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Improved Approximate Solutions for Nonlinear
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Abstract

In this paper, an improved method called the Reduced Differential Transform
Method (RDTM) was used to obtain approximate numerical and exact solutions
for three different types of nonlinear partial differential equations (NLPDES), such
as; Gardner equation, Variant Nonlinear Water Wave equation (VNWW), and the
Fifth-Order Korteweg-de Vries (FKdV) equation. The theoretical analyses of the
RDTM are investigated for these equations and are calculated in the form of a
series with easily computable terms. The results we obtained are compared with
the analytical solutions obtained by other methods used in the past. One can
conclude that only few terms of the series expansion are required to obtain
approximate solutions using the RDTM with an excellent accuracy. Most of the
symbolic and numerical computations were performed using Mathematica

software.
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1 Introduction

The Reduced Differential Transform Method [9-11], was first introduced by
Keskin to solve linear and nonlinear PDEs that appears in many Mathematical
physics and engineering applications. For nonlinear models, the RDTM has shown
dependable results and gives analytical approximation that converges very rapidly
and in some cases gives exact solutions. Many numerical methods were used to
solve nonlinear partial differential equations, such as, the Adomian
Decomposition Method (ADM) [1, 2], the Differential Transform Method (DTM)
[4], and the Variational Iteration Method (VIM) [6]. In this paper, we solve the
following NLPDEs:

First, consider the Gardner equation
u, =6u’u, +6u+u,, (1)

subject to the initial condition

u(x,0) = _?1(1— tanh (gj} . (2)

Second, Nonlinear Variant Water Wave equation the:

Up + U, + Uy, + Uy +(uu, ) =0 (3)

XXXXX

subject to the conditions

J10x
10

u(x,0)=2—2tanh{ ] ut(x,O):z—z %sechz(i) (4)

Third, the FKdV equation:

u, +uu, —uu,, +u,. =0, %)

XXXXX


http://www.ams.org/mathscinet/msc/msc2010.html?t=35J05&btn=Current
http://www.ams.org/mathscinet/msc/msc2010.html?t=35J10&btn=Current
http://www.ams.org/mathscinet/msc/msc2010.html?t=35K05&btn=Current
http://www.ams.org/mathscinet/msc/msc2010.html?t=35L05&btn=Current
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subject to the condition

u(x,0) =e". (6)
The goal of the study is to use the RDTM to solve three different types of
nonlinear partial differential equations (NLPDEs). Efficiency and simple
applicability of the method for the solution of complicated nonlinear partial
differential equations are the main highlights of this study.
Keskin, in his PhD thesis [13], introduced the reduced form of the differential
transform method (DTM) as reduced differential transform method (RDTM) and
he used the RDTM to solve the Gas Dynamics Equation and linear and nonlinear
Klein Gordon Equations and more. Also, Keskin and Oturanc (2010) used the
RDTM to solve linear and nonlinear wave equations and they showed the
effectiveness, and the accuracy of the method. Moreover, they showed that the
number of iterations is less than the one used by the DTM. Finally, Alquran [4]
used the DTM to solve the Gardner equation and Kaya and Al-Khaled [9], find a

numerical solution to the Kawahara equation.

2 Analysis of the RDTM

In this section, we start with a function of two variables u(x,t) which is

analytic and k —times continuously differentiable with respect to time t and

space X inthe domain of our interest. Assume we can represent this function as a
product of two single-variable functions, namely u(x,t): f(x).g(t) . From the

definitions of the DTM, the function can be represented as follows:
u(x,t):(ZF(i)x‘j(ZG(j)t"j:ZUk(x). t*, (7)
i=0 j=0 k=0

where U, (x) is the transformed function of u(x,t) which can be defined as:
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1] o )
Uk(x)_ﬁ{yu(x,t)l_ot . 8)
From equations (7) and (8) we can deduce
E 1 6k )
u(x,t)=>) —| —u(x,t t". 9
w0 Sl 0], ®

Some basic properties of the reduced differential transformation obtained from

equations (7) and (8) are given as follows:

Theorem 2.1 If f(x,t) =au(x,t) £ Sv(x,t) ,then F (x)=aU,(X)£LV,(X) ,

where o and g are constant.

