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1 Introduction

Let E be a real Banach space, C a nonempty closed convex subset of E,

and T : C → C a mapping. Recall that T is nonexpansive mapping[1] if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T ) the

set of fixed point of T ; that is, Fix(T ) = {x ∈ C : Tx = x}. It is assumed

throughout the paper that T is a nonexpansive mapping such that Fix(T ) 6= ∅.
Iterative methods are often used to solve the fixed point equation Tx = x.

The most well-known method is perhaps the Picard successive iteration method

when T is a contraction. Picard’s method generates a sequence {xn} succes-

sively as xn = Txn−1 for n ≥ 1 with x0 arbitrary, and this sequence converges

in norm to the unique fixed point of T . However, if T is not a contraction

(for instance, if T is nonexpansive), then Picard’s successive iteration fail, in

general, to converge. Instead, Mann’s iteration method [10] prevails. Mann’s

method, an averaged process in nature, generates a sequence {xn} recursively

via

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.1)

where the initial guess x0 ∈ C is arbitrarily chosen.

Mann’s iteration method (1.1) has been proved to be a powerful method for

solving nonlinear operator equations involving nonexpansive mapping, asymp-

totically nonexpansive mapping, and other kinds of nonlinear mapping; see [2,

3, 6-8, 10, 12, 13, 15, 16] and the references therein.

It is known that Mann’s iteration method (1.1) is in general not strongly

convergent [5] for nonexpansive mappings. So to get strong convergence, one

has to modify the iteration method (1.1). In this regard, we will show in

Section 3.

Motivated and inspired by the research going on in these fields, we suggest

and analyze now new modified Mann’s iteration for finding the common fixed

point of the nonexpansive mappings in Banach space. We propose the modi-

fied Mann’s iteration and consider the strong convergence of the approximate

solutions for nonexpansive in Banach space.
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We suggest and analyze the following two iterative methods:





x0 ∈ C chosen arbitrarily,

yn = βnxn + (1− βn)Txn,

zn = γnxn + (1− γn)Sxn,

xn+1 = αnyn + (1− αn)zn, n ≥ 0,

(1.2)

and if there exists two sequences {x′n} and {x′′n} generated by





x0 ∈ C chosen arbitrarily,

yn = βnx′n + (1− βn)Tx′n,

zn = γnx
′′
n + (1− γn)Sx′′n,

x′n+1 = αnzn + (1− αn)yn,

x′′n+1 = αnyn + (1− αn)zn, n ≥ 0,

(1.3)

where αn, βn, γn are constants satisfying certain conditions.

We write xn → x to indicate that the sequence {xn} converges strongly to

x. We use F to denote the set of common fixed point of the mappings T and

S.

2 Preliminaries

This section collects some lemmas which will be used in the proofs for the

main results in the next section.

Lemma 2.1. [12] Let {an}, {bn} and {δn} be sequences of nonnegative real

numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∞∑

n=1

δn < ∞ and
∞∑

n=1

bn < ∞, then

(1) lim
n→∞

an exists;

(2) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.
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Lemma 2.2. [14] Suppose that E is a uniformly convex Banach space and

0 < tn < 1 for all n ∈ N . Let {xn} and {yn} be two sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r and lim
n→∞

‖tnxn + (1 − tn)yn‖ = r hold for

some r ≥ 0, then lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.3. [15] A mapping T :C→C with nonempty fixed point set F in C

will be said to satisfy Condition (I):

If there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) =

0, f(r) > 0 for all r ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F )) for all x ∈
C, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Lemma 2.4. [18] Given a number r > 0. A real Banach space E is uniformly

convex if and only if there exists a continuous strictly increasing function ϕ :

[0,∞] → [0,∞], ϕ(0) = 0, such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖)

for all λ ∈ [0, 1] and x, y ∈ E such that ‖x‖ ≤ r and ‖y‖ ≤ r.

Note that the inequality in Lemma 2.4 is known as Xu′s inequality. It

follows from Lemma 2.4 that we get the following lemma can be found in [4].

