Numerical computation and series solution for mathematical model of HIV/AIDS

Deborah O. Odulaja ${ }^{1}$, L.M. Erinle-Ibrahim ${ }^{1}$ and Adedapo C. Loyinmi ${ }^{2}$

Abstract

In this paper, a mathematical model of HIV/AIDS model was examined and of particular interest is the stability of equilibrium solutions. The characteristic equation which gives the Eigen values was examined. By series solution method the behaviour of the viruses and CD4 ${ }^{+}$Tcells was looked into. It was shown that if the recovery rate is high enough, the healthy CD^{+}Tcell may never die out completely. Hence the patient that test HIV positive, may never develop into full-blown AIDS.

Keyword: CD4 ${ }^{+}$Tcell

[^0]Article Info: Received : August 26, 2013. Revised : October 26, 2013.
Published online : December 10, 2013.

1 Introduction

AIDS is caused by Human Immunodeficiency Virus (HIV) infection and is characterized by a severe reduction in $\mathrm{CD4}^{+}$Tcells, which means an infected person develops a very weak immune system and becomes vulnerable to contracting life-threatening infection (such as pneumocysticcarinii pneumonia). AIDS (Acquired immunodeficiency syndrome) occurs late in HIV disease. The first cares of AIDS were reported in the United States in the spring of 1981. By 1983 HIV had been isolated. Several mathematicians have proposed models to describe the dynamics of the HIV/AIDS infection of CD4 ${ }^{+}$Tcells. In particular Ayeni etal [1,2] proposed the following model:
$\frac{d X}{d t}=-\left(d_{1}+k_{1} V_{*}\right) X+\mu Y-k_{1} T_{*} Z$
$\frac{d Y}{d t}=k_{1} V_{*} X-\left(d_{2}+\mu\right) Y+k_{1} T_{*} Z$
$\frac{d Z}{d t}=k_{2} Y-C Z$
where:
$T=$ Population of CD4 ${ }^{+} \mathrm{T}$ cells; $T_{i}=$ Population of infected $\mathrm{CD} 4^{+} \mathrm{T}$ cells;
$V=$ Virus; $\pi=$ Production rate of $\mathrm{CD} 4^{+} \mathrm{T}$ cells; $d_{1}=$ National death rate of healthy $\mathrm{CD} 4^{+} \mathrm{T}$ cells; $d_{2}=$ Death rate of infected $\mathrm{CD} 4^{+} \mathrm{T}$ cells; $k_{1}=$ Viral infection rate of $\mathrm{CD} 4^{+} \mathrm{T}$ cells; $k_{2}=$ Viral production rate for $\mathrm{CD} 4^{+} \mathrm{T}$ cells; $C=$ Viral clearance rate.

Clearance

$T d_{1} \rightarrow$ Death of normal CD4 ${ }^{+} \mathrm{T}$ cells; $T_{i} d_{2} \rightarrow$ Death of infected $\mathrm{CD} 4^{+} \mathrm{T}$ cells
$V C \rightarrow$ Viral clearance rate.
Ayeni (2010) replaced equation (1.1) by
$\frac{d T}{d t}=\pi-d_{1} T-\frac{k_{1} T V}{1+\alpha V}+\mu T_{i}$
and (1.2) by

$$
\begin{equation*}
\frac{d T_{i}}{d t}=\frac{k_{1} T V}{1+\alpha V}-d_{2} T_{i}-\mu T_{i} \tag{1.5}
\end{equation*}
$$

where $\alpha=$ Disease related to death rate .
The mathematical model of (1.1) - (1.3) and (1.4) and (1.5) have not been fully established in literature. So the research goes on and on this basis we propose the following model:

2 Mathematical Formulation

A model of HIV infection similar to (1.1) and (1.2) but using $\frac{k_{1} T V}{1+\alpha V}$ for infection $\mathrm{CD} 4^{+} \mathrm{T}$ cells is proposed.

Thus the model is

$$
\begin{array}{rlrl}
\frac{d T}{d t} & =\pi-d_{1} T-\frac{k_{1} T V}{1+\alpha V}+\mu T_{i}, & & T(0)=T_{0} \\
\frac{d T_{i}}{d t} & =\frac{k_{1} T V}{1+\alpha V}-d_{2} T_{i}-\mu T_{i}, & & T_{i}(0)=T_{i(0)} \tag{2.1}\\
\frac{d V}{d t} & =k_{2} T_{i}-C V, & V(0)=V_{0}
\end{array}
$$

3 Models

3.1 Method of Solution

To obtain the critical point, we set in infected free equilibrium then, $\frac{d T}{d t}=\frac{d T_{i}}{d t}=\frac{d V}{d t}=0$.

