(II) When fG(x) ∈ Cs,a, taking hn = n−
1

2+s , for 0 < λ ≤ 1, then

E|f (r)
n (x)− f

(r)
G (x)|2λ ≤ c · n−λ(s−2r)

2+s .

Proof Proof of (I)

E|f (r)
n (x)−f

(r)
G (x)|2 ≤ 2|Ef (r)

n (x)−f
(r)
G (x)|2+2V ar(f (r)

n (x)) := 2(I2
1+I2), (15)

where

Ef
(r)
n (x) = E[ 1

n

n∑
i=1

1
h1+r

i

Kr(
x−Xi

hi
)]

= 1
n

n∑
i=1

E[ 1
h1+r

i

Kr(
x−Xi

hi
)]

= 1
n

n∑
i=1

1
hr

i

∫ 1

0
Kr(u)fG(x− hiu)du.

We obtain the following Taylor expansion of fG(x− hiu) in x

fG(x−hiu) = fG(x)+
f ′G(x)

1!
(−hiu)+

f ′′G(x)

2!
(−hiu)2+· · ·+f

(r)
G (x− ξihiu)

r!
(−hiu)r

Since f
(r)
G (x) is absolute continuous in x and (A1), it is easy to see that

|Ef
(r)
n (x)− f

(r)
G (x)| = | 1

hr
i

∫ 1

0
Kr(u)fG(x− hiu)− f

(r)
G (x)|du

≤ 1
r!

∫ 1

0
|Kr(u)||f (r)

G (x− ξihiu)− f
(r)
G (x)|du

≤ c 1
r!

∫ 1

0
ur|Kr(u)||ξihiu|du

≤ c|hi|.
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When max
1≤i≤n

|hi| → 0,we get

lim
n→∞

|Ef (r)
n (x)− f

(r)
G (x)|2 = 0.

That is to say

lim
n→∞

I2
1 = lim

n→∞
|Ef (r)

n (x)− f
(r)
G (x)|2 = 0. (16)

Again since

I2 = V ar[f
(r)
n (x)]

= V ar[ 1
n

n∑
i=1

1
h1+r

i

Kr(
x−Xi

hi
)]

= 1
n2

n∑
i=1

1

h
2(1+r)
i

V ar[Kr(
x−Xi

hi
)]

≤ 1
n2

n∑
i=1

1

h
2(1+r)
i

E[Kr(
x−X1

hi
)]2

≤ 1
n2

n∑
i=1

1
h2r+1

i

∫ 1

0
K2

r (u)fG(x− hiu)du

≤ c
n2

n∑
i=1

1
h2r+1

i

≤ c
n

min
1≤i≤n

h
−(2r+1)
i

When n( min
1≤i≤n

hi)
2r+1 →∞, we obtain

lim
n→∞

I2 = 0. (17)

Substituting (15) and (16) into (14), proof of (I) is completed.

Proof of (II) Similar to (14), we can show that

E|f (r)
n (x)− f

(r)
G (x)|2λ ≤ 2[Ef

(r)
n (x)− f

(r)
G (x)]2λ + 2[V arf

(r)
n (x)]λ

:= 2(J2λ
1 + Jλ

2 ).
(18)

We obtain the following Taylor expansion of fG(x− hiu) in x

fG(x−hiu) = fG(x)+
f ′G(x)

1!
(−hiu)+

f ′′G(x)

2!
(−hiu)2+· · ·+f

(s)
G (x− ξihiu)

s!
(−hiu)s

where 0 < ξ < 1, due to A1 and fG(x) ∈ Cs,α, we have

E|f (r)
n (x)− f

(r)
G (x)| ≤ 1

n

n∑
i=1

∫ 1

0
|Kr(u)|hs−r

i us|f
(s)
G (x−ξihiu)

s!
|du

≤ c(max
1≤i≤n

hi)
s−r
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Therefore, we get J2λ
1 = (max

1≤i≤n
hi)

2λ(s−r),

Jλ
2 = [n( min

1≤i≤n
hi)

2r+1)]−λ.

When max
1≤i≤n

hi = n−
1

2(1+s) and min
1≤i≤n

hi = n−
2

2(1+s) ,we get

E|f (r)
n (x)− f

(r)
G (x)|2λ ≤ cn−

λ(s−2r)
s+1 .

Obviously, proof of (II) is completed.

Lemma 2.3. [6] R(δG, G) and R(δn, G) are defined by (8) and (13), then

0 ≤ R(δn, G)−R(δG, G) ≤ c

∫ b

a

|β(x)|P (|βn(x)− β(x)| ≥ |β(x)|)dx.

Lemma 2.4. v1n(x) and v2n(x) are defined by (10), (11), for 0 < λ ≤ 1,

we get

E|vin(x)− vi(x)|2λ ≤ cn−λ[wi(x)]λ, i = 1, 2.

where w1(x) =
∫ x

a
t2 v(t)

u(t)
dt, w2(x) =

∫ x

a
v(t)
u(t)

dt.

