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Some characterization results in the calculus

of variations in the degenerate case
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Abstract

In this article, we prove an approximation result in weighted Sobolev
spaces and we give an application of this approximation result to a
necessary condition in the calculus of variations.
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1 Introduction

On a bounded domain Ω ⊂ IRN , we consider the functionals of the kind

J(u) =

∫

Ω

a(x, u,∇u)dx.
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42 Some characerization results in the calculus of variations

The major problem in the calculation of variations is to find the elements u

checking in the boundary conditions required by the nature of the problem

and minimizing the functional J .

Since the nineteenth century, more work were done in this direction, noting

the contributions of Lagrange, Riemann, Weierstrass, Jacobi, Hamilton, etc.

The methods developped by them are termed conventional methods.

In the early twentieth century, various techniques have been introduced by

Hilbert and Lebesgue in connection with the study of Dirichlet integrals.

Later these techniques and methods have been generalized by Tonelli and

are now known as direct methods in calculus of variations.

Developed after several authors, these direct methods such as: Marcellini,

Sbordone, Dacorogna, etc.

In the Lp case the search of suffisent conditions to secure those functionals

attain an extrem value has a long history (see [3]).The most important problem

is to verify the weak lower semicontinuity of those functionals with respect to

the space involved .This usually involves hypothesis that the integrand a is

convex with respect to the gradient . In 1992 R.Landes in [3] studied the revese

problem at a fixed level set and an to many situations have been showed that

if J is weakely lower semi-continous at one fixed (nonvoid) level set then this

partical level set is an extrem value of J or the defining function a is convex

in the gradient. The above statement for a as function of u (or of x and u)

is not hard to prove (see[3]) but when a = a(x,∇u) or a = a(x, u,∇u) this is

due to an approximation result in Sobolev-spaces .

In 2001 E.Azroul and A.Benkirane studied the same work that R.Landes in

the case of Orlicz-Sobolev spaces W 1LM(Ω).

Since this approximation is important for possible application in calculus of

variations , one of the main purpose in this paper is to extend the above

approximation result to the setting of weighted Sobolev spaces W 1,p(Ω, ω),

this is the objective of the first part of this paper. The second part, is devoted

to the application of this approximation. However we prove when a = a(x,∇u)

that if J is weakly lower semi-continuous at one fixed level set Hτ in the space

W 1,p(Ω, ω), then this particular level set is an extreme value of J or the function

a is convex with respect to the gradient .
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2 Functional prerequis

In this section, we present some definitions and well-known about weighted-

Sobolev spaces (standard references are in [1], [5], [8] and [11]).

2.1 Weighted Lebesgue spaces Lp(Ω, γ)

Let p the real numbers such that 1 ≺ p ≺ ∞, and γ the weight function .

We define the weighted lebesgue space Lp(Ω, γ) by Lp(Ω, γ) =
{

u, uγ
1
p ∈ Lp(Ω)

}

under this norm:

‖u‖p,γ =

∫

Ω

|u(x)|p γ(x)dx)
1
p . (1)

2.2 Weighted-Sobolev spaces

Let Ω be an open subset of IRN , and let {wi, i = 0, 1, 2.., N} be a family of

weight functions.

We define the weighted Sobolev space W 1,p(Ω, ω) as the set of functions u ∈
Lp(Ω, ω0) with weak derivatives ∂u

∂xi
∈ Lp(Ω, ωi) for i = 1, .., N .The weighted

Sobolev space W 1,p(Ω, ω) is a normed linear space if equiped with the norm:

‖u‖1,p,ω = (

∫

Ω

|u(x)|p w0(x)dx +
N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

(x)

∣∣∣∣
p

ωi(x)dx)
1
p . (2)

Theorem 2.1. (cf.[5])

i) Let 1 ≺ p ≺ ∞ and suppose that the weight functions wi satisfy

w
− 1

p−1

i ∈ L1
loc(Ω), i = 0, 1, ..., N. (3)

Then W 1,p(Ω, ω) is a uniformly convex (and hence reflexive) Banach

space.

ii) If we additionally suppose that also

wi ∈ L1
loc(Ω), i = 0, 1, ..., N, (4)
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then C∞
0 is a subset of W 1,p(Ω, ω), and we can introduce the space W 1,p

0 (Ω, ω)

as the closure of C∞
0 with respect to the norm ‖.‖1,p,ω.

