A New Iterative Scheme for Approximating Common Fixed Points of Two Nonexpansive Mappings in Banach Space

Jinzuo Chen ${ }^{1}$ and Dingping Wu ${ }^{2}$

Abstract

In this paper, we introduce the modified iterations of Mann's type for nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of nonexpansive mappings in Banach space by using a new iterative scheme.

Mathematics Subject Classification: 47H09; 47H10; 47J25
Keywords: Strong convergence; Modified Mann iteration; Uniformly convex Banach space; Nonexpansive mapping; Common fixed point

[^0]
1 Introduction

Let E be a real Banach space, C a nonempty closed convex subset of E, and $T: C \rightarrow C$ a mapping. Recall that T is nonexpansive mapping[1] if

$$
\|T x-T y\| \leq\|x-y\| \text { for all } x, y \in C
$$

A point $x \in C$ is a fixed point of T provided $T x=x$. Denote by Fix (T) the set of fixed point of T; that is, $F i x(T)=\{x \in C: T x=x\}$. It is assumed throughout the paper that T is a nonexpansive mapping such that $\operatorname{Fix}(T) \neq \emptyset$.

Iterative methods are often used to solve the fixed point equation $T x=x$. The most well-known method is perhaps the Picard successive iteration method when T is a contraction. Picard's method generates a sequence $\left\{x_{n}\right\}$ successively as $x_{n}=T x_{n-1}$ for $n \geq 1$ with x_{0} arbitrary, and this sequence converges in norm to the unique fixed point of T. However, if T is not a contraction (for instance, if T is nonexpansive), then Picard's successive iteration fail, in general, to converge. Instead, Mann's iteration method [10] prevails. Mann's method, an averaged process in nature, generates a sequence $\left\{x_{n}\right\}$ recursively via

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n}, n \geq 0 \tag{1.1}
\end{equation*}
$$

where the initial guess $x_{0} \in C$ is arbitrarily chosen.
Mann's iteration method (1.1) has been proved to be a powerful method for solving nonlinear operator equations involving nonexpansive mapping, asymptotically nonexpansive mapping, and other kinds of nonlinear mapping; see [2, $3,6-8,10,12,13,15,16]$ and the references therein.

It is known that Mann's iteration method (1.1) is in general not strongly convergent [5] for nonexpansive mappings. So to get strong convergence, one has to modify the iteration method (1.1). In this regard, we will show in Section 3.

Motivated and inspired by the research going on in these fields, we suggest and analyze now new modified Mann's iteration for finding the common fixed point of the nonexpansive mappings in Banach space. We propose the modified Mann's iteration and consider the strong convergence of the approximate solutions for nonexpansive in Banach space.

We suggest and analyze the following two iterative methods:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily } \tag{1.2}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n} \\
z_{n}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) S x_{n} \\
x_{n+1}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}, n \geq 0
\end{array}\right.
$$

and if there exists two sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily } \tag{1.3}\\
y_{n}=\beta_{n} x_{n}^{\prime}+\left(1-\beta_{n}\right) T x_{n}^{\prime} \\
z_{n}=\gamma_{n} x_{n}^{\prime \prime}+\left(1-\gamma_{n}\right) S x_{n}^{\prime \prime} \\
x_{n+1}^{\prime}=\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) y_{n} \\
x_{n+1}^{\prime \prime}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}, n \geq 0
\end{array}\right.
$$

where $\alpha_{n}, \beta_{n}, \gamma_{n}$ are constants satisfying certain conditions.
We write $x_{n} \rightarrow x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges strongly to x. We use F to denote the set of common fixed point of the mappings T and S.

2 Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the next section.

Lemma 2.1. [12] Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be sequences of nonnegative real numbers satisfying the inequality

$$
a_{n+1} \leq\left(1+\delta_{n}\right) a_{n}+b_{n}, n \geq 1
$$

If $\sum_{n=1}^{\infty} \delta_{n}<\infty$ and $\sum_{n=1}^{\infty} b_{n}<\infty$, then
(1) $\lim _{n \rightarrow \infty} a_{n}$ exists;
(2) $\lim _{n \rightarrow \infty} a_{n}=0$ whenever $\liminf _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.2. [14] Suppose that E is a uniformly convex Banach space and $0<t_{n}<1$ for all $n \in N$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of E such that $\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq r, \limsup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq r$ and $\lim _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=r$ hold for $\stackrel{n \rightarrow \infty}{\text { some }} r \geq 0$, then $\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.3. [15] A mapping $T: C \rightarrow C$ with nonempty fixed point set F in C will be said to satisfy Condition (I):

If there is a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=$ $0, f(r)>0$ for all $r \in(0, \infty)$ such that $\|x-T x\| \geq f(d(x, F))$ for all $x \in$ C, where $d(x, F)=\inf \{\|x-p\|: p \in F\}$.

