Some Characterization Results On Character Graphs of Groups

T. Gnanaseelan ${ }^{1}$ and C. Selvaraj ${ }^{2}$

Abstract

The authors in their work in [4] introduced a graph $\Gamma(G, H)$, where G is a finite group and H is a subgroup of G such that the set of irreducible complex characters of G form the vertex set and two vertices χ and ψ are joined by an edge if their restriction to H , namely χ_{H} and ψ_{H} have at least one irreducible character of H as a common constituent. In [8] M. Javarsineh and Ali Iranmanesh have studied the nature of this graph for the groups $D_{2 n}, U_{6 n}$ and $T_{4 n}$. In this paper we study characterization properties of the graph $\Gamma(G, H)$ and obtain various results relevant to this graph. This paper deals with several ideas and techniques used in representation theory and graph theory.

Mathematics Subject Classification: 20C30

[^0]Article Info: Received : March 12, 2013. Revised : April 25, 2013
Published online : June 30, 2013

Keywords: Irreducible complex characters, Normal product of two graphs, Frobenius group, Frobenius complement, Frobenius kernel, Inertia group

1 Introduction

For a finite group G, let $\operatorname{Irr}(\mathrm{G})$ denote the set of all irreducible complex characters of G. If H is a subgroup of G, the Bratteli diagram $B(G, H)$ defined by O. Bratteli is a bipartite graph having the vertex set $\operatorname{Irr}(G) \cup \operatorname{Irr}(H)$ and a vertex $\chi \in \operatorname{Irr}(G)$ is joined to a vertex $\theta \in \operatorname{Irr}(H)$ by m edges if and only if $\left(\chi_{\mathrm{H}}, \theta\right)=m$ where χ_{H} is the restriction of χ to H , has been studied by N . Chigira and N. Iori.

Many authors have done research on character degrees of finite groups, like the arithmetic structure and the cardinality with the group theoretic structure of G , the character degree graphs associated with a given group, graphs related to conjugacy classes of a finite group and order of elements in the conjugacy classes.

The authors in [4] defined a graph $\Gamma(G, H)$, known as the relative character graph of G with respect to H. This is a simple graph with vertex set $\operatorname{Irr}(G)$ and two vertices χ and ψ are joined by an edge if their restriction to H , namely χ_{H} and ψ_{H} have at least one irreducible character of H as a common constituent.

In [8] M. Javarsineh and Ali Iranmanesh have studied the nature of the graphs $\Gamma\left(D_{2 n}, H\right), \Gamma\left(U_{6 n}, H\right)$ and $\Gamma\left(T_{4 n}, H\right)$ where H is a normal subgroup of the respective groups. In this paper we shall give some characterizations of the graph $\Gamma(G, H)$, and discuss the nature of the character graph when G is a Frobenius group. In fact we shall construct the graphs $\Gamma(G, H)$, and $\Gamma(G, N)$, when G is a Frobenius group with Frobenius complements H and Frobenius kernel N and prove their complementary nature.

2 Preliminary Notes

In this section we give some definitions and lemmas.

Definition 2.1 [4] If G is a finite group and H is a subgroup of G, then the relative character graph denoted by $\Gamma(G, H)$, has the vertex set $\mathrm{V}=\operatorname{Irr}(G)$, the set of irreducible complex characters of G and two vertices $\quad \chi$ and ψ are joined by an edge if their restriction to H , namely χ_{H} and ψ_{H} have at least one irreducible character of H as a common constituent.

Lemma 2.2 [4] If N is a normal subgroup of G , then $\Gamma(G, N)$ has k distinct connected components where k is the number of distinct orbits of $\operatorname{Irr}(N)$ under the action of G by conjugation.

Lemma 2.3 [4] If H is a subgroup G, then $\Gamma(G, H)$, is connected if and only if $\operatorname{core}_{G}(H)=(1)$, where $\operatorname{core}_{G}(H)$ is the largest normal subgroup of G contained in H .

Definition 2.4 [4] For any $\theta \in \operatorname{Irr}(H)$, the collection of all irreducible characters of G which occur as constituents of θ^{G} is called the induced cover of θ and is denoted by $\mathrm{I}(\theta, H)$, where θ^{G} is the induced character of θ.