Theorem 2.2 If f(x,t) =u(x,t).v(x,t), then Fk(x):zk:Ui(x)Vk_i(x).

i=0

Theorem 2.3 If f(x,t) =u(x,t).v(X,t).w(x,t), then

F )= S U,(X) Ve, ()W, (x)

i=0 j=0

n k+n)!
Theorem 2.4 If f(x,t):aatnu(x,t),then F ()< ;I”) U,..(x).

n

Theorem 2.5 If f(x,t)= 0 .
OX

an
u(x,t), then F (x)=—U, (x).
(x,1) (X) v (%)

Theorem 2.6 If f(x,t)=x"t"u(x,t), then F (x)=x"U,_, ().

Theorem 2.7 If f(x,t) =x"t", then F (x)=x"5(k—n),

1, k=
whereo(k —n) = " :
0, k#n
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The proofs of the above theorems and more properties can be found in [13].

To illustrate the RDTM, we write the Gardner equation in standard form

L (u(x,t))=6L(u(x,t))— Ly, (u(x,t))= N (u(x,t)) =0, (10)
subject to initial conditions
u(x,0)=f(x), u(x,0)=9(x), (11)
I s the nonli
where L, = g L., = pvl and N (u(x,t)) is the nonlinear term.

Now from equation (10) and (11), we can derive the recursive formulas

(according to the theorems mentioned above) as:

3

(K+1)U,100 = (U, () +6U, (9 + N (u(xD) (12)

and
Uo(X) = f(X), Uy(x)=g(x). (13)
To find the rest of the iterations, we first substitute equation (13) into

equation (12) and then we find the values ofU, (x) ’s. Finally, we apply the inverse

transformation to all the values {Uk (x)}rk]=0 to obtain the approximate solution:

a(x,t) = Zn:Uk(x)tk , (14)

where n is the number of iterations we have used to find the approximate
solution. Hence, the exact solution of our problem is given by

u(x,t) = Inijpcﬁ(x,t) . (15)

3 Applications

In this section, we test the RDTM on three numerical examples and then

compare our approximate solutions to the exact solutions.
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3.1 Examples
Now, we present three examples to show the efficiency of the RDTM.
Example 3.1.1

Consider the Gardner equation

u, =6u’u +6u+u (16)

XXX !

subject to the initial conditions

u(x, 0)_—1(1 tanh[ D ut(x,0)=_7lsech2(§], (17)

where the exact solution is

u(x.1) =‘71(1 tanh(xz tD (18)

Applying the RDTM to (16) and (17), we obtain the recursive relation

Ura(9) = [(kll)j(a (Uc09)+6U, (x)+6ZZUk.(x)u.J<x) (U,-<x))J,(19)

where theU, (x), is the transform function of the t—dimensional spectrum. Note

that

U (x)_—l(l tanh( D Ul(x):%sechz(gj. (20)

Now, substitute Eg. (20) into Eq. (19) to obtain the following:

sechz(x)
Uz(x):—2[27sech4( j+27cosh(x)sech4[ ) 108}
96 2 2 (21)

sechﬁ( J
g 2(BsinN(2) ~248iNN(Y)...

And so on. So after the third iteration, the differential inverse transform

of{Uk(x)}i:0 will provide us with the following approximate solution:
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x,t)= Z\:}:Uk(x)tk =U, (x) +U, ()t +U, (x)t* +U, (x)t* +...
:_—1£1—tanh (ED—lsech2 (ijt
2 2 4 2

sech ( j
+T2(27sech4(2j+27cosh(X)SeCh4(2}65'”*1(2)() 24sinh(x) - 108j *

x| —388— 897sech4( j+471cosh(x)sech4( j
sech? () 2 2

96 3sech* (;j (79sinh(x) —465sinh(2x) + 6(84 +sinh(3x)))
+

3

1+ cosh(x)