Lemma 2.4. [18] Given a number $r>0$. A real Banach space E is uniformly convex if and only if there exists a continuous strictly increasing function φ : $[0, \infty] \rightarrow[0, \infty], \varphi(0)=0$, such that

$$
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $\lambda \in[0,1]$ and $x, y \in E$ such that $\|x\| \leq r$ and $\|y\| \leq r$.
Note that the inequality in Lemma 2.4 is known as $X u^{\prime} s$ inequality. It follows from Lemma 2.4 that we get the following lemma can be found in [4].

Lemma 2.5. Given a number $r>0$. Let E is a uniformly convex Banach space then there exists a continuous strictly increasing function $\varphi:[0, \infty] \rightarrow$ $[0, \infty]$ with $\varphi(0)=0$, such that

$$
\|\lambda x+\mu y+\gamma z\|^{2} \leq \lambda\|x\|^{2}+\mu\|y\|^{2}+\gamma\|z\|^{2}-\lambda \mu \varphi(\|x-y\|)
$$

for all $\lambda, \mu, \gamma \in[0,1]$ and $x, y, z \in E$ such that $\|x\| \leq r,\|y\| \leq r$ and $\|z\| \leq r$.

Lemma 2.6. [9] Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences of nonnegative real numbers such that $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. If $\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}<\infty$, then $\liminf _{n \rightarrow \infty} \beta_{n}=0$.

3 Convergence to a common fixed point of nonexpansive mappings

3.1 There exists one sequence $\left\{x_{n}\right\}$

In this part, we prove our main theorem for finding a common fixed point of nonexpansive mappings in Banach space in the case of one sequence.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T and S be two nonexpansive self mappings of C satisfy Condition (I) and $F \neq \emptyset$. Given $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $(0,1)$, such that $\sum \alpha_{n}<\infty, \sum \gamma_{n} \beta_{n}=\infty, \sum\left(1-\gamma_{n}\right)<\infty$ for all $n \geq 1$.

Define a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in C by the algorithm (1.2), then $\left\{x_{n}\right\}_{n=0}^{\infty}$ strongly converges to a common fixed point of T and S.

Proof. First, we observe that $\left\{x_{n}\right\}$ is bounded, if we take an arbitrary fixed point q of F, noting that $\left\|y_{n}-q\right\| \leq\left\|x_{n}-q\right\|$ and $\left\|z_{n}-q\right\| \leq\left\|x_{n}-q\right\|$, we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\| & =\left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}-q\right\| \\
& \leq \alpha_{n}\left\|y_{n}-z_{n}\right\|+\left\|z_{n}-q\right\| \\
& \leq \alpha_{n}\left\|y_{n}-q\right\|+\alpha_{n}\left\|z_{n}-q\right\|+\left\|z_{n}-q\right\| \tag{3.1}\\
& \leq\left(1+2 \alpha_{n}\right)\left\|x_{n}-q\right\| .
\end{align*}
$$

By Lemma 2.1 and $\sum \alpha_{n}<\infty$, thus $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists. Denote

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=c
$$

Hence, $\left\{x_{n}\right\}$ is bounded, so are $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$. Now

$$
\begin{aligned}
\left\|x_{n+1}-q\right\| & =\left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}-q\right\| \\
& =\left\|\alpha_{n}\left(y_{n}-z_{n}\right)+\left(z_{n}-q\right)\right\| \\
& \leq \alpha_{n}\left\|y_{n}-z_{n}\right\|+\left\|z_{n}-q\right\| .
\end{aligned}
$$

By $\sum \alpha_{n}<\infty$ and the boundedness of $\left\{z_{n}\right\}$ and $\left\{y_{n}\right\}$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\| \leq \liminf _{n \rightarrow \infty}\left\|z_{n}-q\right\| \tag{3.2}
\end{equation*}
$$