Lemma 2.5 (Frobenius reciprocity formula) Let H be a subgroup of a finite group G and suppose that χ is an irreducible character of G and θ is an irreducible character of H. Then $\left(\theta, \chi_{H}\right)_{H}=\left(\chi, \theta^{G}\right)_{G}$.

Definition 2.6 Let N be a normal subgroup of G and let $\theta \in \operatorname{Irr}(N)$. Then, $I_{G}(\theta)=\left\{g \in G / \theta^{G}=\theta\right\}$ is called the inertia group of θ in G.

Definition 2.7 A finite group G is called a Frobenius group if there is a proper non-trivial subgroup H such that $H \cap H^{x}=\{1\}$ for all $x \notin H$. The subgroup H is called a Frobenius complement. In this case $\mathrm{N}=\left(G-\bigcup_{x \in G} H^{x}\right) \cup\{1\}$ is a normal subgroup of G, called the Frobenius kernel.
S_{3}, A_{4} and the dihedral group $D_{2 n}, n$ odd are some examples of Frobenius groups.
If G is a Frobenius group with Kernel N and complement H then we have the following properties.
(i) $\mathrm{G}=\mathrm{NH}$ is the semidirect product of N by H with $N \cap H=\{1\}$.
(ii) $\mathrm{o}(\mathrm{H})$ divides $\mathrm{o}(\mathrm{N})-1$.
(iii) If θ is a non-principal irreducible character of N , then $\theta^{G} \in \operatorname{Irr}(G)$.
(iv) If $\chi \in \operatorname{Irr}(G)$ with $\operatorname{Ker} \chi$ does not contain N , then $\chi=\theta^{G}$ for some $\theta \in \operatorname{Ir}(N)$.

Definition 2.8 Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The normal product of Γ_{1} and Γ_{2}, denoted by $\Gamma_{1} \circ \Gamma_{2}$ is defined as follows. The vertex set of $\Gamma_{1} \circ \Gamma_{2}$ is $V_{1} \times V_{2}$. Two vertices $w_{1}=\left(u_{1}, v_{1}\right)$ and $w_{1}=\left(u_{2}, v_{2}\right)$ are adjacent if and only if any one of the following conditions hold.
(i) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E_{2}$
(ii) $u_{1} u_{2} \in E_{1}$ and $v_{1}=v_{2}$
(iii) $u_{1} u_{2} \in E_{1}$ and $v_{1} v_{2} \in E_{2}$.

Definition 2.10 If Γ is a finite graph, then the complement $\bar{\Gamma}$ of Γ has the vertex set as that of Γ and two vertices u and v are adjacent in $\bar{\Gamma}$ if and only if they are not adjacent in Γ.

3 Main Results

In what follows we shall prove some theorems reflecting the properties of the graph $\Gamma(\mathrm{G}, \mathrm{H})$. Also we shall discuss some properties of the graphs $\Gamma(\mathrm{G}, \mathrm{H})$ and $\Gamma(G, N)$ when G is a Frobenius group with Frobenius complement H and Frobenius kernel N.

Theorem 3.1 Two vertices χ and χ^{\prime} in $\Gamma(\mathrm{G}, \mathrm{H})$ are adjacent if and only if $\left(\chi, \chi^{\prime}\right)_{\mathrm{H}}>0$.

Proof: Let $\left\{\theta_{j}\right\}$ be the complete set of irreducible characters of H. let $\chi_{\mathrm{H}}=\sum m_{i} \theta_{i}$ and $\chi_{\mathrm{H}}^{\prime}=\sum n_{j} \theta_{j}$, where m_{i} and n_{j} are positive integers. Then $\left(\chi, \chi^{\prime}\right)_{\mathrm{H}}=\left(\chi_{H}, \chi_{H}^{\prime}\right)_{\mathrm{H}}=\left(\sum m_{i} \theta_{i}, \sum n_{j} \theta_{j}\right)_{\mathrm{H}}=\sum m_{i} n_{j}\left(\theta_{i}, \theta_{j}\right)_{H}=\sum m_{i} n_{j} \delta_{i j}$. Now $\quad \chi$ and χ^{\prime} are adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$ if and only if χ_{H} and $\chi_{\mathrm{H}}^{\prime}$ have at least one θ_{i} in common whose multiplicity in χ_{H} is m_{i} and in $\chi_{\mathrm{H}}^{\prime}$ is n_{j}. That is, if and only if $\left(\chi, \chi^{\prime}\right)_{\mathrm{H}}>0$.