Example 3.1.2
We consider the Nonlinear Variant Water Wave equation
u +u +u_ +u uu, ), =0, (22)

XXXXX + (

subject to the conditions

9 x/_xj S\F 21 98 5
u(x,0) = 2 2tanh( U (%, 0) = SSECh {\/ﬁ tanh A0 | (23)

where the exact solution

u(x,t) = 2—2tanh? (@(x—ﬁtn (24)
10 25

Similar to the previous example, by the theorems above applied to Eq. (23) and Eg.
(22) we get

0° 0°
Va9 = 1)(53(“)) 20,0+ 200+ 20, (x)uk.(x»](za

and
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L3ty (3
J1ox /
U, () = 2— 2tanh? U, (X) = —. [Zsech? 25 |tanh _ % , (26)
o(X) ( J (0= 5 J10 V10

where, theU, (x) , is the transform function of the t—dimensional spectrum.

Now, substitute Eq. (26) into Eq. (25) to obtain the following:

39t
78t - 25x 3(-26t + 25x) 78t + 25x 125x - 78t
39sech®| —— |sech* 25 | ggcosh 5cosh(,/~x) —2cosh 41cosh[—j 88cosh( 8co: h[ ) 8cosh[ j
[fj [ N) }[ s 5110 )= (\l )~ (f) Nin) 2510 )= 2510 2510

10000

U,(x) =

30t

x-St
39sech’ ijsech“ 25
[Jﬁ J10 39t

e J[SSZGcosh[\E(x?Stj]wosh[z\/g(x:"’zgstJ]]m%%Osech (f]sech {X\/ﬁ JZOsmh[ \E]+

So after the third iteration, the differential inverse transform of{Uk(x)}i=0 will give

the following approximate solution:

X t)=§3:Uk(x)tk

=U,(X) +U, ()t +U, (x)t* + U, (x)t° +...
30t X 39t

_2_2tanh?| 2o +E\Esech2 j tanh 2% t+..
J10 ) 25\5 J10 0

Example 3.1.3
We consider the FKdV equation

u, +uu,—uu,, +u,.. =0, (27)
subject to the initial condition

u(x,0) =e*, (28)
where the exact solution

u(x,t) =e*". (29)

Applying the RDTM to (28) and (27), we obtain the recursive relation



Mahmoud Rawashdeh 9

Ui () = (ZU () gV ()~ ZU ()~ Uk () = U (X)J (30)

So for k=0, we obtain U,(x)=-e*. Now for k>1 we obtain

X X X X

U,00 =5 Ui =5, U0 =2, Uy(0 =2

. Thus

< . eXtZ eXt3 eXt4 eXt5
u(x,t)=e"—e't+ - + - +
2 6 24 120

2 3 4 5 6 7 8
S A N S R e
2 6 24 120 720 5040 40320

X—t

=€

This is the exact solution of Eq. (27).

4  Tables and Figures

In this section, we shall illustrate the accuracy and efficiency of the RDTM.
For this purpose, we consider the same values for x and t, specifically,
x={-0.5,-0.3,0.3,0.5} and t={0.0002,0.0004,0.0006,0.001}. Also we can do

the same for the other example.

Table 1: Comparison of absolute errors of the solution for Gardner equation, by
RDTM and the DTM for different values of x and t

X t Exact DTM RDTM Error(DTM)(n=8)  Error(RDTM)(n=3)

-0.5 [ 0.0002 -0.62250633 -0.344945 -0.62250635 0.277561 2.16889E-8
0.0004 —0.62255332 -0.344860 —0.62255341 0.277693 8.6782E-8
0.0006 —-0.62260032 -0.344776 —0.62260051 0.277825 1.95319E-7
0.001 —0.62269430 -0.344606 —0.62269484  0.278088 5.42886E-7

0.3 | 0.0002 _(0.57449140  -0.410969  —0.57449142 0.163522 2.18636E-8
0.0004 —0.57454029 -0.410891 —0.57454038  0.163649 8.74778E-8
0.0006 —-0.57458918 -0.410814 —0.57458938  0.163775 1.96877E-7
0.001 —0.57468695 -0.410658 —-0.57468750  0.164029 5.47172E-7