Lemma 2.5. Given a number r > 0. Let E is a uniformly convex Banach

space then there exists a continuous strictly increasing function ϕ : [0,∞] →
[0,∞] with ϕ(0) = 0, such that

‖λx + µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµϕ(‖x− y‖)

for all λ, µ, γ ∈ [0, 1] and x, y, z ∈ E such that ‖x‖ ≤ r, ‖y‖ ≤ r and ‖z‖ ≤ r.

Lemma 2.6. [9] Let {αn}, {βn} be sequences of nonnegative real numbers

such that
∞∑

n=1

αn = ∞. If
∞∑

n=1

αnβn < ∞, then lim inf
n→∞

βn = 0.
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3 Convergence to a common fixed point of

nonexpansive mappings

3.1 There exists one sequence {xn}
In this part, we prove our main theorem for finding a common fixed point

of nonexpansive mappings in Banach space in the case of one sequence.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex

Banach space E and let T and S be two nonexpansive self mappings of C satisfy

Condition (I) and F 6= ∅. Given {αn}, {βn} and {γn} are sequences in (0,1),

such that
∑

αn < ∞,
∑

γnβn = ∞,
∑

(1− γn) < ∞ for all n ≥ 1.

Define a sequence {xn}∞n=0 in C by the algorithm (1.2), then {xn}∞n=0

strongly converges to a common fixed point of T and S.

Proof. First, we observe that {xn} is bounded, if we take an arbitrary fixed

point q of F , noting that ‖yn − q‖ ≤ ‖xn − q‖ and ‖zn − q‖ ≤ ‖xn − q‖, we

have
‖xn+1 − q‖ = ‖αnyn + (1− αn)zn − q‖

≤ αn‖yn − zn‖+ ‖zn − q‖
≤ αn‖yn − q‖+ αn‖zn − q‖+ ‖zn − q‖
≤ (1 + 2αn)‖xn − q‖.

(3.1)

By Lemma 2.1 and
∑

αn < ∞, thus lim
n→∞

‖xn − q‖ exists. Denote

lim
n→∞

‖xn − q‖ = c.

Hence, {xn} is bounded, so are {yn} and {zn}. Now

‖xn+1 − q‖ = ‖αnyn + (1− αn)zn − q‖
= ‖αn(yn − zn) + (zn − q)‖
≤ αn‖yn − zn‖+ ‖zn − q‖.

By
∑

αn < ∞ and the boundedness of {zn} and {yn}, we obtain

lim
n→∞

‖xn − q‖ ≤ lim inf
n→∞

‖zn − q‖. (3.2)

Since ‖zn − q‖ ≤ ‖xn − q‖, which implies that

lim sup
n→∞

‖zn − q‖ ≤ lim
n→∞

‖xn − q‖, (3.3)
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so that (3.2) and (3.3) give

lim
n→∞

‖zn − q‖ = lim
n→∞

‖xn − q‖ = c.

Moreover, ‖Sxn − q‖ ≤ ‖xn − q‖ implies that

lim sup
n→∞

‖Sxn − q‖ ≤ c.

Thus

c = lim
n→∞

‖zn − q‖ = lim
n→∞

‖γnxn + (1− γn)Sxn − q‖
= lim

n→∞
‖γn(xn − q) + (1− γn)(Sxn − q)‖,

given by Lemma 2.2 that

lim
n→∞

‖Sxn − xn‖ = 0. (3.4)

By (3.1) and
∑

αn < ∞, then we have

‖xn+m − q‖ ≤ (1 + 2αn+m−1)‖xn+m−1 − q‖
≤ e2αn+m−1‖xn+m−1 − q‖
≤ e2αn+m−1e2αn+m−2‖xn+m−2 − q‖
≤ . . .

≤ e
2

n+m−1P
i=n

αi‖xn − q‖.

That is

‖xn+m − q‖ ≤ M‖xn − q‖, (3.5)

where M = e
2

n+m−1P
i=n

αi

, for all m,n ≥ 1, for all q ∈ F and for M > 0.