Theorem 3.2 Let H be a subgroup of G and let $x \in G$. If $H^{x}=x H x^{-1}$ is the conjugate of H , then $\Gamma(G, H)=\Gamma\left(G, H^{x}\right)$.

Proof: Let χ_{i} and $\chi_{j} \in \operatorname{Irr}(G)$.
Then

$$
\begin{aligned}
\left(\chi_{i}, \chi_{j}\right)_{H} & =\frac{1}{o(H)} \sum_{h \in H} \chi_{i}(h) \chi_{j}\left(h^{-1}\right)=\frac{1}{o(H)} \sum_{h \in H} \chi_{i}\left(x h x^{-1}\right) \chi_{j}\left(x h^{-1} x^{-1}\right) \\
& =\frac{1}{o(H)} \sum_{h \in H} \chi_{i}\left(x h x^{-1}\right) \chi_{j}\left(\left(x h x^{-1}\right)^{-1}\right)=\frac{1}{o(H)} \sum_{y \in H^{x}} \chi_{i}(y) \chi_{j}\left(y^{-1}\right) \\
& =\left(\chi_{i}, \chi_{j}\right)_{H^{x x}}
\end{aligned}
$$

where $y=x h x^{-1}, h \in H . \quad$ Therefore χ_{i} and χ_{j} are adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$ if and only if χ_{i} and χ_{j} are adjacent in $\Gamma\left(G, H^{x}\right)$. Hence $\Gamma(G, H)=\Gamma\left(G, H^{x}\right)$.

Theorem 3.3 Two vertices χ_{i} and χ_{j} are adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$ if and only if χ_{i} and χ_{j} belong to some induced cover $\mathrm{I}(\theta, \mathrm{H})$.

Proof: Let χ_{i} and χ_{j} be adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$. Then, both $\chi_{i \mathrm{H}}$ and $\chi_{j \mathrm{H}}$ contain some $\theta \in \operatorname{Irr}(H)$ as a common constituent. Therefore, by Frobenius reciprocity formula, both χ_{i} and χ_{j} are irreducible constituents of θ^{G}. That is, χ_{i} and χ_{j} belong to the induced cover $\mathrm{I}(\theta, \mathrm{H})$.

Conversely, let χ_{i} and χ_{j} belong to some induced cover $\mathrm{I}(\theta, \mathrm{H})$. Then, χ_{i} and χ_{j} are irreducible constituents of θ^{G}. That is, θ is a common irreducible constituent of $\chi_{i \mathrm{H}}$ and $\chi_{j \mathrm{H}}$. That is, χ_{i} and χ_{j} are adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$.

Theorem 3.4 Let $H=\langle x\rangle$ be a cyclic subgroup of order h of G and let $\rho_{1}, \rho_{2}, \ldots, \rho_{v}$ be the complete set of irreducible representations of G . Then $\Gamma(\mathrm{G}, \mathrm{H})$ is complete if and only if each $\rho_{i}(x)$ has 1 as an eigen value.

Proof: If $\Gamma(\mathrm{G}, \mathrm{H})$ is complete then χ_{1} is adjacent to all $\chi_{i}, i>1$. But $\chi_{1 \mathrm{H}}=\theta_{1}$. Therefore, if χ_{1} is adjacent to χ_{i} and $\chi_{j}, i, j>1$ then θ_{1} is common to both $\chi_{1 \mathrm{H}}$ and $\chi_{i \mathrm{H}}$ and common to both $\chi_{1 \mathrm{H}}$ and $\chi_{j \mathrm{H}}$. This implies θ_{1} is common to both $\chi_{i \mathrm{H}}$ and $\chi_{j \mathrm{H}}$. Therefore the adjacency of χ_{1} to all $\chi_{i}, i>1$ is also a sufficient condition for the graph $\Gamma(\mathrm{G}, \mathrm{H})$ to be complete. Therefore $\Gamma(\mathrm{G}, \mathrm{H})$ is complete if an only if $\left(\chi_{i}, \chi_{1}\right)_{\mathrm{H}}=\frac{1}{h} \sum_{s \in H} \chi_{i}(s)>0$ for each $\mathrm{i}>1$.