2.3 Imbedding results

Example 2.2. Let us consider, the wheigted Sobolev space W 1,p(Ω, ω),

with a special choice of the family w :

w0(x) ≡ 1, wi(x) = γ(x) for i = 1, ..., N.

In this case, the space W 1,p(Ω, γ)=W 1,p(Ω, ω) is normed by

‖u‖1,p,γ = (

∫

Ω

|u(x)|p dx +

∫

Ω

∣∣∣∣
∂u

∂xi

(x)

∣∣∣∣
p

γ(x)dx)
1
p . (5)

Let us suppose that the weight function γ satisfies the conditions (2.3) and

(2.4) also the condition

γ−s ∈ L1(Ω). (6)

for a certain s Â 0 which will be specified later. Introducing the parameter ps

by

ps = ps
s+1

≺ p

then, we have the following imbeddings

W 1,p(Ω, γ) ↪→ Lr(Ω). (7)

where

1 ≤ r ≤ p∗s = Nps

N−ps
= Nps

N(s+1)−ps
for ps ≺ N(s + 1),

and r ≥ 1 is arbitrary for ps ≥ N(s+1)(cf.[5]. theorem 1.2 (a), (b)). Moreover,

we have the compact imbedding

W 1,p(Ω, γ) ↪→↪→ Lr(Ω). (8)

provided 1 ≤ r ≺ p∗s.

In particular, we have p∗s Â p if s Â N
p
, and consequently,

W 1,p(Ω, γ) ↪→↪→ Lp(Ω) for s Â N

p
. (9)
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In this case we consider the family of weight functions ω = {wi, i = 0, 1, 2.., N}
with w0 = 1. Let us suppose that wi satisfies

There exists s ∈
]
N

p
,∞

[ ⋂ [
1

p− 1
,∞

[
such that w−s

i ∈ L1(Ω),∀ 1 ≤ i ≤ N.

(10)

Theorem 2.3. (cf.[5]) If the conditions (3),(4) and (10) are satisfied, then

the space W 1,p
0 (Ω, ω) is reflexive and the following compact imbeding

W 1,p
0 (Ω, ω) ↪→↪→ Lp(Ω) (11)

is verified.

3 Approximation result

In this section, we consider the family of weight functions ω = {wi, i = 0, 1, 2.., N}
with w0(x) ≡ 1. Let us wi satisfies the conditions (3), (4) and (10).

Theorem 3.1. Let Ω be a bounded domain in IRN . If u ∈ W 1,p(Ω, ω),

1 ≺ p ≺ ∞, then for almost all x0 ∈ Ω, there exists uλ ∈ W 1,p(Ω, ω), such that

i) uλ → u in W 1,p(Ω, ω),

ii) uλ ≡ c(x0, λ) in B(x0, λ).

Proof of Theorem 3-1:

Let Φλ be a C∞
0 cut-off function with support in B(0, 2λ) such that Φλ ≡ 1 in

B(0, λ) and |∇Φλ| ≤ 2
λ
.

Let x0 be a Lebesgue point of the function u in Ω , hence we can take

c(x0, λ) = u(x0).

We define in Ω the function uλ by

uλ(x) = u(x)(1− Φλ(x− x0)) + u(x0)Φλ(x− x0). (12)
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First it’s clear that uλ ∈ W 1,p(Ω, ω).

In fact: Since u ∈ W 1,p(Ω, ω), then

∫

Ω

|u(x)|p dx ≺ ∞, and

∫

Ω

∣∣∣∣
∂u(x)

∂xi

∣∣∣∣
p

ωi(x)dx ≺ ∞, for 1 ≤ i ≤ N.

Since x 7→ xp is a convex function, then
∫

Ω

|uλ(x)|p dx

≤ 2p−1

∫

Ω

|u(x)(1− Φλ(x− x0))|p dx + 2p−1

∫

Ω

|u(x0)Φλ(x− x0)|pdx

≤ k1

∫

Ω

|u(x)|p dx + 2p−1 |u(x0)|p
∫

B(0,2λ)

|Φλ(x− x0)|p dx ≺ ∞,

where k1 = 2p−1 supB(0,2λ) |1− Φλ(x− x0)|p .

It remains to show that,

∂uλ

∂xi

∈ Lp(Ω, ωi), 1 ≤ i ≤ N.