Equation (2.1) becomes

$$
\begin{aligned}
& \pi-d_{1} T-\frac{k_{1} T V}{1+\alpha V}+\mu T_{i}=0 \\
& \frac{k_{1} T V}{1+\alpha V}-d_{2} T_{i}-\mu T_{i}=0 \\
& k_{2} T_{i}-C V=0
\end{aligned}
$$

when there is no CD4 4^{+}cells infection then $V=T_{i}=0$.
And equation (3.1) becomes $\pi-d_{1} T=0$, with $T=\frac{\pi}{d_{1}}$.
So the un- infected equilibrium is $(T, 0,0)=\left(\frac{\pi}{d_{1}}, 0,0\right)$.
The infected equilibrium when there is $\mathrm{CD} 4^{+}$Tcells infections is $\mathrm{V} \neq 0, \mathrm{~T}_{1} \neq 0$.

$$
\begin{array}{ll}
\frac{d T}{d t}=\pi-d_{1} T-\frac{k_{1} T V}{1+\alpha V}+\mu T_{i} & T(0)=T_{0} \\
\frac{d T_{i}}{d t}=\frac{k_{1} T V}{1+\alpha V}-d_{2} T_{i}-\mu T_{i} & T_{i}(0)=T_{i(0)} \\
\frac{d V}{d t}=k_{2} T_{i}-C V & V(0)=V_{0} \tag{3.1c}
\end{array}
$$

Then equation (3.1c) becomes

$$
\begin{gather*}
C V=k_{2} T_{i} \\
V=\frac{k_{2} T_{i}}{C} \tag{3.2}
\end{gather*}
$$

Substituting (3.2) in (3.1b)

$$
\frac{k_{1} T\left(\frac{k_{2} T_{i}}{C}\right)}{1+\alpha\left(\frac{k_{2} T_{i}}{C}\right)}-d_{2} T_{i}-\mu T_{i}=0
$$

Then

$$
\begin{equation*}
T=\frac{\left(d_{2}+\mu\right)\left(C+\alpha k_{2} T_{i}\right)}{k_{2} k_{1}} \tag{3.3}
\end{equation*}
$$

Substituting (3.2) and (3.3) in equation (3.1a)

$$
\pi-d_{1}\left(\frac{\left(d_{2}+\mu\right)\left(C+\alpha k_{2} T_{i}\right)}{k_{2} k_{1}}\right)-\frac{k_{1}\left(\frac{\left(d_{2}+\mu\right)\left(C+\alpha k_{2} T_{i}\right)}{k_{2} k_{1}}\right)\left(\frac{k_{2} T_{i}}{C}\right)}{1+\alpha\left(\frac{k_{2} T_{i}}{C}\right)}+\mu T_{i}=0 .
$$

Then the equation becomes

$$
T_{i}=\frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha d_{1} k_{2}\left(d_{2}+\mu\right)+k_{2} k_{1} d_{2}}
$$

Then

$$
V=\frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha C d_{1}\left(d_{2}+\mu\right)+C k_{1} d_{2}} .
$$

Now T becomes

$$
T=\frac{\left(d_{2}+\mu\right) C}{k_{2} k_{1}}+\frac{\alpha k_{2}\left(d_{2}+\mu\right)}{k_{2} k_{1}}\left(\frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha d_{1} k_{2}\left(d_{2}+\mu\right)+k_{2} k_{1} d_{2}}\right) .
$$

Then the infected equilibrium is

$$
\begin{array}{r}
\left(\frac{\left(d_{2}+\mu\right) C}{k_{2} k_{1}}+\frac{\alpha k_{2}\left(d_{2}+\mu\right)}{k_{2} k_{1}}\left(\frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha d_{1} k_{2}\left(d_{2}+\mu\right)+k_{2} k_{1} d_{2}}\right), \frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha d_{1} k_{2}\left(d_{2}+\mu\right)+k_{2} k_{1} d_{2}}\right. \\
\left.\frac{\pi k_{2} k_{1}-C d_{1}\left(d_{2}+\mu\right)}{\alpha C d_{1}\left(d_{2}+\mu\right)+C k_{1} d_{2}}\right)
\end{array}
$$