Since $\left\|z_{n}-q\right\| \leq\left\|x_{n}-q\right\|$, which implies that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|z_{n}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|x_{n}-q\right\| \tag{3.3}
\end{equation*}
$$

so that (3.2) and (3.3) give

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=c
$$

Moreover, $\left\|S x_{n}-q\right\| \leq\left\|x_{n}-q\right\|$ implies that

$$
\limsup _{n \rightarrow \infty}\left\|S x_{n}-q\right\| \leq c
$$

Thus

$$
\begin{aligned}
c=\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\| & =\lim _{n \rightarrow \infty}\left\|\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) S x_{n}-q\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\gamma_{n}\left(x_{n}-q\right)+\left(1-\gamma_{n}\right)\left(S x_{n}-q\right)\right\|,
\end{aligned}
$$

given by Lemma 2.2 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

By (3.1) and $\sum \alpha_{n}<\infty$, then we have

$$
\begin{aligned}
\left\|x_{n+m}-q\right\| & \leq\left(1+2 \alpha_{n+m-1}\right)\left\|x_{n+m-1}-q\right\| \\
& \leq e^{2 \alpha_{n+m-1}}\left\|x_{n+m-1}-q\right\| \\
& \leq e^{2 \alpha_{n+m-1}} e^{2 \alpha_{n+m-2}}\left\|x_{n+m-2}-q\right\| \\
& \leq \ldots \\
& \leq e^{2^{n+m-1} \sum_{i=n} \alpha_{i}}\left\|x_{n}-q\right\| .
\end{aligned}
$$

That is

$$
\begin{equation*}
\left\|x_{n+m}-q\right\| \leq M\left\|x_{n}-q\right\|, \tag{3.5}
\end{equation*}
$$

where $M=e^{2} \sum_{i=n}^{n+m-1} \alpha_{i}$, for all $m, n \geq 1$, for all $q \in F$ and for $M>0$.
Next we prove that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is Cauchy sequence.
Since $q \in F$ arbitrarily and $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists, consequently $d\left(x_{n}, F\right)$ exists by Lemma 2.3. From the Lemma 2.3 and (3.4), we get

$$
\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F\right)\right) \leq \lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0
$$

Since $f:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function satisfy $f(0)=0, f(r)>0$ for all $r \in(0, \infty)$, therefore we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0
$$

Let $\varepsilon>0$, since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and therefore exists a constant n_{0} such that for all $n \geq n_{0}$, we have

$$
d\left(x_{n}, F\right) \leq \frac{\varepsilon}{2 M}
$$

in particular,

$$
d\left(x_{n_{0}}, F\right) \leq \frac{\varepsilon}{2 M}
$$

There must exist $p_{1} \in F$, such that

$$
d\left(x_{n_{0}}, p_{1}\right) \leq \frac{\varepsilon}{2 M}
$$

From (3.5), it can be obtained that when $n \geq n_{0}$,

$$
\begin{aligned}
\left\|x_{n+m}-x_{n}\right\| & \leq\left\|x_{n+m}-p_{1}\right\|+\left\|x_{n}-p_{1}\right\| \\
& \leq 2 M\left\|x_{n_{0}}-p_{1}\right\| \\
& \leq 2 M \cdot \frac{\varepsilon}{2 M}=\varepsilon .
\end{aligned}
$$

This implies $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence in a closed convex subset C of a Banach space E. Thus, it must converges to a point in C, let $\lim _{n \rightarrow \infty} x_{n}=p$.

For all $\epsilon>0$, as $\lim _{n \rightarrow \infty} x_{n}=p$, thus there exists a number n_{1} such that when $n_{2} \geq n_{1}$,

$$
\begin{equation*}
\left\|x_{n_{2}}-p\right\| \leq \frac{\epsilon}{4} \tag{3.6}
\end{equation*}
$$

In fact, $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ implies that using the n_{2} above, when $n \geq n_{2}$, we get

$$
d\left(x_{n}, F\right) \leq \frac{\epsilon}{8}
$$

In particular, $d\left(x_{n_{2}}, F\right) \leq \frac{\epsilon}{8}$. Thus, there must exist $\bar{p} \in F$, such that

$$
\begin{equation*}
\left\|x_{n_{2}}-\bar{p}\right\|=d\left(x_{n_{2}}, \bar{p}\right)=\frac{\epsilon}{8} \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we get

$$
\begin{aligned}
\|S p-p\| & =\left\|S p-\bar{p}+S x_{n_{2}}-\bar{p}+\bar{p}-x_{n_{2}}+x_{n_{2}}-p+\bar{p}-S x_{n_{2}}\right\| \\
& \leq\|S p-\bar{p}\|+\left\|x_{n_{2}}-\bar{p}\right\|+\left\|x_{n_{2}}-p\right\|+2\left\|S x_{n_{2}}-\bar{p}\right\| \\
& \leq\|p-\bar{p}\|+3\left\|x_{n_{2}}-\bar{p}\right\|+\left\|x_{n_{2}}-p\right\| \\
& \leq\left\|x_{n_{2}}-p\right\|+\left\|x_{n_{2}}-\bar{p}\right\|+3\left\|x_{n_{2}}-\bar{p}\right\|+\left\|x_{n_{2}}-p\right\| \\
& =4\left\|x_{n_{2}}-\bar{p}\right\|+2\left\|x_{n_{2}}-p\right\| \\
& \leq \frac{4 \epsilon}{8}+\frac{2 \epsilon}{4}=\epsilon .
\end{aligned}
$$