By a simple calculation we find that,

∂uλ

∂xi

=
∂u(x)

∂xi

(1− Φλ(x− x0)) + (u(x0)− u(x))
∂Φλ(x− x0)

∂xi

.

Then,

rcl

∫

Ω

∣∣∣∣
∂uλ

∂xi

∣∣∣∣
p

ωi(x)dx ≤ 2p−1

∫

Ω

∣∣∣∣(1− Φλ(x− x0))
∂u(x)

∂xi

∣∣∣∣
p

ωi(x)dx

+ 2p−1

∫

Ω

∣∣∣∣(u(x)− u(x0))
∂Φλ(x− x0)

∂xi

∣∣∣∣
p

ωi(x)dx

(∗) ≤ k1

∫

Ω

∣∣∣∣
∂u(x)

∂xi

)

∣∣∣∣
p

ωi(x)dx

+ 2p−1

∫

Ω

∣∣∣∣(u(x)− u(x0))
∂Φλ(x− x0

∂xi

)

∣∣∣∣
p

ωi(x)dx,

where k1 is the same above constant.

Since u ∈ W 1,p(Ω, ω), then the first term on the right side of the inequality

(*) is finite.

In addition we will show in Lemma 3.2, that,

I
′
λ =

∫

Ω2λ0

∫

B(y,2λ)

|u(x)− u(y)|p
λp

ωi(x)dx dy ≺ ∞.
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Then,

∫

B(y,2λ)

|u(x)− u(y)|p
λp

ωi(x)dx ≺ ∞ a.e y,

which implies that the second term is also finite.

Thus uλ ∈ W 1,p(Ω, ω).

It is clear by using the Lebesgue theorem that

uλ → u in Lp(Ω) as λ → 0. (13)

Therefore, it remains to show that,

∂uλk

∂xi

→ ∂u

∂xi

in Lp(Ω, ωi), 1 ≤ i ≤ N, (14)

for the sequence λk with λk → 0 as k →∞.

By a simple calculation we find that ,

∂(u−uλ)(x)
∂xi

= ∂u(x)
∂xi

Φλ(x− x0) + ∂Φλ(x−x0)
∂xi

(u(x)− u(x0))

and by the convexity of the function x 7→ xp we can write

∫

Ω

∣∣∣∣
∂(u− uλ)(x)

∂xi

∣∣∣∣
p

ωi(x)dx ≤ 2p−1

∫

Ω

∣∣∣∣
∂u(x)

∂xi

Φλ(x− x0)

∣∣∣∣
p

ωi(x)dx

+ 2p−1

∫

Ω

∣∣∣∣(u(x)− u(x0)
∂Φλ(x− x0)

∂xi

∣∣∣∣
p

ωi(x)dx.

By virtue of Lebesgue theorem, the first term in the right expression of the

above inequality converges to zero as λ → 0, so it remains to show that :

∫

Ω

∣∣∣∣(u(x)− u(x0))
∂Φλ(x− x0)

∂xi

∣∣∣∣
p

ωi(x)dx → 0 as λ → 0. (15)

For this we use the following lemma.

Lemma 3.2. For almost all x0 ∈ Ω, there exists a sequence λk Â 0 with

λk → 0 as k →∞ such as

∫

B(x0,2λ)

|u(x)− u(x0)|p
λp

k

ωi(x)dx → 0 as k →∞ for , 1 ≤ i ≤ N.



48 Some characerization results in the calculus of variations

Using the above lemma we conclude directly, and hence the proof of The-

orem 3.1 is achieved.

Proof of Lemma 3.2. Let x0 ∈ Ω. For each t Â 0 , we define the set

Ωt = {x ∈ Ω; dist(x, ∂Ω) Â t}.
Let λ0 Â 0. For λ ≺ λ0, we consider the function ψλ : Ω2λ0 −→ IR defined

by

ψλ(y) =

∫

B(y,2λ)

|u(x)− u(y)|p
λp

ωi(x)dx. (16)

Since ψλ(y) =

∫

Ω

|u(x)− u(y)|p
λp

ωi(x)χB(y,2λ)dx, then the function ψλ : Ω2λ0 →
IR is mesurable ; χF , as usual denotes the charateristic function of the set F .

For all λ0 Â 0, we shall show that :

|ψλ(y)| → 0 in L1(Ω2λ0) as λ → 0, λ ≺ λ0. (17)

This obviously implies the statement of Lemma 3.2, (because if (17) is satisfied,

then there is a subsequence λk converges at 0 as k →∞ and such that ψλk
(y) →

0 a.e. in Ω2λ0).