Next we prove that {xn}∞n=0 is Cauchy sequence.

Since q ∈ F arbitrarily and lim
n→∞

‖xn − q‖ exists, consequently d(xn, F )

exists by Lemma 2.3. From the Lemma 2.3 and (3.4), we get

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖xn − Sxn‖ = 0

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfy f(0) = 0, f(r) > 0

for all r ∈ (0,∞), therefore we have

lim
n→∞

d(xn, F ) = 0.
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Let ε > 0, since lim
n→∞

d(xn, F ) = 0 and therefore exists a constant n0 such

that for all n ≥ n0, we have

d(xn, F ) ≤ ε

2M
,

in particular,

d(xn0 , F ) ≤ ε

2M
.

There must exist p1 ∈ F , such that

d(xn0 , p1) ≤ ε

2M
.

From (3.5), it can be obtained that when n ≥ n0,

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖xn − p1‖
≤ 2M‖xn0 − p1‖
≤ 2M · ε

2M
= ε.

This implies {xn}∞n=0 is a Cauchy sequence in a closed convex subset C of a

Banach space E. Thus, it must converges to a point in C, let lim
n→∞

xn = p.

For all ε > 0, as lim
n→∞

xn = p, thus there exists a number n1 such that when

n2 ≥ n1,

‖xn2 − p‖ ≤ ε

4
. (3.6)

In fact, lim
n→∞

d(xn, F ) = 0 implies that using the n2 above, when n ≥ n2,

we get

d(xn, F ) ≤ ε

8
.

In particular, d(xn2 , F ) ≤ ε
8
. Thus, there must exist p̄ ∈ F , such that

‖xn2 − p̄‖ = d(xn2 , p̄) =
ε

8
. (3.7)

From (3.6) and (3.7), we get

‖Sp− p‖ = ‖Sp− p̄ + Sxn2 − p̄ + p̄− xn2 + xn2 − p + p̄− Sxn2‖
≤ ‖Sp− p̄‖+ ‖xn2 − p̄‖+ ‖xn2 − p‖+ 2‖Sxn2 − p̄‖
≤ ‖p− p̄‖+ 3‖xn2 − p̄‖+ ‖xn2 − p‖
≤ ‖xn2 − p‖+ ‖xn2 − p̄‖+ 3‖xn2 − p̄‖+ ‖xn2 − p‖
= 4‖xn2 − p̄‖+ 2‖xn2 − p‖
≤ 4ε

8
+

2ε

4
= ε.
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As ε is an arbitrary positive number, thus, Sp = p.

Let

un+1 = γnxn + βnTxn + (1− βn − γn)Txn.

Then we have

‖un+1 − q‖2

= ‖γnxn + βnTxn + (1− βn − γn)Txn − q‖2

= ‖γn(xn − q) + βn(Txn − q) + (1− βn − γn)(Txn − q)‖2

≤ γn‖xn − q‖2 + βn‖Txn − q‖2 + (1− βn − γn)‖Txn − q‖2 − γnβnϕ‖xn − Txn‖
≤ ‖xn − q‖2 − γnβnϕ‖xn − Txn‖,

and hence

γnβnϕ‖xn − Txn‖ ≤ ‖xn − q‖2 − ‖un+1 − q‖2

for q ∈ F . Summing from n=1 to ∞, we have

∞∑
n=1

γnβnϕ‖xn − Txn‖ =
∞∑

n=1

(‖xn − q‖2 − ‖un+1 − q‖2)

=
∞∑

n=1

(‖xn − q‖+ ‖un+1 − q‖)(‖xn − q‖ − ‖un+1 − q‖)

≤ 2K
∞∑

n=1

‖un+1 − xn‖

≤ 2K
∞∑

n=1

(1− γn)‖xn − Txn‖

≤ 4K2

∞∑
n=1

(1− γn),

where K = sup
n∈N

{‖xn − q‖}, from
∞∑

n=1

(1− γn) < ∞, we get

∞∑
n=1

γnβnϕ‖xn − Txn‖ ≤ 4K2

∞∑
n=1

(1− γn) < ∞.