3.2 Reduction to origin

$$
x=T-T_{*} \quad T=x+T_{*}
$$

Let

$$
\begin{array}{ll}
y=T_{i}-T_{i^{*}} & T_{i^{*}}=y+T_{i^{*}} \\
z=V-V_{*} & V=z+V_{*}
\end{array}
$$

where $\left(T_{*}, T_{i^{*}}, V_{*}\right)$ is the infected equilibrium such that
$\pi-d_{1} T_{*}-\frac{k_{1} T_{*} V_{*}}{1+\alpha V_{*}}+\mu T_{i^{*}}=0$
$\frac{k_{1} T_{*} V_{*}}{1+\alpha V_{*}}-d_{2} T_{i^{*}}-\mu T_{i^{*}}=0$
$k_{2} T_{i^{*}}-C V_{*}=0$
Then

$$
\begin{equation*}
\frac{d x}{d t}=\frac{d T}{d t}, \frac{d y}{d t}=\frac{d T_{i}}{d t}, \frac{d z}{d t}=\frac{d V}{d t} \tag{3.2.2}
\end{equation*}
$$

Substituting (3.2. 1) and (3.2.2) in (3.1)

$$
\begin{align*}
& \frac{d x}{d t}=\pi-d_{1}\left(x+T_{*}\right)-\frac{k_{1}\left(x+T_{*}\right)\left(z+V_{*}\right)}{1+\alpha\left(z+V_{*}\right)}+\mu\left(y+T_{i^{*}}\right) \\
& \frac{d y}{d t}=\frac{k_{1}\left(x+T_{*}\right)\left(z+V_{*}\right)}{1+\alpha\left(z+V_{*}\right)}-d_{2}\left(y+T_{i^{*}}\right)-\mu\left(y+T_{i^{*}}\right) \tag{3.2.3}\\
& \frac{d V}{d t}=k_{2}\left(y+T_{i^{*}}\right)-C\left(z+V_{*}\right)
\end{align*}
$$

Then equation (3.2.3) becomes,
$\frac{d x}{d t}=\left(-d_{1}+\frac{k_{1} V_{*}}{1+\alpha V_{*}}\right) x+\mu y-\frac{k_{1} T_{*} z}{1+\alpha V_{*}}+$ nonlinearterms
$\frac{d y}{d t}=\frac{k_{1} V_{*}}{1+\alpha V_{*}} x-\left(d_{2}+\mu\right) y+\frac{k_{1} T_{*} z}{1+\alpha V_{*}}+$ nonlinearterms
$\frac{d z}{d t}=k_{2} y-C z+$ nonlinearterms
So
$\left(\begin{array}{c}\frac{d x}{d t} \\ \frac{d y}{d t} \\ \frac{d z}{d t}\end{array}\right)=\left(\begin{array}{ccc}\left(-d_{1}+\frac{k_{1} V_{*}}{1+\alpha V_{*}}\right) & \mu & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ \frac{k_{1} V_{*}}{1+\alpha V_{*}} & -\left(d_{2}+\mu\right) & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ 0 & k_{2} & -C\end{array}\right)+($ nonlinearterms $)$
Then
$\left(\begin{array}{l}\frac{d x}{d t} \\ \frac{d y}{d t} \\ \frac{d z}{d t}\end{array}\right)=A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+($ nonlinearterms $)$
$|A-\lambda I|=0$
where
$A=\left(\begin{array}{ccc}\left(-d_{1}+\frac{k_{1} V_{*}}{1+\alpha V_{*}}\right) & \mu & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ \frac{k_{1} V_{*}}{1+\alpha V_{*}} & -\left(d_{2}+\mu\right) & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ 0 & k_{2} & -C\end{array}\right)$
$|A-\lambda I|=\left|\begin{array}{ccc}\left(-d_{1}+\frac{k_{1} V_{*}}{1+\alpha V_{*}}\right)-\lambda & \mu & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ \frac{k_{1} V_{*}}{1+\alpha V_{*}} & -\left(d_{2}+\mu\right)-\lambda & \frac{k_{1} T_{*}}{1+\alpha V_{*}} \\ 0 & k_{2} & -C-\lambda \\ & & \end{array}\right|$
Let $\pi=50, d_{1}=d_{2}=0.01, k_{1}=k_{2}=0.03, C=0.01, \mu=0.01$ and $\alpha=2$.
Substituting the parameters in (3.4).
Then
$\left(T_{*}, T_{i^{*}}, V_{*}\right)=(2857.24,2142.76,6428.28)$.
So
$|A-\lambda I|=\left|\begin{array}{ccc}-0.0249-\lambda & 0.01 & -0.0067 \\ 0.0149 & -0.02-\lambda & 0.0067 \\ 0 & 0.03 & -0.01-\lambda\end{array}\right|=0$
$\lambda^{3}+0.0549 \lambda^{2}+0.000597 \lambda+0.000001255=0$
The eigenvalues of the system are check by MATLAB function and it gives
$\lambda_{1}=-0.002774, \lambda_{2}=-0.041125, \lambda_{3}=-0.0110004$.
Therefore the Eigenvalues of this system are $\lambda=-0.0028,-0.0411$ and -0.011 , hence this system is asymptotically stable.