Since λ0 is arbitrary, then the previous convergence is true a.e. in Ω.

To verify (17), we denotes by uδ = u ∗ Ψδ the mollification of u, where

Ψδ ∈ D(IRN), Ψδ = 1 for |x| ≥ δ, Ψδ ≥ 0 and

∫

IRN

Ψδ(x)dx = 1 . Hence, Ψδ is

well defined in Ω2λ0 for δ ≺ λ0 and we have

∫

Ω2λ0

|ψλ(y)| dy =

∫

Ω2λ0

∫

B(y,2λ)

|u(x)− u(x0)|p
λp

ωi(x)dx dy

≤ limδ→0

∫

Ω2λ0

∫

B(0,2λ)

|uδ(y − x)− uδ(y)|p
λp

ωi(x)dx dy

Since uδ is continuously differentiable, we may estimate

Iλ =

∫

Ω2λ0

∫

B(0,2λ)

|uδ(y − x)− uδ(y)|p
λp

ωi(x)dx dy

In fact, we have

Iλ ≤
∫

Ω2λ0

∫

B(0,2λ)

(λ−p

∫ 1

0

|∇uδ(y − tx)|p |x|p dt) ωi(x) dx dy

≤ 2p

∫

Ω2λ0

∫

B(0,2λ)

∫ 1

0

|∇uδ(y − tx)|p dtωi(x)dx dy
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Then,

Iλ ≤
∫

Ω2λ0

∫

B(0,2λ)

∫ 1

0

|∇uδ(y − tx)|p ωi(x) dt dx dy

(S)
= 2p

∫ 1

0

∫

Ω2λ0

∫

B(0,2λ)

∣∣∣∣
∫

B(0,δ)

∇u(y − tx− z)Ψδ(z)dz

∣∣∣∣
p

ωi(x) dt dx dy

(Γ)

≤ 2p

∫ 1

0

∫

Ω2λ0

∫

B(0,2λ)

∫

B(0,δ)

|k1∇u(y − tx− z)|p dz ωi(x)dt dx dy

= 2pk2

∫ 1

0

∫

B(0,2λ)

∫

B(0,δ)

(

∫

Ω2λ0

|∇u(y − tx− z)|p dy)ωi(x)dt dx dz

≤ 2pk2

∫ 1

0

∫

B(0,2λ)

∫

B(0,δ)

‖∇u‖p
p ωi(x)dt dx dz

≤ 2pk2 ‖∇u‖p
p

∫

B(0,2λ)

∫

B(0,δ)

dzωi(x)dx

≤ 2pk2(
σN

N
)δN ‖∇u‖p

p

∫

B(0,2λ)

ωi(x)dx

≤ 2pk3(
σN

N
)λN ‖u‖p

p (because λ Â δ)

for some positive constants k1,k2 ,and k3 (σN denotes the measure of the unit

sphere in IRN). Then, we obtain

Iλ → 0 as λ → 0.

Then it follows for λ0 Â 0 that

∫

Ω2λ0

|ψλ(y)| dy → 0 as λ → 0, λ ≺ λ0,

which allows to conclude for almost every x0 ∈ Ω, we have ψλk
(x0) → 0

as k → ∞. To justify (S), we recall that in Ω2λ0 the differentiation and

the mollification commute for δ ≺ λ ≺ λ0. (Γ) is in application of Jensen’s

inequality, which proves the statement of Lemma 3.2.

Remark 3.3. In particular case when ωi(x) ≡ 1, for 0 ≤ i ≤ N we obtain

the statement of [2, Lemma 2.1], and in the Orlicz-Sobolev spaces we find

Theorem 1 of [4].
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4 Characterization results

Let Ω be a bounded domain in IRN , let ω = {wi, i = 0, 1, 2.., N} be a family

of weight functions with w0(x) ≡ 1, such that wi, i = 1, ..., N satisfies (3), (4)

and (10).

We consider the functional of kind

J(u) =

∫

Ω

a(x,∇u)dx. (18)

Where J : W 1,p(Ω, ω) → IR is continuous and a : Ω × IRN → IR is a

Carathéodory function satisfying

|a(x, ξ)| ≤ T (x)M(|ξ|). (19)

for some nondecreasing function M : IR → IR and some T (x) ∈ L1(Ω).