10 Improved Approximate Solutions for Nonlinear Evolutions Equations ...
03 | 0.0002 —0.42560637 -0.578589  -0.42560639  0.152983 2.31256E-8
0.0004 —0.42565526 -0.578528 —0.42565536 0.152873 9.2525E-8
0.0006 —0.42570416  -0.578468  —(0.42570437 0.152764 2.08231E-7
0.001  —0.42580195  -0.578346  —0.42580253  0.152544 5.787E-7
05 | 0.0002  -0.37758767 -0.626214  -0.37758769  0.248626 2.31625E-8
0.0004  —0.37763467 -.626158 —0.37763476  0.248523 9.26768E-8
0.0006  —0.37768168 -.626101 -0.37768188  0.248420 2.08583E-7
0.001  —0.37777570 -.625989 -0.37777628  0.248213 5.7973E-7

Table 2: Comparison of absolute errors of the solution for nonlinear variant water

wave equation, by RDTM and the DTM for different values of x and t

X t Exact DT™M RDTM Error(DTM)(n=11)  Error(RDTM)(3)
05 [ 000021 95076129 1.84062457 1.95076128 0.11013671 L43532E
00004 195070088 1.84059019 1.95070082 0.11011068 5742348
00006 195064043 1.84055580 1.95064030 0.11008462 L29227E-7
0001 195051942 184048701 1.95051906 0.11003240 3:59096E -7
03000021 98207043 1.95835336 1.98207042 0.02371707 L4136
00004 198203338 195834003 1.98203333 0.02369335 565554E 8
00006 198199630 195832669 1.98199617 0.02366960 1272687
0001 198192201 195830001 1.98192165 0.02362200 3536237
0300002 198214442 198211219 1.98214441 0.00003222 L41327E
00004 198218136 198211694 1.98218130 0.00006441 565227E-8
00006 198221826 198212169 1.98221813 0.00009657 L27158E -7
0001 198229195 198213118 1.98229159 0.00016077 3531137
05 00002 195088202 1.94311128 1.95088201 0.00777074 L434T9ES
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00004 195094233 194312259 1.95094227 0.00781973 573808€ 8
00006 195100261 1.94313390 1.95100248 0.00786870 12908367

0001 1,95112305 1.94315653 1.95112269 0.00796652 3S8431E-7
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The approximate, exact solutions and absolute error, respectively for

Figure 1:
example 3.1.1 when -0.5< x <0.5 and 0< t <0.001.

Note that; Figure 1 shows the exact solution, approximate solution and the

absolute error, respectively.

The approximate and exact solutions for example 3.1.1 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1.

Figure 2:
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Figure 3: The approximate, exact solutions and absolute error, respectively for
example 3.1.2 when -0.5< x <0.5 and 0< t <0.001.

Note that; Figure 3 shows the exact solution, approximate solution and the

absolute error, respectively.

L 1 L L L 1 L L L L L L 1 L L L 1 L L X / / ) ) )
/ [o4 2 02 04 y . 002 o o X

Figure 4: The approximate and exact solutions for example 3.1.1 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1.

5 Conclusion

In this paper, the Reduced Differential Transform Method (RDTM) was
proposed for solving the Gardner equation, Nonlinear Variant Water Wave
equation, and the Fifth-Order Korteweg-de Vries (FKdV) equation. We
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successfully found approximate solutions for the first two nonlinear PDEs by first
applying the RDTM to all three physical models. Also | was being able to find
exact solution for example (3.1.3). The results we obtained were in excellent
agreement with the exact solutions. The RDTM introduces a significant
improvement in the fields over existing techniques.

Also a comparative study has been conducted between the DTM and the RDTM.
My goal in the future is to apply the RDTM to other nonlinear PDEs which arises
in other areas of science. Computations of this paper have been carried out using

computer package Mathematica 7.
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