The conclusion of this system is similar to
Theorem (Derrick and Grossman 1976)
Let $V\left(x_{1}, x_{2}, x_{3}\right)$ be a lyapunov function the system
$x_{1}^{1}=f_{1}\left(x_{1}, x_{2}, x_{3}\right)$
$x_{2}^{1}=f_{2}\left(x_{1}, x_{2}, x_{3}\right)$
$x_{3}^{1}=f_{3}\left(x_{1}, x_{2}, x_{3}\right)$
Then,
$V^{1}=\left(x_{1} X_{2} x_{3}\right)$ is negative semi definite the origin is stable
$V^{1}=\left(x_{1} x_{2} x_{3}\right)$ is negative definite, the origin is asymptotically stable $V^{1}=\left(x_{1} x_{2} x_{3}\right)$ is positive definite the origin is unstable

4 Numerical solution

Substituting (3.2.1) and (3.2.2) in (1.1)-(1.3), it becomes
$\frac{d x}{d t}=\left(-d_{1}+\frac{k_{1} V_{*}}{1+\alpha V_{*}}\right) x+\mu y-\frac{k_{1} T_{*} z}{1+\alpha V_{*}}+$ nonlinearterms
$\frac{d y}{d t}=\frac{k_{1} V_{*}}{1+\alpha V_{*}} x-\left(d_{2}+\mu\right) y+\frac{k_{1} T_{*} z}{1+\alpha V_{*}}+$ nonlinearterms
$\frac{d z}{d t}=k_{2} y-C z+$ nonlinearterms
$\frac{d x}{d t}=\frac{k_{1}\left(x+T_{*}\right)\left(z+V_{*}\right)}{1+\alpha\left(z_{0}+V_{*}\right)}$
$\frac{d y}{d t}=\frac{k_{1} V_{*} x\left(x+T_{*}\right)\left(z+V_{*}\right)-}{1+\alpha\left(z_{0}+V_{*}\right)}$
$\frac{d z}{d t}=k_{2} y-c z$
In order to find the approximate solution to the model, power series solution is used.

Let the solution to the system (1) be
$x(t)=x_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$
$y(t)=y_{0}+b_{1} t+b_{2} t^{2}+\cdots+b_{n} t^{n}$
$z(t)=z_{0}+m_{1} t+m_{2} t^{2}+\cdots+m_{n} t^{n}$
Let
$x_{1}(t)=x_{0}+a_{1} t$
$y_{1}(t)=y_{0}+b_{1} t$
$z_{1}(t)=z_{0}+m_{1} t$
$x_{1}^{2}(t)=a_{1}, \quad y_{1}^{2}(t)=b_{1}, \quad z_{1}^{2}(t)=m_{1}$
Substituting (4.2) and (4.2.1) in (4.1), the system becomes

$$
\begin{align*}
& a_{1}=\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] x_{0}+\mu y_{0}\left(1+\alpha z_{0}+\alpha V_{*}\right)-k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)} \\
& b_{1}=\frac{k_{1} V_{*} x_{0}-\left[\left(d_{2}+\mu\right)\left(1+\alpha z_{0}+\alpha V_{*}\right)\right] y_{0}+k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)} \tag{4.2.2}\\
& m_{1}=k_{2} y_{0}-C z_{0}
\end{align*}
$$

Then equation (4.2) can be written as

$$
x_{1}(t)=x_{0}+\left(\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] x_{0}+\mu y_{0}\left(1+\alpha z_{0}+\alpha V_{*}\right)-k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) t
$$

$$
\begin{aligned}
& y_{1}(t)=y_{0}+\left(\frac{k_{1} V_{*} x_{0}-\left[\left(d_{2}+\mu\right)\left(1+\alpha z_{0}+\alpha V_{*}\right)\right] y_{0}+k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) t \\
& z_{1}(t)=z_{0}+\left(k_{2} y_{0}-C z_{0}\right) t
\end{aligned}
$$