For each τ we write Hτ for the level set of the functional J , i.e.

Hτ = {u ∈ W 1,p(Ω, ω) : J(u) = τ}.
And for H

w

τ for the closure of Hτ in W 1,p(Ω, ω) for the weak topology.

Definition 4.1. A functional J : W 1,p(Ω, ω) → IR is called weakly lower

semicontinuous at a level set Hτ . If J(u) ≤ τ for all u ∈ H
w

τ .

Remark 4.2. Note that this definition does not imply that J/H
w
τ

is weakly

lower semicontinuous.

Theorem 4.3. Let Ω be a bounded domain in IRN , and let ω = {wi, i = 0, 1, 2.., N}
be a family of weight functions with w0(x) ≡ 1, such that wi, i = 1, ..., N sat-

isfies (3), (4) and (10).

Let J : W 1,p(Ω, ω) → IR be a continuous functional defined as (18), with

the Carathéodory function a : Ω× IRN → IR satisfying (19).

If J is weakly lower semicontinous at nonvoid level set Hτ , then we have the

alternative:

Either τ is an extreme value of J or for almost all x ∈ Ω the function a(x, .)

is convex.

Remark 4.4. Note that when a = a(u) or a = a(x, u), we can easily adapt

the same argument of [3].
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Proof of Theorem 4.3: Let assume that the level set τ is not an extreme

value of J , then we shall show that

a(x, αξ + (1− α)ξ∗) ≤ αa(x, ξ) + (1− α)a(x, ξ∗)

for all α ∈ [0, 1], for all ξ, ξ∗ ∈ IRN and for a.e.x ∈ Ω.

We can assume that τ = 0 and that in W 1,p(Ω, ω) there are two functions

ĥ1 and ĥ2 such that J(ĥ1) ≺ −ε0 and J(ĥ2) Â ε0 for some ε0 Â 0.

Let x0 be a Lebesgue point of a(x, ξ) for all ξ ∈ IQN . We can assume that

x0 = 0.

Using the continuity of the fonctional J and Theorem 3.1, there is a ball

B(0, R0) ⊂ Ω and there are f̄ , f̄1 and f̄2 (see [3]) such that,

∇f̄ = ∇f̄1 = ∇f̄2 = 0 on B(0, R0), (20)

J(f̄1) ≺ 7

8
ε0, J(f̄2) Â 7

8
ε0 and

∣∣J(f̄)
∣∣ ≺ 1

8
ε0. (21)

Furthermore for all function h̄ satisfying
∣∣J(h̄)

∣∣ ≺ 7
8
ε0 there is ti ∈ [0, 1] with

i = i(ā) ∈ {1, 2} such that the function φ̄ = h̄ + ti(f̄i − h̄) lies in the level set

H0, i.e. J(φ̄) = 0.

Let us now fix α ∈ [0, 1]
⋂

IQ and ξ, ξ∗ ∈ IQN . We define the sequence of

functions

φ̂n(x) =< ξ∗, x > +

∫ <ξ−ξ∗,x>

0

gα(nt)dt,

where <,> denotes the usual inner product in IRN and

gα(x) =

{
1 if 0 ≺ t ≺ α

0 if α ≺ t ≺ 1

We recall the fact that (see [3])

gn(x) ⇀∗ α in L∞(Ω)

and

(1− gn(x)) ⇀∗ (1− α) in L∞(Ω)

It’s clear that

∇φ̂n(x) = ξ∗ + (ξ − ξ∗)gα(n < ξ − ξ∗, x >),
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from the convergence almost everywhere φ̂n(x) → φ̂0(x) we have convergence

φ̂n ⇀ φ̂0 in W 1,p(Ω, ω),

where

φ̂0(x) =< αξ + (1− α)ξ∗, x >

Let ϕ : IR → IR be a C∞-function with support in the interval (−1, 1) and

ϕ(t) = 1 for all |t| ≺ 1
2
. Defining φ̄R(x) by φ̄R(x) = ϕ( |x|

R
)φ̂0(x) for all R Â 0,

we calculate

∇φ̄R(x) = ϕ
′
( |x|

R
) |x|

R
φ̂0(x) + ϕ( |x|

R
)∇φ̂0(x)

Moreover, the function φ̄R(x) = ϕ( |x|
R

)φ̂0(x) satisfying the properties (see [3,

Proposition 3.1]): ∣∣∇φ̄R(x)
∣∣ ≤ c in Ω. (22)

∫

B(0,R)

a(x,∇φ̄R(x))dx → 0 as R → 0. (23)

Note that (22) is used to prove (23).

