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Abstract 

Empirical observations show how the growth of cell population complies with the 

Gompertz law, however this statistical distribution has not been satisfactory 

explained in relation to the internal biological kinematics so far.  

The description of algorithms and mathematical models that compute the behavior 

of biosystems is a noteworthy field of research in bioinformatics, and this 

contribution calculates the growth of cell tissues using the Boltzmann-like entropy 

function. The parameters of the present mathematical model should enable to 

examine pathological deviations too, namely the results could be applied to 

analyze normal tissues and pathological tissues such as tumors. 
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1  Focus of Interest  

The embryonic and postnatal growth of organs and the growth of the whole 

organism [1], the regeneration of tails in lizards and newts obey the Gompertz law. 

As early as 1934 it is observed the Gompertz curve in cancer tissues 

transplantation; and the current literature confirms the same trend for dozen kinds 

of tumors [2]. Experimental data bring evidence how apparently different 

phenomena comply with the same curve. Some attempts to illustrate this trend in 

mathematical terms emerged during the last decades [3], [4]. These calculations 

revolve around the speed of the mitosis which although approximates the 

statistical trend and does not spell out the exact reproduction function. As second 

the speed does not reveal the reason of the Gompertz curve whose meaning 

remains rather obscure. In fact it is intriguing that that curve, originally conceived 

as the `law of human mortality', gives such an accurate description of biological 

growth. 

The present paper tackles this kind of problems through a novel mathematical 

method. It is introduced the stochastic or Boltzmann-like entropy, which is 

symmetrical to the function calculated by Boltzmann in thermodynamics, and this 

function is used for calculating the cell reproduction. 

 

 

2  Introduction to the Boltzmann-like Entropy 

Let the stochastic continuous time system S is finite 

 S = (A1, A2, … Am)                     (1) 

Where the generic state Ai (i = 1, 2, ... m) depends on the probability Pi  

    Ai=A(Pi)                         (2) 

Speaking in general, the system S may be more or less stable in the generic state Ai; 

in other words, S easily leaves Ai or otherwise rarely abandons Ai. If the system 

frequently abandons Ai, we tell the state is reversible; if the system does not 
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evolve from Ai, we say this state is irreversible. E.g. A patient may be regarded as 

S in the disease state Ad. If the patient recovers in a few times, the state Ad turns 

out to be reversible. If the patient does not get better, we say Ad irreversible.  

I quantify the ability of the system to evolve from the generic state Ai using the 

stochastic or Boltzmann-like entropy 

 Hi= H(Ai)                         (3) 

Equation (3) provides the reversibility and irreversibility (R/I) of S in the state Ai 

by means of real numbers (see demonstration in Appendix) [5]. 

 

 

3  Calculation of the Cell Reproduction  

3.1 - A cell may be seen as the stochastic system SC that assumes a certain number 

of states; for example, the nutrition state Au, the growing state Aw, the moving state 

Av, the decease state Ad, the reproduction state Ar and so forth 

 SC = (Au, Aw, Av, Ad, Ar  …)                   (4) 

3.2 - The reversibility/ irreversibility of each state specifies the capability/ 

incapability of the cell SC to operate in that state. As an example, suppose the 

nutrition state Au is irreversible, than the cell SC is stable in the nutrition state and 

overfeeds. Conversely Au reversible means that the cell scarcely feeds itself.  

3.3 - The organelles of the cell SC cooperate; that is to say, each organelle 

contributes to the effectiveness or to the failure of the states Au, Aw, Av,…. 

Postulate (A.2) holds that one can derive the entropy of the generic state from the 

entropies of the components. For example, the vibratile cilias make a ciliate 

protozoon to move. From (A.2) one calculates the capability HV of the moving 

state with the entropies HVg of n cilias 

   
1

( )
n

V v Vg
g

H H A H
=

= = ∑                       (5) 

The more the generic cilia g is effective, the more its entropy HVg is great and the 
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more the overall cell is able to move. 

3.4 - We apply criterion 3.3 to the reproduction state Ar; hence, the greater the 

entropy HR of Ar and the more the reproduction process thrives; the smaller HR 

and the less the cell is able to reproduce. 

Because a cell activates the states Au, Aw, Av,…. at the same time, we can assume 

that the states Au, Aw, Av,…. are equally likely over a large interval of time. The 

classical theory takes the probability of Ar as the ratio between the favorable cases 

Fr and the possible cases N 

Pr = Fr / N                          (6) 

Because of the impossibility of counting N, one can calculates the stochastic 

entropy in function of the favorable cases Fr, hence one can simplify the entropy 

function HR that takes the following form 

HR = H(Fr ) = ln (Fr )                      (7) 

In consequence of this simplification, equation (7) ranges from 0 to + ∞, 

whereas (A.3) [see Appendix] varies between – ∞ and 0. The substitution of 

HR=H(Pr ) with HR=H(Fr ) is clean because the present paper means to investigate 

the trend of the cell growth rather than to calculate the precise values of Hr. As 

second, I remind the important precedent of Ludwig Boltzmann who elucidates 

the third thermodynamic law by means of the absolute number of complexions 

and does not use the classical probability. In short, I am following the same 

method of Boltzmann by using (7) instead of (A.3). 

3.5 - The reproduction of the cell starts with the preparation of the genetic material 

until the stage of duplication. The operations of the organelles affect other 

organelles during this period of time, and these humming activities can be 

modeled by means of the mesh, where the generic component k stimulates a set of 

components, which in turn affect the next and so on. 
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Figure 1 

 

One can calculate the behavior of the mesh through the following steps. 