Let

$$
\begin{align*}
& x_{2}(t)=x_{0}+\left(\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] x_{0}+\mu y_{0}\left(1+\alpha z_{0}+\alpha V_{*}\right)-k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) t+a_{2} t^{2} \\
& y_{2}(t)=y_{0}+\left(\frac{k_{1} V_{*} x_{0}-\left[\left(d_{2}+\mu\right)\left(1+\alpha z_{0}+\alpha V_{*}\right)\right] y_{0}+k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) t+b_{2} t^{2} \tag{4.2.3}\\
& z_{2}(t)=z_{0}+\left(k_{2} y_{0}-C z_{0}\right) t+m_{2} t^{2}
\end{align*}
$$

Perturb (4.2.3) and substitute into (1), we have

$$
\begin{align*}
& \begin{aligned}
& a_{2}=\frac{1}{2}\{ \frac{-}{}\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] \\
& 1+\alpha\left(z_{0}+V_{*}\right)
\end{aligned} \\
& \times\left(\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] x_{0}+\mu y_{0}\left(1+\alpha z_{0}+\alpha V_{*}\right)-k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) \\
&\left.+\mu\left(\frac{k_{1} V_{*} x_{0}+\left(d_{1}+\mu\right)\left(1+\alpha z_{0}+\alpha V_{*}\right) y_{0}+k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right)-\frac{k_{1} T_{*}\left(k_{2} y_{0}-C z_{0}\right)}{\left(1+\alpha z_{0}+\alpha V_{*}\right)}\right\} \\
& b_{2}=\frac{1}{2}\left\{\frac{k_{1} T_{*}}{\left(1+\alpha z_{0}+\alpha V_{*}\right)}\right. \tag{4.2.4}\\
& \times\left(\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right] x_{0}+\mu y_{0}\left(1+\alpha z_{0}+\alpha V_{*}\right)-k_{1} T_{*} z_{0}}{1+\alpha\left(z_{0}+V_{*}\right)}\right) \\
& \quad-\left(d_{1}+\mu\right)\left(\frac{k_{1} V_{*} x_{0}-\left(d_{1}+\mu\right)\left(1+\alpha z_{0}+\alpha V_{*}\right) y_{0}+k_{1} T_{*} z_{0}}{\left.1+\alpha\left(z_{0}+V_{*}\right)+\frac{k_{1} T_{*}\left(k_{2} y_{0}-C z_{0}\right)}{\left(1+\alpha z_{0}+\alpha V_{*}\right)}\right\}}\right. \\
& m_{2}= \frac{1}{2}\{
\end{align*}
$$

Substituting (4.2.2) into (4.2.4)

$$
\begin{aligned}
& a_{2}=\frac{1}{2}\left(\frac{-\left[d_{1}\left(1+\alpha z_{0}+\alpha V_{*}\right)+k_{1} V_{*}\right]}{1+\alpha\left(z_{0}+V_{*}\right)} a_{1}+\mu b_{1}-\frac{k_{1} T_{*}}{\left(1+\alpha z_{0}+\alpha V_{*}\right)} m_{1}\right) \\
& b_{2}=\frac{1}{2}\left(\frac{k_{1} T_{*}}{\left(1+\alpha z_{0}+\alpha V_{*}\right)} a_{1}-\left(d_{1}+\mu\right) b_{1}+\frac{k_{1} T_{*}}{\left(1+\alpha z_{0}+\alpha V_{*}\right)} m_{1}\right)
\end{aligned}
$$

$$
m_{2}=\frac{1}{2}\left(k_{2} b_{1}-C m_{1}\right)
$$

Let
$x_{0} \neq 0, \quad y_{0}=0, \quad z_{0}=0, T_{*}=T_{*} \neq 0, T_{i^{*}}=0, \quad V_{*}=0$.
Substituting case 1 in (4.2.2)

$$
\begin{aligned}
& a_{1}=-d_{1} x_{0}, \quad b_{1}=0, m_{1}=0 \\
& a_{2}=\frac{d_{1}}{2}\left(-d_{1} x_{0}\right)=-\frac{d_{1}^{2}}{2} x_{0}, b_{2}=0, m_{2}=0
\end{aligned}
$$

Then the series become
$x(t)=x_{0}+x_{0} d_{1} t+x_{0} \frac{d_{1}^{2} t^{2}}{2}+\cdots+x_{0} \frac{d_{1}^{n} t^{n}}{n}$
when $x_{0}=20, d_{2}=0.01$
$x(t)=20\left(1-0.01 t+\frac{0.01^{2}}{2} t^{2}+\cdots\right)$
when $x_{0}=10, d_{2}=1$
$x(t)=10\left(1-t+\frac{t^{2}}{2}+\cdots\right)$