Next we consider the sequence φ̂n(x) in a ball B(0, r), say. We shall show

that is possible alter each element of the sequence φ̂n(x) in the manner that it

coincides with limit φ̂0(x) in the bundary.

The following lemma is generalization of [3, Proposition 3.2] in weigthed

Sobolev spaces.

Lemma 4.5. There is a sequence hn(x) in W 1,p(Ω, ω) such that:

i) hn(x) = φ̂0(x) =< αξ + (1− α)ξ∗, x > in ∂B(0, r)

ii) hn − φ̂n → 0 in W 1,p(Ω, ω) as n →∞

iii) hn ⇀ φ̂0 in W 1,p(Ω, ω) for the weak topology.

iv) ‖∇hn‖∞ +
∥∥∥∇φ̂n

∥∥∥
∞
≤ c

v)

∣∣∣∣
∫

B(0,r)

a(x,∇φ̂n)dx−
∫

B(0,r)

a(x,∇hn)dx

∣∣∣∣ → 0 as n →∞

vi)

∫

B(0,r)

a(x,∇hn)dx → 0 as r → 0 uniformly in n.
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Now, we are in a position to complete the proof of Theorem 4.3. For

R ≤ R0 and r = R
2
,we define the sequence:

f̂n(x) =





f(x) if x ∈ Ω\B(0, R),

f(x) + φR(x) if x ∈ B(0, R)\B(0, r),

f(x) + hn(x) if x ∈ B(0, r);

which converges in W 1,p(Ω, ω) for the weak topology to

f̂0(x) =

{
f(x) for x ∈ Ω\B(0, R),

f(x) + φ
R
(x) for x ∈ B(0, R).

We accont of (22) and (23) and Lemma 4.5, (as in [3] and [2]). We have for

R Â 0 small enough
∣∣J(fn)

∣∣ ≺ 7
8
ε0 for all n. Hence for any n, we find numbers

tn ∈ [0, 1] and in ∈ {1, 2}, such that for fn = f̂n + tn(f in − f̂n) we have

J(fn) = 0.

Now choosing a subsequence tn such that tn → t0 and in = i; i ∈ {1, 2},
we have

fn ⇀ f0 in W 1,p(Ω, ω) for the weak topolgy.

Because, of the continuity of J with strong topology of W 1,p(Ω, ω), we have

limn→∞J(f + tn(f in − f)) = J(f + t0(f i − f)),

and by constuction

a(x,∇(f + tn(f i − f)) = a(x, 0) in B(0, R)

because

∇f = ∇f 1 = ∇f 2 = 0 in B(0, R)

Yielding,

limn→∞

∫

B(0,R)

a(x,∇fn(x))dx ≥
∫

B(0,R)

f(x,∇f0(x))dx.

Since fn = f0 in B(0, R)\B(0, r), r = R
2

, we finally get
∫

B(0,r)

a(x, αξ + (1− α)ξ∗)dx =

∫

B(0,r)

a(x,∇f0(x))dx

≤ limn→∞

∫

B(0,r)

a(x,∇fn)(x))dx

= limn→∞

∫

B(0,R)

a(x,∇hn(x))dx

= α

∫

B(0,r)

a(x, ξ)dx + (1− α)

∫

B(0,r)

a(x, ξ∗)dx.



54 Some characerization results in the calculus of variations

Since the above inequality can be obtained for all B(0, r) with radius r ≺ R
2
,

we conclude that a(x0, αξ + (1 − α)ξ∗) ≤ αf(x0, ξ) + (1 − α)f(x0, ξ
∗) for all

α ∈ [0, 1] ∩ IQ and all ξ, ξ∗ ∈QN . It then follows by the continuity of a(x, ξ)

with respect to ξ, that the above inequality holds for all λ ∈ [0, 1] and all

ξ, ξ∗ ∈ IRN .

Proof of Lemma 4.5: Let k̃δ be a C∞ -function with support in [−1, 1] such

that k̃δ(t) = 1 for all |t| ≺ 1− δ and
∣∣∣k̃′δ

∣∣∣ ≺ 2
δ

for all t.