Let ω be a primitive $h^{\text {th }}$ root of unity, and let $\omega^{j_{1}}, \omega^{j_{2}}, \ldots, \omega^{j_{n_{i}}}$ (repetition allowed) be the eigenvalues of $\rho_{i}(x)$, where $\operatorname{deg} \rho_{i}=n_{i}$. Then for each element x^{k} in $\mathrm{H}, \chi_{i}\left(x^{k}\right)=\omega^{k j_{1}}+\omega^{k j_{2}}+\cdots+\omega^{k j_{n_{i}}}$. Therefore,

$$
\sum_{s \in H} \chi_{i}(s)=\sum_{k=0}^{h-1} \chi_{i}\left(x^{k}\right)=\sum_{k=0}^{h-1}\left(\omega^{k j_{1}}\right)+\sum_{k=0}^{h-1}\left(\omega^{k j_{2}}\right)+\cdots+\sum_{k=0}^{h-1}\left(\omega^{k j_{n_{i}}}\right)=m h
$$

for some $m>0$ if and only if 1 is an eigenvalue of $\rho_{i}(x)$ for each $i>1$.
For example, if we take $G=S_{4}$, the symmetric group on four letters and $\mathrm{H}=\{1,(12)(34)\}$, then $\Gamma(\mathrm{G}, \mathrm{H})$ is a complete graph with 5 vertices.

Theorem 3.5 If H_{1} is a subgroup of of G_{1} and H_{2} is a subgroup of G_{1} then, $\Gamma\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)=\Gamma\left(G_{1}, H_{1}\right) \circ \Gamma\left(G_{2}, H_{2}\right)$

Proof: Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{h}$ be the vertices of $\Gamma\left(G_{1}, H_{1}\right)$ and $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ be the vertices of $\Gamma\left(G_{2}, H_{2}\right)$. Then the collection $\left\{\sigma_{i} \psi_{j}\right\}$ will be the vertex set for $\Gamma\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)$. We map the vertex $\sigma_{i} \psi_{j}$ onto the vertex $\left(\sigma_{i}, \psi_{j}\right)$ of $\Gamma\left(G_{1}, H_{1}\right) \circ \Gamma\left(G_{2}, H_{2}\right)$. We shall now prove that $\sigma_{i} \psi_{j}$ and $\sigma_{p} \psi_{q}$ are adjacent if and only if $\left(\sigma_{i}, \psi_{j}\right)$ and $\left(\sigma_{p}, \psi_{q}\right)$ are adjacent.

Let $\sigma_{i} \psi_{j}$ and $\sigma_{p} \psi_{q}$ are adjacent. This means that $\left(\sigma_{i} \psi_{j}, \sigma_{p} \psi_{q}\right)_{H_{1} \times H_{2}} \neq 0$ (using Theorem 3.1). But $\left(\sigma_{i} \psi_{j}, \sigma_{p} \psi_{q}\right)_{H_{1} \times H_{2}}=\left(\sigma_{i} \sigma_{p}\right)_{H_{1}}\left(\psi_{j} \psi_{q}\right)_{H_{2}}$. Therefore we have $\left(\sigma_{i}, \sigma_{p}\right)_{H_{1}} \neq 0$ and $\left(\psi_{j}, \psi_{q}\right)_{H_{2}} \neq 0$. This shows that σ_{i} and σ_{p} are adjacent in $\Gamma\left(G_{1}, H_{1}\right)$ and ψ_{j} and ψ_{q} are adjacent in $\Gamma\left(G_{2}, H_{2}\right)$. Therefore the vertices $\left(\sigma_{i}, \psi_{j}\right)$ and $\left(\sigma_{p}, \psi_{q}\right)$ are adjacent in $\Gamma\left(G_{1}, H_{1}\right) \circ \Gamma\left(G_{2}, H_{2}\right)$.