Case 2

Let $x_{0} \neq 0, \quad y_{0}=0, \quad z_{0}=0, T_{*}=T_{*} \neq 0, T_{i^{*}}=0, \quad V_{*}=0$
Substituting case 2 in (4.2.2)

$$
\begin{aligned}
& a_{2}=\frac{1}{2}\left(d_{1} a_{1}+\mu b_{1}-\frac{k_{1} T_{0}}{\left(1+\alpha z_{0}\right)} m_{1}\right) \\
& b_{2}=\frac{1}{2}\left(-\left(d_{1}+\mu\right) b_{1}+\frac{k_{1} T_{0}}{\left(1+\alpha z_{0}\right)} m_{1}\right) \\
& m_{2}=\frac{1}{2}\left(k_{2} b_{1}-C m_{1}\right)
\end{aligned}
$$

If $x_{0}=10, y_{0}=2, z_{0}=2, T_{0}=5$ and considering other parameter $k_{1}=k_{2}=3$, $d_{1}=d_{2}=1$, and $c=1$.

We have the following solutions:

Figure 1: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=1 / 5$ and $\alpha=1 / 5$

Figure 2: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=1 / 2$ and $\alpha=1 / 5$

Figure 3: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=1$ and $\alpha=1 / 5$

Figure 4: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=3 / 2$ and $\alpha=1 / 5$

Figure 5: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=2$ and $\alpha=1 / 5$

Figure 6: Graph of x (CD4+T cells), y (infected cells), z (virus) against time at $\mu=3$ and $\alpha=1 / 5$

5 Conclusion

Figure 1 shows that the healthy $\mathrm{CD} 4+\mathrm{T}$ cells are all infected around $\mathrm{t}=0.325$, when $\mu=0.2$

Figure 2 shows that the healthy CD4+T cells are all infected around $t=0.3125$, when $\mu=0.5$

Figure 3 shows that the healthy CD4+T cells are all infected around $t=0.3625$, when $\mu=1$

Figure 4 shows that the healthy CD4+T cells are all infected around $t=0.3875$, when $\mu=1.5$

Figure 5 shows that the healthy CD4+T cells are all infected around $t=0.4$, when $\mu=2$
Figure 6 shows that the healthy CD4+T cells are all infected around $\mathrm{t}=0.4875$, when $\mu=3$

The above results show that as μ increases, the duration of time for all the $\mathrm{CD} 4^{+} \mathrm{T}$ cells to get infected also increases μ is the recovery rate of the $\mathrm{CD} 4^{+} \mathrm{T}$ cells. This implies that when the recovery rate μ is high, $\mathrm{CD} 4^{+} \mathrm{T}$ cells take longer time for all to get infected.

In this paper, we modified an existing HIV/AIDS model. We investigated the characteristic equation and discussed the stability of equilibrium points by finding the eigenvalues of the model that were previously considered.

We solved existing characteristic equations numerically using realistic values for the parameters and we interpreted the graphs that resulted from the numerical solution.

The stability criteria showed that HIV may not lead to full blown AIDS since the healthy $\mathrm{CD} 4^{+}$T cells may never die out completely.

References

[1] R.O. Ayeni, T.O. Oluyo and O.O. Ayandokun, Mathematical Analysis of the global dynamics of a model for HIV infection of CD4+ T cells, JNAMP, 11, (2007), 103-110.
[2] R.O. Ayeni, A.O. Popoola and J.K. Ogunmola, Some new results on affinity hemodialysis and T cell recovery, Journal of Bacteriology Research, 2, (2010), 74-79.
[3] W.R. Derrick and S. Grossman, Elementary Differential Equations, Addison Wesley, Reading, 1976.
[4] L.B. Steven and A.S. Peter, Substance Abuse Treatment For Persons with HIV/AIDS, U.S. Department of health and services, (2008), 27-29.
[5] D.O. Odulaja, Numerical Computation and Series solution for mathematical model of HIV/AIDS, M.ed dissertation, Tai Solarin University of Education, Ogun State, Nigeria, 2013.

[^0]: ${ }^{1}$ Department of Mathematics, Tai Solarin University of Education, Ogun State. Nigeria.
 ${ }^{2}$ Department of Mathematical Sciences, University of Liverpool, England.
 E-mail: a.c.loyinmi@liv.ac.uk