Since
∞∑

n=1

γnβn = ∞, from Lemma 2.6, we get lim inf
n→∞

ϕ‖Txn − xn‖ = 0. Hence

lim inf
n→∞

‖Txn − xn‖ = 0. (3.8)
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Since T is a nonexpansive mapping, we have

‖Txn+1 − xn+1‖
= ‖Txn+1 − αnyn − (1− αn)zn‖
= ‖Txn+1 − Txn + Txn + αnTxn − αnTxn − αnyn − (1− αn)zn‖
≤ ‖Txn+1 − Txn‖+ (1− αn)‖Txn − zn‖+ αn‖Txn − yn‖
≤ ‖xn+1 − xn‖+ (1− αn)‖Txn − zn‖+ αn‖Txn − yn‖
= ‖αnyn + (1− αn)zn − xn‖+ (1− αn)‖Txn − zn‖+ αn‖Txn − yn‖
≤ αn‖yn − xn‖+ (1− αn)‖zn − xn‖+ (1− αn)‖Txn − zn‖+ αn‖Txn − yn‖
= αn‖βnxn + (1− βn)Txn − xn‖+ (1− αn)‖γnxn + (1− γn)Sxn − xn‖

+ (1− αn)‖Txn − γnxn − (1− γn)Sxn‖+ αn‖Txn − βnxn − (1− βn)Txn‖
≤ αn(1− βn)‖Txn − xn‖+ (1− αn)(1− γn)‖Sxn − xn‖+ αnβn‖Txn − xn‖

+ γn(1− αn)‖Txn − xn‖+ (1− αn)(1− γn)‖Txn − Sxn‖
≤ αn(1− βn)‖Txn − xn‖+ (1− γn)‖Sxn − xn‖+ αnβn‖Txn − xn‖

+ (1− αn)‖Txn − xn‖+ (1− γn)‖Txn − Sxn‖
≤ ‖Txn − xn‖+ (1− γn)(‖Sxn − xn‖+ ‖Txn − Sxn‖).

Since
∞∑

n=1

(1−γn) < ∞, it follows from Lemma 2.1 that lim
n→∞

‖Txn−xn‖ exists.

Therefore, from (3.8), we get

lim
n→∞

‖Txn − xn‖ = 0.

Then using the same argument we can show that {xn}∞n=0 converges strongly

to a common fixed point of T and S.

Remark 3.1. It is to be noted that (1.2) reduces to (1.1) when T or S equal

to I.

3.2 There exists two sequences {x′n} and {x′′n}
In this part, we prove our main theorem for finding a common fixed point

of nonexpansive mappings in Banach space in the case of two sequences.
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Theorem 3.2. Let C be a nonempty bounded closed convex subset of a uni-

formly convex Banach space E and let T and S be two nonexpansive self map-

pings of C satisfy Condition (I) and F 6= ∅. Given {αn}, {βn} and {γn} are

sequences in (0,1), such that
∑

αn < ∞,
∑

βn < ∞, βn > γn for all n ≥ 1.

Define two sequences {x′n}∞n=0 and {x′′n}∞n=0 in C by the algorithm (1.3),

then {x′n}∞n=0 and {x′′n}∞n=0 strongly converge to a common fixed point of T and

S.

Proof. By the boundedness of C, we obverse that both {x′n} and {x′′n} are

bounded, if we take an arbitrary fixed point q of F , noting that ‖yn − q‖ ≤
‖x′n − q‖ and ‖zn − q‖ ≤ ‖x′′n − q‖, we have

‖x′n+1 − q‖ = ‖αnzn + (1− αn)yn − q‖
≤ αn‖zn − yn‖+ ‖yn − q‖
≤ αn‖yn − q‖+ αn‖zn − q‖+ ‖yn − q‖
≤ (1 + αn)‖x′n − q‖+ αn‖x′′n − q‖.

(3.9)

By Lemma 2.1 and
∑

αn < ∞, thus lim
n→∞

‖x′n − q‖ exists. Denote

lim
n→∞

‖x′n − q‖ = c′.