As ϵ is an arbitrary positive number, thus, $S p=p$.
Let

$$
u_{n+1}=\gamma_{n} x_{n}+\beta_{n} T x_{n}+\left(1-\beta_{n}-\gamma_{n}\right) T x_{n}
$$

Then we have

$$
\begin{aligned}
& \left\|u_{n+1}-q\right\|^{2} \\
= & \left\|\gamma_{n} x_{n}+\beta_{n} T x_{n}+\left(1-\beta_{n}-\gamma_{n}\right) T x_{n}-q\right\|^{2} \\
= & \left\|\gamma_{n}\left(x_{n}-q\right)+\beta_{n}\left(T x_{n}-q\right)+\left(1-\beta_{n}-\gamma_{n}\right)\left(T x_{n}-q\right)\right\|^{2} \\
\leq & \gamma_{n}\left\|x_{n}-q\right\|^{2}+\beta_{n}\left\|T x_{n}-q\right\|^{2}+\left(1-\beta_{n}-\gamma_{n}\right)\left\|T x_{n}-q\right\|^{2}-\gamma_{n} \beta_{n} \varphi\left\|x_{n}-T x_{n}\right\| \\
\leq & \left\|x_{n}-q\right\|^{2}-\gamma_{n} \beta_{n} \varphi\left\|x_{n}-T x_{n}\right\|,
\end{aligned}
$$

and hence

$$
\gamma_{n} \beta_{n} \varphi\left\|x_{n}-T x_{n}\right\| \leq\left\|x_{n}-q\right\|^{2}-\left\|u_{n+1}-q\right\|^{2}
$$

for $q \in F$. Summing from $\mathrm{n}=1$ to ∞, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \gamma_{n} \beta_{n} \varphi\left\|x_{n}-T x_{n}\right\| & =\sum_{n=1}^{\infty}\left(\left\|x_{n}-q\right\|^{2}-\left\|u_{n+1}-q\right\|^{2}\right) \\
& =\sum_{n=1}^{\infty}\left(\left\|x_{n}-q\right\|+\left\|u_{n+1}-q\right\|\right)\left(\left\|x_{n}-q\right\|-\left\|u_{n+1}-q\right\|\right) \\
& \leq 2 K \sum_{n=1}^{\infty}\left\|u_{n+1}-x_{n}\right\| \\
& \leq 2 K \sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)\left\|x_{n}-T x_{n}\right\| \\
& \leq 4 K^{2} \sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)
\end{aligned}
$$

where $K=\sup _{n \in \mathbb{N}}\left\{\left\|x_{n}-q\right\|\right\}$, from $\sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)<\infty$, we get

$$
\sum_{n=1}^{\infty} \gamma_{n} \beta_{n} \varphi\left\|x_{n}-T x_{n}\right\| \leq 4 K^{2} \sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)<\infty
$$

Since $\sum_{n=1}^{\infty} \gamma_{n} \beta_{n}=\infty$, from Lemma 2.6, we get $\liminf _{n \rightarrow \infty} \varphi\left\|T x_{n}-x_{n}\right\|=0$. Hence