Defining the function kδ(x) = k̃δ(
|x|
r

) and hn,δ(x) = φ̂0(x) + kδ(x)(φ̂n(x) −
φ̂0(x))

we have the following inequality

|∇kδ(x)|
∣∣∣φ̂n(x)− φ̂0(x)

∣∣∣ ≤ O(n−1)
1

δ
χsupp(∇kδ). (24)

∣∣∣∇(φ̂n(x)− φ̂0(x))
∣∣∣ (1− kδ(x)) ≤ c

′
r(|ξ∗|+ |ξ|)(1− kδ(x)). (25)

∥∥∥hn,δ − φ̂n

∥∥∥
p

1,p,ω
≤ O(δ) + c

N∑
i=1

∫

B(0,r)

∣∣∣∇((φ̂n(x)− φ̂0(x))(1− kδ(x)))
∣∣∣
p

ωi(x)dx.

(26)

for some positive constants c and c
′
.

For (24) and (25) see the proof of [3 ,proposition 3.2].

Assume now that(26) is true , thus we get

kδ(x) =





0 in Ω\B(0, r)

1 in B(0, (1− δ)r)

k̃δ(
|x|
r

) in B(0, r)\B(0, (1− δ)r)

which implies that

hn,δ(x)−φ̂n(x) =





φ̂0(x)− φ̂n(x) in Ω\B(0, r)

0 in B(0, (1− δ)r)

(1− k̃δ(
|x|
r

))(φ̂0(x)− φ̂n(x)) in B(0, r)\B(0, (1− δ)r)

and

∇((hn,δ−φ̂n)(x)) =





∇(φ̂0(x)− φ̂n(x)) in Ω\B(0, r)

0 in B(0, (1− δ)r)

∇(k̃δ(
|x|
r

))((φ̂n − φ̂0)(x))

+(1− k̃δ(
|x|
r

))∇((φ̂0 − φ̂n)(x)) in B(0, r)\B(0, (1− δ)r)
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Hence, we have the estimate

∫

Ω

∣∣∣hn,δ − φ̂n

∣∣∣
p

dx +
N∑

i=1

∫

Ω

∣∣∣∣
∂

∂xi

(hn,δ − φ̂n)

∣∣∣∣
p

ωi(x)dx

≤ O(δ) + c

N∑
i=1

∫

B(0,r)\B(0,(1−δ)r)

∣∣∣∇((φ̂n(x)− φ̂0(x))(1− kδ(x)))
∣∣∣
p

ωi(x)dx

≤ O(δ) + c(c1O(n−1)
1

δ
)p

N∑
i=1

∫

B(0,r)\B(0,(1−δ)r)

ωi(x)dx

≤ O(δ) + Ncc2(c1O(n−1)
1

δ
)p,

with c2 = max
i=1,..N

∫

Ω

ωi(x)dx (because ωi ∈ L1
loc(Ω)).

Selecting numbers δn such that O(n−1) 1
δn

= 1, this implies that O(δn) =

O(n−1) and δn → 0 as n →∞ .

then, we conclude that,

∥∥∥hn,δ − φ̂n

∥∥∥
p

1,p,ω
≤ O(n−1) + Ncc2(c1O(n−1)

1

δ
)p

which conveges to 0 as n →∞. We define the functions hn = hn,δ and we have

∥∥∥hn,δ − φ̂n

∥∥∥
1,p,ω

→ 0 as n → 0.

Which gives (ii ) in lemma 4.5 and

hn − φ̂0 = (hn − φ̂n) + (φ̂n − φ̂0) ⇀ 0 in W 1,p(Ω, ω) for the weak topology

(because (φ̂n − φ̂0) ⇀ 0 in W 1,p(Ω, ω).

The properties i), iv) and vi) are satisfied by the definition of hn. Now, we

return to show the inequality (26). In fact, we can write

∫

Ω

∣∣∣hn,δ − φ̂n

∣∣∣
p

dx +
N∑

i=1

∫

Ω

∣∣∣∣
∂

∂xi

(hn,δ − φ̂n)

∣∣∣∣
p

ωi(x)dx

=

∫

Ω\B(0,r)

∣∣∣φ̂n − φ̂0

∣∣∣
p

dx +

∫

B(0,r)

(
∣∣∣φ̂n − φ̂0

∣∣∣ (1− kδ))
pdx

+
N∑

i=1

∫

Ω\B(0,r)

∣∣∣∣
∂

∂xi

(φ̂n − φ̂0)