Similarly, we have

lim
n→∞

‖x′′n − q‖ = c′′.

Since both {x′n} and {x′′n} are bounded, we get {yn} and {zn} are bounded.

Now

‖x′n+1 − q‖ = ‖αnzn + (1− αn)yn − q‖
= ‖αn(zn − yn) + (yn − q)‖
≤ αn‖zn − yn‖+ ‖yn − q‖.

By
∑

αn < ∞, we obtain

lim
n→∞

‖x′n − q‖ ≤ lim inf
n→∞

‖yn − q‖. (3.10)

Since ‖yn − q‖ ≤ ‖x′n − q‖, which implies that

lim sup
n→∞

‖yn − q‖ ≤ lim
n→∞

‖x′n − q‖, (3.11)
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so that (3.10) and (3.11) give

lim
n→∞

‖yn − q‖ = lim
n→∞

‖x′n − q‖ = c′.

Moreover, ‖Tx′n − q‖ ≤ ‖x′n − q‖ implies that

lim sup
n→∞

‖Tx′n − q‖ ≤ c′.

Thus

c′ = lim
n→∞

‖yn − q‖ = lim
n→∞

‖βnx′n + (1− βn)Tx′n − q‖
= lim

n→∞
‖βn(x′n − q) + (1− βn)(Tx′n − q)‖,

given by Lemma 2.2 that

lim
n→∞

‖Tx′n − x′n‖ = 0. (3.12)

By (3.9) and
∑

αn < ∞, then we have

‖x′n+m − q‖ ≤ (1 + αn+m−1)‖x′n+m−1 − q‖+ αn+m−1‖x′′n+m−1 − q‖
≤ eαn+m−1‖x′n+m−1 − q‖+ αn+m−1‖x′′n+m−1 − q‖
≤ eαn+m−1eαn+m−2‖xn+m−2 − q‖

+ eαn+m−1(αn+m−2‖x′′n+m−2 − q‖+ αn+m−1‖x′′n+m−1 − q‖)
≤ . . .

≤ e

n+m−1P
i=n

αi‖x′n − q‖+ e

n+m−1P
i=n

αi ·
n+m−1∑

i=n

αi‖x′′i − q‖.

That is

‖x′n+m − q‖ ≤ L(‖x′n − q‖+
n+m−1∑

i=n

si), (3.13)

where L = e

n+m−1P
i=n

αi

, si = αi‖x′′i − q‖. for all m,n ≥ 1, for all q ∈ F .

Next we prove that {x′n}∞n=0 is Cauchy sequence.

Since q ∈ F arbitrarily and lim
n→∞

‖x′n − q‖ exists, consequently d(x′n, F )

exists by Lemma 2.3. From the Lemma 2.3 and (3.12), we get

lim
n→∞

f(d(x′n, F )) ≤ lim
n→∞

‖x′n − Tx′n‖ = 0
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Since f : [0,∞) → [0,∞) is a nondecreasing function satisfy f(0) = 0, f(r) > 0

for all r ∈ (0,∞), therefore we have

lim
n→∞

d(x′n, F ) = 0.

Let ε > 0, since lim
n→∞

d(x′n, F ) = 0 and
∞∑
i=0

si < ∞, therefore it exists a

constant n0 such that for all n ≥ n0, we have

d(x′n, F ) ≤ ε

2L
,

in particular,

d(x′n0
, F ) ≤ ε

2L
.

There must exist p1 ∈ F , such that

d(x′n0
, p1) ≤ ε

2L
.

From (3.13), it can be obtained that when n ≥ n0,

‖x′n+m − x′n‖ ≤ ‖x′n+m − p1‖+ ‖x′n − p1‖
≤ 2L‖x′n0

− p1‖
≤ 2L · ε

2L
= ε.

This implies {x′n}∞n=0 is a Cauchy sequence in a closed convex subset C of a

Banach space E. Thus, it must converges to a point in C, let lim
n→∞

x′n = x′.