Proof Applying moment monotone inequality, we have

(E|vin(x)− vi(x)|2λ)
1
2λ ≤ (E|vin(x)− vi(x)|2) 1

2

That is to say

E|vin(x)− vi(x)|2λ ≤ (E|vin(x)− vi(x)|2)λ := J

Since Evin(x) = vi(x), we can known vin(x) is an unbiased estimator of

vi(x). By Lemma 2.1, we can easily get

J = E|vin(x)− vi(x)|2λ ≤ cn−λ,

the proof of Lemma 2.4 is completed.
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3 Asymptotic Optimality and Convergence Rates

of Empirical Bayes Test

Theorem 3.1. δn(x) is defined by (13). Assume (A1) and the following

regularity conditions hold

(1)
∫ b

a
x2fG(x)dx < ∞,

∫ b

a
xfG(x)dx < ∞, fG(x) is a absolute continuous

function of x,

(2)
∫ b

a
vi(x)u(x)dx < ∞,

∫ b

a
wi(x)u(x)dx < ∞,

∫ b

a
u(x)dx < ∞, i = 1, 2,

(3)max
1≤i≤n

|hi| → 0, n( min
1≤i≤n

hi) →∞, we have

lim
n→∞

R(δn, G) = R(δG, G).

Proof By Lemma 2.3, we have

0 ≤ R(δn, G)−R(δG, G) ≤ c

∫ b

a

|β(x)|P (|βn(x)− β(x)| ≥ |β(x)|)dx.

Note that Ψn(x) = |β(x)|P (|βn(x)−β(x)| ≥ β(x)|), hence, Ψn(x) ≤ |β(x)|.
By conditions of Theorem 3.1, we have

∫ b

a
|β(x)|dx ≤ c[

2∑
i=1

∫ b

a
u(x)vi(x)dx +

∫ b

a
u(x)dx +

∫ b

a
x2fG(x)dx

+
∫ b

a
xfG(x)dx +

∫ b

a
fG(x)dx] < ∞.

By Markov inequality, we obtain Ψn(x) ≤ E|βn(x)− β(x)|, hence

E|βn(x)−β(x)| ≤ c{
2∑

i=1

E[u(x)|vin(x)−vi(x)|]+(1+ |x|+x2)E|fn(x)−f(x)|}.

Applying domain convergence theorem, we obtain

0 ≤ lim
n→∞

R(δn, G)−R(δG, G) ≤
∫ b

a

[ lim
n→∞

Ψn(x)]dx. (19)

If Theorem 3.1 holds, we only need to prove lim
n→∞

Ψn(x) = 0, for x ∈ (a, b).

By Jensen inequality, we have

Ψn(x) ≤ c{
2∑

i=1

E[u(x)|vin(x)− vi(x)|] + (1 + |x|+ x2)E|fn(x)− fG(x)|}

≤ cu(x)[
2∑

i=1

E|vin(x)− vi(x)|2] 1
2 + (1 + |x|+ x2)[E|fn(x)− fG(x)|2] 1

2 .
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Again Lemma 2.2(1) and Lemma 2.4, for fixed x ∈ (a, b) and λ = 1, we get

0 ≤ lim
n→∞

Ψn(x) ≤ cu(x)[
2∑

i=1

lim
n→∞

E|vin(x)− vi(x)|2] 1
2

+(1 + |x|+ x2)[ lim
n→∞

E|fn(x)− f(x)|2] 1
2 = 0.

(20)

Substituting (3.2) into (3.1), the proof of Theorem 3.1 is completed.

Theorem 3.2. δn(x) is defined by (13). Assume (A1) and the following

regularity conditions hold

(4)fG(x) ∈ Cs.α,

(5)
∫ b

a
|β(x)1−λxkλdx < ∞, k = 1, 2, for 0 < λ ≤ 1,

(6)
∫ b

a
|β(x)1−λxkλuλ(x)[wi(x)]λ/2dx < ∞, i = 1, 2,

(7) max
1≤i≤n

|hi| → 0, n( min
1≤i≤n

hi) →∞, we have

R(δn, G)−R(δG, G) = O(n−
λs

2(s+1) ),

where s ≥ 2.

Proof By Lemma 2.3, Markov and Cr inequalities, we obtain

0 ≤ R(δn, G)−R(δG, G) ≤ c
∫ b

a
|β(x)|1−λE|βn(x)− β(x)|λdx

≤ c
∫ b

a
|β(x)|1−λ[

2∑
i=1

uλ(x)E|vin(x)− vi(x)|λ

+(1 + |x|λ + x2λ)E|fn(x)− f(x)|λ]dx.

(21)

By Lemma 2.2 and 2.4, we get

0 ≤ R(δn, G)−R(δG, G) ≤ c[
2∑

i=1

∫ b

a
|β(x)|1−λuλ(x)w

λ/2
i (x)nλ/2dx

+
∫ b

a
|β(x)|1−λ(1 + |x|λ + x2λ)cn−

λs
2(s+1) ]dx.

By conditions of Theorem 3.1, we have

0 ≤ R(δn, G)−R(δG, G) ≤ cn−λs/[2(s+1)],

hence

R(δn, G)−R(δG, G) = O(n−λs/[2(s+1)]).

The proof of Theorem 3.1 is completed.

Remark 1 When λ → 1, O(n−
λs

2(s+1) ) is arbitrarily close to O(n−
1
2 ).
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