∣∣∣∣
p

ωi(x)dx+
N∑

i=1

∫

B(0,r)

∣∣∣∣
∂

∂xi

((φ̂n − φ̂0)(1− kδ))

∣∣∣∣
p

ωi(x)dx

≤
∫

Ω\B(0,r)

∣∣∣φ̂n − φ̂0

∣∣∣
p

dx +

∫

B(0,r)

(
∣∣∣φ̂n − φ̂0

∣∣∣ (1− kδ))
pdx
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+
N∑

i=1

∫

Ω\B(0,r)

∣∣∣∣
∂

∂xi

(φ̂n − φ̂0)

∣∣∣∣
p

ωi(x)dx+
N∑

i=1

∫

B(0,r)

∣∣∣∇((φ̂n − φ̂0)(1− kδ))
∣∣∣
p

ωi(x)dx.

Since (1− kδ(x)) → 0 a.e in B(0, r)

and

∫

Ω\B(0,r)

∣∣∣φ̂n − φ̂0

∣∣∣
p

dx +
N∑

i=1

∫

Ω\B(0,r)

∣∣∣∣
∂

∂xi

(φ̂n − φ̂0)

∣∣∣∣
p

ωi(x)dx → 0 as n →∞,

then we conclude that

∥∥∥hn,δ − φ̂n

∥∥∥
p

1,p,ω
≤

O(δ) + c

N∑
i=1

∫

B(0,r)

∣∣∣∇((φ̂n(x)− φ̂0(x))(1− kδ(x)))
∣∣∣
p

ωi(x)dx,

which implies the inequality (26).

Proposition 4.6. The sequence of function φ̂n defined by,

φ̂n(x) =< ξ∗, x > +

∫ <ξ−ξ∗,x>

0

gα(nt)dt

satisfying the following propertie:

(i) φ̂n(x) → φ̂0(x) for almost all x ∈ Ω where φ̂0(x) =< αξ + (1− α)ξ∗, x >

(ii) φ̂n → φ̂0 in W 1,p(Ω, ω)

Proof of Proposition 4.6: It is obvious to show i) (see [3]).

Now show ii) Since Ω bounded and

gn(x) ⇀∗ α in L∞(Ω)
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then

∫

Ω

∣∣∣(φ̂n − φ̂0)(x)
∣∣∣
p

dx =

∫

Ω

∣∣∣∣∣
∫ 〈ξ−ξ∗,x〉

0

gα(nt)dt− α 〈ξ − ξ∗, x〉
∣∣∣∣∣

p

dx

=

∫

Ω

∣∣∣∣∣
∫ 〈ξ−ξ∗,x〉

0

(gα(nt)− α)dt

∣∣∣∣∣

p

dx

≤ 1

np

∫

Ω

∣∣∣∣∣∣

∫ 〈ξ−ξ∗,x〉
n

0

(gα(t)− α)dt

∣∣∣∣∣∣

p

dx

≤ k 1
np

then, φ̂n → φ̂0 in Lp(Ω)

∫

Ω

∣∣∣∣∣
∂(φ̂n − φ̂0)(x)

∂xi

∣∣∣∣∣

p

wi(x)dx ≤
∫

Ω

∣∣∣∇(φ̂n − φ̂0)(x)
∣∣∣
p

wi(x)dx

≤
∫

Ω

|(ξ − ξ∗)(gα(n 〈ξ − ξ∗, x〉)− α)|p wi(x)dx

≤ |(ξ − ξ∗)|p
∫

Ω

|(gα(n 〈ξ − ξ∗, x〉)− α)|p wi(x)dx

By using the lebesgue theorem

∫

Ω

|(gα(n 〈ξ − ξ∗, x〉)− α)|p wi(x)dx → 0 as

n →∞,then

∂φ̂n

∂xi
→ ∂φ̂0

∂xi
in Lp(Ω, wi) for i = 1, ..., N . Then

φ̂n → φ̂0 in W 1,p(Ω, ω)ĉ0

Corollary 4.7. Under the same assumptions as in Theorem 4.1 suppose

that there is a nonvoid weakly closed level set Hτ . If τ is not an extreme value

of J , then the function a(x,∇u(x)) is affine in the gradient.

Remark 4.8. In the particular case when wi(x) = 1 for i = 0, 1, ..., N , we

obtain the statement of [3, Theorem 3-1], and in the Orlicz-Soblev spaces we

found the theorem 6 of [4].
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