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

Since T is a nonexpansive mapping, we have

$$
\begin{aligned}
& \left\|T x_{n+1}-x_{n+1}\right\| \\
= & \left\|T x_{n+1}-\alpha_{n} y_{n}-\left(1-\alpha_{n}\right) z_{n}\right\| \\
= & \left\|T x_{n+1}-T x_{n}+T x_{n}+\alpha_{n} T x_{n}-\alpha_{n} T x_{n}-\alpha_{n} y_{n}-\left(1-\alpha_{n}\right) z_{n}\right\| \\
\leq & \left\|T x_{n+1}-T x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|T x_{n}-z_{n}\right\|+\alpha_{n}\left\|T x_{n}-y_{n}\right\| \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|T x_{n}-z_{n}\right\|+\alpha_{n}\left\|T x_{n}-y_{n}\right\| \\
= & \left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|T x_{n}-z_{n}\right\|+\alpha_{n}\left\|T x_{n}-y_{n}\right\| \\
\leq & \alpha_{n}\left\|y_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|z_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|T x_{n}-z_{n}\right\|+\alpha_{n}\left\|T x_{n}-y_{n}\right\| \\
= & \alpha_{n}\left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) S x_{n}-x_{n}\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T x_{n}-\gamma_{n} x_{n}-\left(1-\gamma_{n}\right) S x_{n}\right\|+\alpha_{n}\left\|T x_{n}-\beta_{n} x_{n}-\left(1-\beta_{n}\right) T x_{n}\right\| \\
\leq & \alpha_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left\|S x_{n}-x_{n}\right\|+\alpha_{n} \beta_{n}\left\|T x_{n}-x_{n}\right\| \\
& +\gamma_{n}\left(1-\alpha_{n}\right)\left\|T x_{n}-x_{n}\right\|+\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left\|T x_{n}-S x_{n}\right\| \\
\leq & \alpha_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|+\left(1-\gamma_{n}\right)\left\|S x_{n}-x_{n}\right\|+\alpha_{n} \beta_{n}\left\|T x_{n}-x_{n}\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T x_{n}-x_{n}\right\|+\left(1-\gamma_{n}\right)\left\|T x_{n}-S x_{n}\right\| \\
\leq & \left\|T x_{n}-x_{n}\right\|+\left(1-\gamma_{n}\right)\left(\left\|S x_{n}-x_{n}\right\|+\left\|T x_{n}-S x_{n}\right\|\right) .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)<\infty$, it follows from Lemma 2.1 that $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|$ exists. Therefore, from (3.8), we get

$$
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0
$$

Then using the same argument we can show that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to a common fixed point of T and S.

Remark 3.1. It is to be noted that (1.2) reduces to (1.1) when T or S equal to I.

3.2 There exists two sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$

In this part, we prove our main theorem for finding a common fixed point of nonexpansive mappings in Banach space in the case of two sequences.

Theorem 3.2. Let C be a nonempty bounded closed convex subset of a uniformly convex Banach space E and let T and S be two nonexpansive self mappings of C satisfy Condition (I) and $F \neq \emptyset$. Given $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in (0,1), such that $\sum \alpha_{n}<\infty, \sum \beta_{n}<\infty, \beta_{n}>\gamma_{n}$ for all $n \geq 1$.

Define two sequences $\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}$ and $\left\{x_{n}^{\prime \prime}\right\}_{n=0}^{\infty}$ in C by the algorithm (1.3), then $\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}$ and $\left\{x_{n}^{\prime \prime}\right\}_{n=0}^{\infty}$ strongly converge to a common fixed point of T and S.

Proof. By the boundedness of C, we obverse that both $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ are bounded, if we take an arbitrary fixed point q of F, noting that $\left\|y_{n}-q\right\| \leq$ $\left\|x_{n}^{\prime}-q\right\|$ and $\left\|z_{n}-q\right\| \leq\left\|x_{n}^{\prime \prime}-q\right\|$, we have

$$
\begin{align*}
\left\|x_{n+1}^{\prime}-q\right\| & =\left\|\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) y_{n}-q\right\| \\
& \leq \alpha_{n}\left\|z_{n}-y_{n}\right\|+\left\|y_{n}-q\right\| \tag{3.9}\\
& \leq \alpha_{n}\left\|y_{n}-q\right\|+\alpha_{n}\left\|z_{n}-q\right\|+\left\|y_{n}-q\right\| \\
& \leq\left(1+\alpha_{n}\right)\left\|x_{n}^{\prime}-q\right\|+\alpha_{n}\left\|x_{n}^{\prime \prime}-q\right\| .
\end{align*}
$$

By Lemma 2.1 and $\sum \alpha_{n}<\infty$, thus $\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\|$ exists. Denote

$$
\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\|=c^{\prime}
$$

Similarly, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime \prime}-q\right\|=c^{\prime \prime}
$$

Since both $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ are bounded, we get $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded. Now

$$
\begin{aligned}
\left\|x_{n+1}^{\prime}-q\right\| & =\left\|\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) y_{n}-q\right\| \\
& =\left\|\alpha_{n}\left(z_{n}-y_{n}\right)+\left(y_{n}-q\right)\right\| \\
& \leq \alpha_{n}\left\|z_{n}-y_{n}\right\|+\left\|y_{n}-q\right\| .
\end{aligned}
$$

By $\sum \alpha_{n}<\infty$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\| \leq \liminf _{n \rightarrow \infty}\left\|y_{n}-q\right\| . \tag{3.10}
\end{equation*}
$$