Conversely, assume that the vertices $\left(\sigma_{i}, \psi_{j}\right)$ and (σ_{p}, ψ_{q}) are adjacent in $\Gamma\left(G_{1}, H_{1}\right) \circ \Gamma\left(G_{2}, H_{2}\right)$. If $\sigma_{i}=\sigma_{p}$ and ψ_{j} and ψ_{q} are adjacent in $\Gamma\left(G_{2}, H_{2}\right)$ then, $\left(\sigma_{i}, \sigma_{p}\right)_{H_{1}} \neq 0$ and $\left(\psi_{j}, \psi_{q}\right)_{H_{2}} \neq 0$. Therefore $\left(\sigma_{i} \sigma_{p}\right)_{H_{1}}\left(\psi_{j} \psi_{q}\right)_{H_{2}} \neq 0$. That is, $\quad\left(\sigma_{i} \psi_{j}, \sigma_{p} \psi_{q}\right)_{H_{1} \times H_{2}} \neq 0$. That is, $\sigma_{i} \psi_{j}$ and $\sigma_{p} \psi_{q}$ are adjacent in $\Gamma\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)$. If σ_{i} and σ_{p} are adjacent in $\Gamma\left(G_{1}, H_{1}\right)$ and ψ_{j} and ψ_{q}, then by a similar argument we can prove that $\sigma_{i} \psi_{j}$ and $\sigma_{p} \psi_{q}$ are adjacent in $\Gamma\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)$. Finally, if σ_{i} and σ_{p} are adjacent in $\Gamma\left(G_{1}, H_{1}\right)$ and ψ_{j} and ψ_{q} are adjacent in $\Gamma\left(G_{2}, H_{2}\right)$, then $\left(\sigma_{i}, \sigma_{p}\right)_{H_{1}} \neq 0$ and $\left(\psi_{j}, \psi_{q}\right)_{H_{2}} \neq 0$. As in the
previous cases this will also lead to the adjacency of $\sigma_{i} \psi_{j}$ and $\sigma_{p} \psi_{q}$ in $\Gamma\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)$. Hence the theorem is true.

Lemma 3.6 If G is a Frobenius group with Kernel N and complement H then [1] $\Gamma(\mathrm{G}, \mathrm{H})$ is connected.
[2] $\Gamma(\mathrm{G}, \mathrm{N})$ is disconnected.
Proof: (i) Let $x \notin H$. Then $H \cap H^{x}=(1)$ and hence $\operatorname{core}_{G}(H)=\bigcap_{x \in G} H^{x}=(1)$. Therefore $\Gamma(\mathrm{G}, \mathrm{H})$ is connected.
(ii) Since N is normal $\Gamma(G, N)$ is disconnected.

Lemma 3.7 Let $A=\{\chi \in \operatorname{Irr}(G) / K$ er $\chi \supset N\}$ and $B=\{\chi \in \operatorname{Irr}(G) / K$ er $\chi \not \supset N\}$. Then $|A|=|\operatorname{Irr}(H)|$ and $|B|=t / h$, where $t+1=|\operatorname{Irr}(N)|, \mathrm{h}=\mathrm{o}(\mathrm{H})$ and t / h is the number of non-principal orbits of $\operatorname{Irr}(N)$ under the action of H .

Theorem 3.8 Let $n=|\operatorname{Irr}(H)|$ and $m=t / h$. Then $\Gamma(\mathrm{G}, \mathrm{N})$ consists of the complete subgraph K_{n} and m isolated vertices.

Proof: If N is a normal subgroup of G , then $\Gamma(\mathrm{G}, \mathrm{N})$ has k distinct connected components where k is the number of distinct orbits of $\operatorname{Irr}(N)$ under the action of H by conjugation. By Clifford's theorem, the component of $\Gamma(\mathrm{G}, \mathrm{N})$ corresponding to the principal orbit 1_{N} consists precisely of the irreducible characters of G whose kernel contains N . That is, this component is a complete subgraph K_{n} of $\Gamma(\mathrm{G}, \mathrm{N})$, whose vertices are exactly the elements of A .

By lemma 3.7, $\operatorname{Irr}(N)$ has exactly mon-principal orbits. For each such orbit any representative will induce an irreducible character of G as per property (iii), each character belongs to B. Since there are m non-principal orbits, there are m isolated vertices in $\Gamma(\mathrm{G}, \mathrm{N})$. From lemma 3.7, $|\mathrm{B}|=\mathrm{m}$ and hence $\Gamma(\mathrm{G}, \mathrm{N})$ has exactly m isolated vertices.