For all ε > 0, as lim
n→∞

x′n = x′, thus there exists a number n1 such that when

n2 ≥ n1,

‖x′n2
− x′‖ ≤ ε

4
. (3.14)

In fact, lim
n→∞

d(x′n, F ) = 0 implies that using the n2 above, when n ≥ n2,

we get

d(x′n, F ) ≤ ε

8
.

In particular, d(x′n2
, F ) ≤ ε

8
. Thus, there must exist x̄′ ∈ F , such that

‖x′n2
− x̄′‖ = d(x′n2

, x̄′) =
ε

8
. (3.15)
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From (3.14) and (3.15), we get

‖Tx′ − x′‖ = ‖Tx′ − x̄′ + Tx′n2
− x̄′ + x̄′ − x′n2

+ x′n2
− x′ + x̄′ − Tx′n2

‖
≤ ‖Tx′ − x̄′‖+ ‖x′n2

− x̄′‖+ ‖x′n2
− x′‖+ 2‖Tx′n2

− x̄′‖
≤ ‖x′ − x̄′‖+ 3‖x′n2

− x̄′‖+ ‖x′n2
− x′‖

≤ ‖x′n2
− x′‖+ ‖x′n2

− x̄′‖+ 3‖x′n2
− x̄′‖+ ‖x′n2

− x′‖
= 4‖x′n2

− x̄′‖+ 2‖x′n2
− x′‖

≤ 4ε

8
+

2ε

4
= ε.

As ε is an arbitrary positive number, thus, Tx′ = x′.

Similarly, we have lim
n→∞

‖Sx′′n−x′′n‖ = 0, and then Sx′′ = x′′(x′′n → x′′ as n →
∞)

Finally, we prove x′ = x′′.

Let wn+1 = αnTx′n + (1 − αn)Sx′′n and ‖x′′n − q‖ ≥ ‖x′n − q‖ for all n ≥ 1.

Then

‖wn+1 − q‖ = αn‖x′n − q‖+ (1− αn)‖x′′n − q‖
≤ max{‖x′n − q‖, ‖x′′n − q‖}
≤ ‖x′′n − q‖.

Now,

‖x′′n+1 − q‖ = ‖αnyn + (1− αn)zn − q‖
= ‖αnβnx′n + αn(1− βn)Tx′n + (1− αn)γnx

′′
n + (1− αn)(1− γn)Sx′′n − q‖

≤ βn‖αnx
′
n + (1− αn)x′′n‖+ ‖αnTx′n + (1− αn)Sx′′n − q‖

= βn‖αnx′n + (1− αn)x′′n‖+ ‖wn+1 − q‖,

since
∑

βn < ∞ and the boundedness of {x′n} and {x′′n}, we get

c′′ ≤ lim
n→∞

‖wn+1 − q‖.

Then we have

lim
n→∞

‖wn+1 − q‖ = c′′.

Moreover, ‖Tx′n − q‖ ≤ ‖x′n − q‖ and ‖Sx′′n − q‖ ≤ ‖x′′n − q‖, imply that

lim sup
n→∞

‖Tx′n − q‖ ≤ c′′ and lim sup
n→∞

‖Sx′′n − q‖ ≤ c′′.
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Thus,

c′′ = lim
n→∞

‖wn+1 − q‖ = ‖αnTx′n + (1− αn)Sx′′n − q‖
= ‖αn(Tx′n − q) + (1− αn)(Sx′′n − q)‖,

given by Lemma 2.2 that

lim
n→∞

‖Sx′′n − Tx′n‖ = 0. (3.16)

So

lim
n→∞

‖x′n+1 − x′′n+1‖
= lim

n→∞
(2αn − 1)‖zn − yn‖

= lim
n→∞

(2αn − 1)‖γn(x′′n − Sx′′n)− βn(x′n − Tx′n) + (Sx′′n − Tx′n)‖,

so we obtain lim
n→∞

‖x′n+1 − x′′n+1‖ = 0 for (3.12) and (3.16), it means x′ = x′′.

This completes the proof.
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