3.6 - The activity of the cell expands from the first stages to the conclusion of the 

mitosis. I state the activity of the generic organelle k spreads out and can quantify 

its very capability by the entropy HRk that regularly increases during time  

( )Rk kH t t                          (8) 

3.7 - The organelle k interacts with the organelle h; their overall capability 

increases due to this connection, hence the multiplication of HRk with HRh provides 

the effectiveness of this couple  

 ( ) ( , )R Rk Rh Rk RhH t f H H H H                  (9) 

The accurate demonstration of the multiplication law for entropy may be found in 

[6]. 

3.8 - The generic organelle k does not influence the other components with a 

uniform rule, namely the biological reactions are different along the various 

directions. By way of illustration, k works with the component i and this in turn 

influences s, and afterward u, because the organelles make a mesh. 

 
Figure 2 
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The process stemming from k reaches one, or two, or three up to n components as 

in Figure 2. I apply function (9) to every chain and obtain the overall reproductive 

capability of the cell 

 ( ) ...R Rk Rg Rh Rk Rl Rd Rk Ri Rs RuH t H H H H H H H H H H         (10) 

The entropy of each part varies linearly in time as established in (8), thus (10) 

becomes 
2 3 4

1 2 3 4( ) ... n
R nH t t t t t t                      (11) 

3.9 - The interactions among the parts are not one-way, hence the product (HRg HRl 

HRd) regards the combination gld and also gdl. Symmetrically the chain generated 

by l, which I calculate by (HRl HRg HRd), covers lgd and ldg. The same discourse 

should be repeated for d. In conclusion the member (HRg HRl HRd) = λ3t3 quantifies 

the processes accomplished by 3! configurations, hence I divide each term in (11) 

by its appropriate factorial  
32 4

31 2 4( ) ...
1! 2! 3! 4! !

n
n

R
t tt t tH t

n
   

                 (12) 

3.10 - For the sake of simplicity, I assume that all the coefficient λi (i=1,2...n) be 

equal, and obtain 

1
( )

!

kn

R
k

tH t
k




                       (13) 

As n large, HR (t) approximates the exponential 

( ) t
RH t e                         (14) 

I substitute (14) into (7) and get 

( )
te

rF t ae          a > 0          (15) 

This means that the number of cells increases according the Gompertz law, while 

the constants a and λ depend on the special kind of tissue. The present approach 

absolutely provides the exponential-exponential function and gets close the 

Gompertz curve.  



Paolo Rocchi 177  

4  Conclusion 

The present paper revolves around two mathematical tools that are the 

structural model of the cell kinetics and the Boltzmann-like entropy which 

calculates the elements of that structure. Some researchers use the entropy 

function in the biological domain, but preferably they calculate the Shannon’s 

entropy [7] 

The final outcome matches with a broad statistical inference basis and 

enlightens the causes of the Gompertzian trend. The present logical frame 

basically holds that (15) derives from the high number of interconnections of the 

cell organelles. 

Equation (15) does not relay on special constraints, thus it covers normal and 

pathological cells, embryonic and mature tissues etc. It reunifies the 

comprehension of different forms of biological development. In particular the 

overall arrangement of the cell in Figure 1 remains true in the tumor cell when the 

control of the process misses and the reproduction goes on unchecked [8], [9]. 

As the Boltzmann entropy is a powerful weapon to grasp the behavior of the 

thermodynamic system, but does not support specific computational processes, 

similarly the current work illustrates the reasons for the cell growth while the 

numerical determination of HR and Fr does not appear manageable.  
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Appendix 
The purpose of the present section is the calculation of the entropy (3), when 

(1) and (2) are true. 
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The entropy quantifies the reversibility and irreversibility of S in the generic state 

Ai under the following conventions: 

i) H(Ai) is 'high' if Ai is very irreversible. 

ii) H(Ai) is 'low' if Ai is highly reversible.  

The demonstration is based on three assumptions; the first pair of assumptions 

pinpoints the mathematical properties i and ii just declared. The mechanism of R/I 

dictates the third and most telling axiom. 

1) The stochastic system S has m finite states as in (1). 

2) The stochastic entropy H(Ai) is an increasing function of Pi in accordance with i 

and ii. 

3) Experience shows that the reversibility and irreversibility of a component 

contributes to R/I of the whole system, namely the entropy of each sub-state 

influences the entropy of the global state. Take for example the patient who 

has the diseased organ x. If x is not very bad, than the patient soon recovers 

and Ad is rather reversible. If x is far-gone unhealthy, than Ad is very 

irreversible. In conclusion, the entropy of the organ x effects on the overall 

entropy, in particular the more the entropy H(Adx) of the organ is great, the 

more H(Ad) increases. This phenomenon can be translated in the following 

mathematical axiom.  

Let the state Ai consists of n co-operating sub-states  

 Ai = (Ai1 AND Ai2 AND Ai3 AND  .... AND Ain)        (A.1) 

The sum of the sub-state entropies provides the entropy Hi if Ai 

   Hi = H(Ai) = H (Ai1) + H (Ai2) + ... + H (Ain) = Hi1 + Hi2 + ... + Hin  (A.2) 

From hypotheses 1), 2) and 3), one can prove that the stochastic entropy [5] is the 

logarithm 

Hi = H(Pi) = a ln (Pi)       a > 0         (A.3) 

The form and the significance of (A.3) are symmetrical to the Boltzmann entropy 

that quantifies I/R for a thermodynamic sample of gas.  
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