Theorem 3.9 The connected graph $\Gamma(\mathrm{G}, \mathrm{H})$ consists of a complete subgraph K_{m} together with ' n ' vertices each of which is adjacent to every one of the vertices in K_{m}. The number of edges in $\Gamma(\mathrm{G}, \mathrm{H})$ is $n m+\binom{m}{2}$.

Proof: Each χ in A contains N in its kernel. Therefore such characters arise as extensions of irreducible characters of the group G / N, which is isomorphic to H. This gives rise to a one-to-one correspondence between the irreducible characters of H and the elements of A. Hence any two distinct elements of A are not adjacent, since their restriction to H is irreducible.

Next, let χ^{\prime} be any element of B. Then from (iv), it follows that $\chi^{\prime}=\theta^{G}$ for some irreducible character θ of $N, \neq 1_{N}$. Hence from the properties of characters induced from normal subgroups, we have $\chi^{\prime}(x)=0$ for all $x \notin N$. In particular, $\chi^{\prime}(x)=0$ for all $x \in H, x \neq 1$, since $N \cap H=(1)$. Hence χ^{\prime} is an integral multiple of the regular character RegH of H. Therefore each irreducible character of H occurs in χ_{H}^{\prime} and hence the irreducible characters in B form a complete subgraph K_{m}. Also each element of A is H-irreducible and hence any irreducible character in A is adjacent to χ^{\prime}. Therefore any element of A is adjacent to every element of B.

Since any element of A is adjacent to every element of B and no two elements of A are not adjacent we get nm edges. Also any two elements of B are adjacent. Therefore there are $\binom{m}{2}$ edges. Hence there are $n m+\binom{m}{2}$ edges in $\Gamma(\mathrm{G}, \mathrm{H})$.

Theorem 3.10 Let $G=N H$ be a Frobenius group. Then, $\Gamma(G, N)=\bar{\Gamma}(G, H)$. Conversely, if G is a semi direct product NH where N is a normal subgroup of G and H is not normal such that $\Gamma(G, N)=\bar{\Gamma}(G, H)$, then G is a Frobenius group with kernel N and complement H .

Proof: (We shall follow the notations used in Theorem 4.5). In $\Gamma(\mathrm{G}, \mathrm{H})$ any vertex in A is adjacent to all vertices in B and no two vertices in A are adjacent. Also, $B \cup\left\{1_{G}\right\}=\mathrm{I}(1, \mathrm{H})$. In fact, each χ^{\prime} in B is such that χ_{H}^{\prime} is an integral multiple of the regular character Reg H and hence contains 1_{H} and therefore $\chi^{\prime} \in \mathrm{I}(1, \mathrm{H})$. Also, any $\chi^{\prime} \neq 1_{G}$ in $\mathrm{I}(1, \mathrm{H})$ must belong to B, since otherwise $\chi_{\mathrm{H}}^{\prime} \in \operatorname{Irr}(\mathrm{H})$ and non-principal by the one-to-one correspondence, which cannot happen since χ_{H}^{\prime} contains 1_{H} by our choice of χ^{\prime} in $\mathrm{I}(1, \mathrm{H})$. From property (iv) any χ in B is induced from some $\theta \in \operatorname{Irr}(N)$ and hence no two vertices in B are adjacent in $\Gamma(\mathrm{G}, \mathrm{N})$. Also for any χ in A the only irreducible constituent of χ_{N} is 1_{N} and 1_{N} does not occur as a constituent of $\chi_{\mathrm{N}}^{\prime}, \chi^{\prime}$ in B. Therefore no χ in A is adjacent to any χ^{\prime} in B in $\Gamma(\mathrm{G}, \mathrm{N})$. Now A is precisely the induced cover $\mathrm{I}(1, N)$. Therefore any two irreducible in A are adjacent in $\Gamma(\mathrm{G}, \mathrm{N})$. Thus $\Gamma(\mathrm{G}, \mathrm{N})$ is precisely the complement of the graph $\Gamma(\mathrm{G}, \mathrm{H})$.