Since $\left\|y_{n}-q\right\| \leq\left\|x_{n}^{\prime}-q\right\|$, which implies that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\| \tag{3.11}
\end{equation*}
$$

so that (3.10) and (3.11) give

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\|=c^{\prime}
$$

Moreover, $\left\|T x_{n}^{\prime}-q\right\| \leq\left\|x_{n}^{\prime}-q\right\|$ implies that

$$
\limsup _{n \rightarrow \infty}\left\|T x_{n}^{\prime}-q\right\| \leq c^{\prime}
$$

Thus

$$
\begin{aligned}
c^{\prime}=\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\| & =\lim _{n \rightarrow \infty}\left\|\beta_{n} x_{n}^{\prime}+\left(1-\beta_{n}\right) T x_{n}^{\prime}-q\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\beta_{n}\left(x_{n}^{\prime}-q\right)+\left(1-\beta_{n}\right)\left(T x_{n}^{\prime}-q\right)\right\|
\end{aligned}
$$

given by Lemma 2.2 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T x_{n}^{\prime}-x_{n}^{\prime}\right\|=0 \tag{3.12}
\end{equation*}
$$

By (3.9) and $\sum \alpha_{n}<\infty$, then we have

$$
\begin{aligned}
\left\|x_{n+m}^{\prime}-q\right\| \leq & \left(1+\alpha_{n+m-1}\right)\left\|x_{n+m-1}^{\prime}-q\right\|+\alpha_{n+m-1}\left\|x_{n+m-1}^{\prime \prime}-q\right\| \\
\leq & e^{\alpha_{n+m-1}}\left\|x_{n+m-1}^{\prime}-q\right\|+\alpha_{n+m-1}\left\|x_{n+m-1}^{\prime \prime}-q\right\| \\
\leq & e^{\alpha_{n+m-1}} e^{\alpha_{n+m-2}}\left\|x_{n+m-2}-q\right\| \\
& +e^{\alpha_{n+m-1}}\left(\alpha_{n+m-2}\left\|x_{n+m-2}^{\prime \prime}-q\right\|+\alpha_{n+m-1}\left\|x_{n+m-1}^{\prime \prime}-q\right\|\right) \\
\leq & \cdots \\
\leq & e^{\sum_{i=n}^{n+m-1} \alpha_{i}}\left\|x_{n}^{\prime}-q\right\|+e^{\sum_{i=n}^{n+m-1} \alpha_{i}} \cdot \sum_{i=n}^{n+m-1} \alpha_{i}\left\|x_{i}^{\prime \prime}-q\right\| .
\end{aligned}
$$

That is

$$
\begin{equation*}
\left\|x_{n+m}^{\prime}-q\right\| \leq L\left(\left\|x_{n}^{\prime}-q\right\|+\sum_{i=n}^{n+m-1} s_{i}\right) \tag{3.13}
\end{equation*}
$$

where $L=e e_{i=n}^{\substack{n+m-1}} \alpha_{i}, s_{i}=\alpha_{i}\left\|x_{i}^{\prime \prime}-q\right\|$. for all $m, n \geq 1$, for all $q \in F$.
Next we prove that $\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}$ is Cauchy sequence.
Since $q \in F$ arbitrarily and $\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-q\right\|$ exists, consequently $d\left(x_{n}^{\prime}, F\right)$ exists by Lemma 2.3. From the Lemma 2.3 and (3.12), we get

$$
\lim _{n \rightarrow \infty} f\left(d\left(x_{n}^{\prime}, F\right)\right) \leq \lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}-T x_{n}^{\prime}\right\|=0
$$

Since $f:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function satisfy $f(0)=0, f(r)>0$ for all $r \in(0, \infty)$, therefore we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, F\right)=0
$$

Let $\varepsilon>0$, since $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, F\right)=0$ and $\sum_{i=0}^{\infty} s_{i}<\infty$, therefore it exists a constant n_{0} such that for all $n \geq n_{0}$, we have

$$
d\left(x_{n}^{\prime}, F\right) \leq \frac{\varepsilon}{2 L},
$$

in particular,

$$
d\left(x_{n_{0}}^{\prime}, F\right) \leq \frac{\varepsilon}{2 L} .
$$

There must exist $p_{1} \in F$, such that

$$
d\left(x_{n_{0}}^{\prime}, p_{1}\right) \leq \frac{\varepsilon}{2 L} .
$$

From (3.13), it can be obtained that when $n \geq n_{0}$,

$$
\begin{aligned}
\left\|x_{n+m}^{\prime}-x_{n}^{\prime}\right\| & \leq\left\|x_{n+m}^{\prime}-p_{1}\right\|+\left\|x_{n}^{\prime}-p_{1}\right\| \\
& \leq 2 L\left\|x_{n_{0}}^{\prime}-p_{1}\right\| \\
& \leq 2 L \cdot \frac{\varepsilon}{2 L}=\varepsilon .
\end{aligned}
$$

This implies $\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}$ is a Cauchy sequence in a closed convex subset C of a Banach space E. Thus, it must converges to a point in C, let $\lim _{n \rightarrow \infty} x_{n}^{\prime}=x^{\prime}$.