Conversely, since $B \cup\left\{1_{G}\right\}=\mathrm{I}(1, \mathrm{H})$, any two χ_{j} and $\chi_{k}, j \neq k$ in B are adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$ and hence they are not adjacent in $\Gamma(\mathrm{G}, \mathrm{N})$, as $\Gamma(\mathrm{G}, \mathrm{H})$ and $\Gamma(\mathrm{G}, \mathrm{N})$ are complements of each other. Therefore, for $\chi \in B, \chi_{\mathrm{N}}=e \sum \theta_{i}$, for some integer $e \geq 1, \theta_{i} \in \operatorname{Irr}(N)$ and $\theta_{\mathrm{i}} \neq 1$ are distinct conjugates. Hence, for any i, $\theta_{i}^{G}=e \chi$ because, if $\eta \in B$ occurs in the right hand side, then η and χ must be adjacent in $\Gamma(\mathrm{G}, \mathrm{N})$, which is not true, and also no $\eta \in A$ can occur in the right hand side. Therefore, $\theta_{i}^{G}=e \chi$ vanishes on $G-N$ and hence on $H-\{1\}$, which shows that χ_{H} is an integral multiple of RegH. But, $\operatorname{Ind}_{H}^{G} 1=1+\alpha_{1} \chi_{1}+\alpha_{2} \chi_{2}+\cdots+\alpha_{m} \chi_{m}, \quad \chi_{i} \in B . \quad$ Therefore, $\quad \operatorname{deg}\left(\sum \alpha_{j} \chi_{j}\right)=$ [G: H] $-1=o(N)-1$. Since each χ_{j} is an integral multiple of RegH, o(H) divides $\operatorname{deg} \chi_{j}$ for each j. Hence

$$
\begin{equation*}
\mathrm{o}(\mathrm{H}) \text { divides } \mathrm{o}(\mathrm{~N})-1 . \tag{1}
\end{equation*}
$$

Now assume that G is not a Frobenius group. Then there exists $x \in H, x \neq 1$ and $u \in N, u \neq 1$ such that $x u x^{-1}=u$. Therefore by Brauer's theorem, there exists $\theta \in \operatorname{Irr}(N), \theta \neq 1$ such that $\theta^{x}=\theta$. Let $\operatorname{deg} \theta=k$ and let T be the inertia group of θ. Then T is a subgroup of G properly containing N. By Mackey's irreducibility criterion, θ^{G} is not irreducible and hence $\theta^{G}=e \chi, \chi \in \mathrm{~B}, e>1$ and $\chi_{N}=e \sum_{i=1}^{t} \theta_{i}, t=[G: T]$ and hence $\operatorname{deg} \chi=e k t$. Then, $\theta^{T}=e \psi ; \psi^{G}=\chi$ and $\psi_{N}=e \theta, \psi \in \operatorname{Irr}(T)$. Since $[\mathrm{T}: \mathrm{N}] \mathrm{k}=\operatorname{deg} \theta^{\mathrm{T}}=\mathrm{e} \operatorname{deg} \psi=e^{2} \mathrm{k}$, we have $[\mathrm{T}: \mathrm{N}]=e^{2}$ and hence $o(H)=[G: N]=[G: T][T: N]=t e^{2}$. Since $\chi_{H}=$ a RegH, a is an integer, we have etk a t e^{2}. This implies e divides k. Since $\operatorname{deg} \theta=k$ divides $o(N)$, e divides $\mathrm{o}(\mathrm{N})$, so that $\mathrm{o}(\mathrm{N})=\mathrm{b} e, \mathrm{~b}$ is an integer. From $(1) \mathrm{o}(\mathrm{H})$ divides $\mathrm{o}(\mathrm{N})-1$. That is, $\mathrm{t} e^{2}$ divides $\mathrm{o}(\mathrm{N})-1$ and hence $\mathrm{o}(\mathrm{N})-1=\mathrm{d} \mathrm{t} e^{2}$, d is an integer. That is, be $-1=\mathrm{d} \mathrm{t} e^{2}$. This shows that e divides 1 , which is not possible, since e >1. Hence G must be a Frobenius group with kernel N and complement H .