For all $\epsilon>0$, as $\lim _{n \rightarrow \infty} x_{n}^{\prime}=x^{\prime}$, thus there exists a number n_{1} such that when $n_{2} \geq n_{1}$,

$$
\begin{equation*}
\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\| \leq \frac{\epsilon}{4} . \tag{3.14}
\end{equation*}
$$

In fact, $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, F\right)=0$ implies that using the n_{2} above, when $n \geq n_{2}$, we get

$$
d\left(x_{n}^{\prime}, F\right) \leq \frac{\epsilon}{8}
$$

In particular, $d\left(x_{n_{2}}^{\prime}, F\right) \leq \frac{\epsilon}{8}$. Thus, there must exist $\bar{x}^{\prime} \in F$, such that

$$
\begin{equation*}
\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|=d\left(x_{n_{2}}^{\prime}, \bar{x}^{\prime}\right)=\frac{\epsilon}{8} . \tag{3.15}
\end{equation*}
$$

From (3.14) and (3.15), we get

$$
\begin{aligned}
\left\|T x^{\prime}-x^{\prime}\right\| & =\left\|T x^{\prime}-\bar{x}^{\prime}+T x_{n_{2}}^{\prime}-\bar{x}^{\prime}+\bar{x}^{\prime}-x_{n_{2}}^{\prime}+x_{n_{2}}^{\prime}-x^{\prime}+\bar{x}^{\prime}-T x_{n_{2}}^{\prime}\right\| \\
& \leq\left\|T x^{\prime}-\bar{x}^{\prime}\right\|+\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|+\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\|+2\left\|T x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\| \\
& \leq\left\|x^{\prime}-\bar{x}^{\prime}\right\|+3\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|+\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\| \\
& \leq\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\|+\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|+3\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|+\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\| \\
& =4\left\|x_{n_{2}}^{\prime}-\bar{x}^{\prime}\right\|+2\left\|x_{n_{2}}^{\prime}-x^{\prime}\right\| \\
& \leq \frac{4 \epsilon}{8}+\frac{2 \epsilon}{4}=\epsilon .
\end{aligned}
$$

As ϵ is an arbitrary positive number, thus, $T x^{\prime}=x^{\prime}$.
Similarly, we have $\lim _{n \rightarrow \infty}\left\|S x_{n}^{\prime \prime}-x_{n}^{\prime \prime}\right\|=0$, and then $S x^{\prime \prime}=x^{\prime \prime}\left(x_{n}^{\prime \prime} \rightarrow x^{\prime \prime}\right.$ as $n \rightarrow$ $\infty)$

Finally, we prove $x^{\prime}=x^{\prime \prime}$.
Let $w_{n+1}=\alpha_{n} T x_{n}^{\prime}+\left(1-\alpha_{n}\right) S x_{n}^{\prime \prime}$ and $\left\|x_{n}^{\prime \prime}-q\right\| \geq\left\|x_{n}^{\prime}-q\right\|$ for all $n \geq 1$. Then

$$
\begin{aligned}
\left\|w_{n+1}-q\right\| & =\alpha_{n}\left\|x_{n}^{\prime}-q\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}^{\prime \prime}-q\right\| \\
& \leq \max \left\{\left\|x_{n}^{\prime}-q\right\|,\left\|x_{n}^{\prime \prime}-q\right\|\right\} \\
& \leq\left\|x_{n}^{\prime \prime}-q\right\| .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left\|x_{n+1}^{\prime \prime}-q\right\| & =\left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) z_{n}-q\right\| \\
& =\left\|\alpha_{n} \beta_{n} x_{n}^{\prime}+\alpha_{n}\left(1-\beta_{n}\right) T x_{n}^{\prime}+\left(1-\alpha_{n}\right) \gamma_{n} x_{n}^{\prime \prime}+\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right) S x_{n}^{\prime \prime}-q\right\| \\
& \leq \beta_{n}\left\|\alpha_{n} x_{n}^{\prime}+\left(1-\alpha_{n}\right) x_{n}^{\prime \prime}\right\|+\left\|\alpha_{n} T x_{n}^{\prime}+\left(1-\alpha_{n}\right) S x_{n}^{\prime \prime}-q\right\| \\
& =\beta_{n}\left\|\alpha_{n} x_{n}^{\prime}+\left(1-\alpha_{n}\right) x_{n}^{\prime \prime}\right\|+\left\|w_{n+1}-q\right\|,
\end{aligned}
$$

since $\sum \beta_{n}<\infty$ and the boundedness of $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$, we get

$$
c^{\prime \prime} \leq \lim _{n \rightarrow \infty}\left\|w_{n+1}-q\right\|
$$