The graphs $\Gamma(\mathrm{G}, \mathrm{H})$ and $\Gamma(\mathrm{G}, \mathrm{N})$ are given in Figure 1 and Figure 2 respectively where $G=D_{18}$, the dihedral group with 18 elements.
$D_{18}=\left\{1, x, x^{2}, \ldots, x^{8}, y, y x, \ldots, y x^{8}\right\} ; x^{9}=1, y^{2}=1, y x y=x^{-1}$ implies $y x^{k} y=x^{-k}$, $\left(y x^{k}\right)^{2}=1 . D_{18}$ has 6 irreducible characters of which 2 are linear (degree 1) and 4 are of degree 2. The linear characters are given Table 1.

4 Labels of figures and tables

Table 1: Linear characters of $\quad D_{18}$

$$
\begin{array}{ccc}
& x^{k} & y x^{k} \\
\chi_{1} & 1 & 1 \\
\chi_{2} & 1 & -1
\end{array}
$$

The irreducible characters of degree 2 are given by

$$
\chi_{h}\left(x^{k}\right)=2 \cos \frac{2 \pi h k}{9}, \quad \chi_{h}\left(y x^{k}\right)=0
$$

$$
\chi_{1}=1_{G}
$$

Figure 1
Figure 2

Figure 3

5 Conclusion

We conclude this paper with the following basic question. Given a graph Γ, can we find a group G such that Γ is isomorphic to $\Gamma(\mathrm{G}, \mathrm{H})$ for some subgroup H of G ?

Consider the graph with four vertices given in Figure 3. In this graph χ_{1} and χ_{2} are adjacent. Therefore, there exists some $\theta \in \operatorname{Irr}(H)$ such that θ is an irreducible constituent of both $\chi_{1 \mathrm{H}}$ and $\chi_{2 \mathrm{H}}$. But $\chi_{1 \mathrm{H}}=1_{\mathrm{H}}$. Therefore 1_{H} is a constituent of both and $\chi_{1 \mathrm{H}}$ and $\chi_{2 \mathrm{H}}$. By a similar argument we have that 1_{H} is a constituent of both $\chi_{1 \mathrm{H}}$ and $\chi_{4 \mathrm{H}}$. Therefore χ_{2} and χ_{4} must be adjacent in $\Gamma(\mathrm{G}, \mathrm{H})$. Hence we cannot find a group G and a subgroup H of G such that $\Gamma(\mathrm{G}, \mathrm{H})$ is isomorphic to the above graph.

References

[1] V.A. Belonogov, Certain Pairs of Irreducible Characters of the Groups S_{n} and A_{n}, Proc. Steklov Inst. Math., 257(Suppl. 1), (2007), S10 - S46.
[2] N. Chigira and N. Iiyori, Bratteli diagrams of finite groups, Comm. Algebra, 23(14), (1995), 5315-5327.
[3] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, New York, 1996.
[4] T. Gnanaseelan and C. Selvaraj, Graphs associated with group characters, International J. Algebra, 4(9-12), (2010).
[5] D. Gorenstein, Finite groups, Harper and Row Publishers, New York, 1968.
[6] M. Hall, The theory of groups, The Macmillan Company, New York, 1959.
[7] F. Harary, Graph theory, Narosa Publishing House, New Delhi, 1988.
[8] M. Javarsineh and Ali Iranmanesh, About the character graph of the groups, Canadian J.Sci. \& Engg. Math., 2(5), (December, 2011), 229-236.
[9] I.M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
[10] A. Moreto and J. Sangroniz, On the number of zeros in the columns of the character table of a group, J. Algebra, 279(2), (2004), 726-736.
[11] A. Moreto, An answer to a question of Isaacs on character degree graphs, Adv. Math., 201(1), (2006), 90-101.
[12]C. Musili, Representations of finite groups, Hindustan Book Agency, India, Delhi, 1993.
[13]K.R. Parthasarathy, Basic graph theory, Tata McGraw-Hill Publishing company Limited, New Delhi, 1994.

[^0]: ${ }^{1}$ Department of Mathematics, Presidency College, Chennai- 600005, India, e-mail: gnanaseelan58@gmail.com
 ${ }^{2}$ Department of Mathematics, Presidency College, Chennai- 600005, India, e-mail: pamc9439@yahoo.co.in