Then we have

$$
\lim _{n \rightarrow \infty}\left\|w_{n+1}-q\right\|=c^{\prime \prime}
$$

Moreover, $\left\|T x_{n}^{\prime}-q\right\| \leq\left\|x_{n}^{\prime}-q\right\|$ and $\left\|S x_{n}^{\prime \prime}-q\right\| \leq\left\|x_{n}^{\prime \prime}-q\right\|$, imply that

$$
\limsup _{n \rightarrow \infty}\left\|T x_{n}^{\prime}-q\right\| \leq c^{\prime \prime} \text { and } \limsup _{n \rightarrow \infty}\left\|S x_{n}^{\prime \prime}-q\right\| \leq c^{\prime \prime}
$$

Thus,

$$
\begin{aligned}
c^{\prime \prime}=\lim _{n \rightarrow \infty}\left\|w_{n+1}-q\right\| & =\left\|\alpha_{n} T x_{n}^{\prime}+\left(1-\alpha_{n}\right) S x_{n}^{\prime \prime}-q\right\| \\
& =\left\|\alpha_{n}\left(T x_{n}^{\prime}-q\right)+\left(1-\alpha_{n}\right)\left(S x_{n}^{\prime \prime}-q\right)\right\|,
\end{aligned}
$$

given by Lemma 2.2 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S x_{n}^{\prime \prime}-T x_{n}^{\prime}\right\|=0 \tag{3.16}
\end{equation*}
$$

So

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|x_{n+1}^{\prime}-x_{n+1}^{\prime \prime}\right\| \\
= & \lim _{n \rightarrow \infty}\left(2 \alpha_{n}-1\right)\left\|z_{n}-y_{n}\right\| \\
= & \lim _{n \rightarrow \infty}\left(2 \alpha_{n}-1\right)\left\|\gamma_{n}\left(x_{n}^{\prime \prime}-S x_{n}^{\prime \prime}\right)-\beta_{n}\left(x_{n}^{\prime}-T x_{n}^{\prime}\right)+\left(S x_{n}^{\prime \prime}-T x_{n}^{\prime}\right)\right\|,
\end{aligned}
$$

so we obtain $\lim _{n \rightarrow \infty}\left\|x_{n+1}^{\prime}-x_{n+1}^{\prime \prime}\right\|=0$ for (3.12) and (3.16), it means $x^{\prime}=x^{\prime \prime}$. This completes the proof.

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Grant No. 11171046) and supported by the Scientific Research Foundation of CUIT(No. KYTZ201004).

References

[1] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad., 53, (1965), 1272-1276.
[2] F.E. Browder and W.V. Petryshyn, Construction of fixed point of nonlinear mappings in Hilbert spaces, J. Math. Appl., 20, (1967), 197-228.
[3] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image constrution, Inverse Probl., 20, (2004), 103-120.
[4] Y.J. Cho, H.Y. Zhou and G.T. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47, (2004), 707-717.
[5] A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22, (1975), 81-86.
[6] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73, (1967), 957-961.
[7] T.H. Kim and H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., 61, (2005), 51-60.
[8] T.H. Kim and H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 64, (2006), 1140-1152.
[9] K.S. Kim, Approximating common fixed points of nonspreading-type mappings and nonexpansive mappings in a Hilbert space, Abstract and Applied Analysis, 2012(2012), doi: 10.1155/2012/594218
[10] W.R. Mann, Mean value methods on iteration, Proc. Amer. Math. Soc., 4, (1953), 506-510.
[11] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279, (2003), 372-379.
[12] K. Nammanee, M.A. Noor and S. Suantai, Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 314, (2006), 320-334.
[13] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67, (1979), 274-276.
[14] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43, (1991), 153-159.
[15] H.F. Senter and W.G. Dotson, Jr, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44, (1974), 375-380.
[16] H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, (2002), 240-256.
[17] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314, (2006), 631-643.
[18] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16, (1991), 1127-1138.

[^0]: ${ }^{1}$ College of Applied Mathematics, Chengdu University of Information Technology. E-mail: chanjanegeoger@163.com.
 ${ }^{2}$ College of Applied Mathematics, Chengdu University of Information Technology. E-mail: wdp68@163.com

