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Abstract

In this note we deal with the problem of long-term cryptographic
security. We discuss briefly the methods of multiple encryption and sig-
nature, and the future influence of Quantum, DNA and Chaos methods
in cryptography. Moreover, we propose an encryption and a signature
scheme based on the problems of integer factorization and discrete log-
arithm suitable for applications needing long-term security.
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1 Introduction

Cryptography serves as the foundation for most IT security solutions. It has

been used to verify the authenticity of updates for computer operating systems,

such as Windows XP, to protect financial transactions and other Web-based

applications, to protect the privacy and authenticity of health cards, etc.

Many applications of the IT need long term cryptographic security. Some

examples are digital signatures for contracts, encryption of sensitive medical

data (for instance, according to German laws authentic medical data must

remain accessible for at least 30 years) and encryption in archival storage

systems (in such systems data lifetimes are measured in decades).

Today’s cryptography provides strong tools only for short term security.

Cryptographic primitives that we currently use for encryption, as RSA, ECC

and AES, are adequate to achieve short term security (5, 10 or 15 years).

Similarly, digital signatures that we use today as RSA, DSA, ECDSA, etc do

not guarantee the desired long-term security.

In this short note we discuss briefly the problem of long term cryptographic

security and we propose two cryptographic schemes which can be used for the

fulfillment of this task. The paper is organized as follows. We recall the

methods of multiple encryption and signature we use today for enhancing

the security in Section 2. In Section 3 we deal with the methods of non-

conventional cryptography. In Section 4 and 5 we describe an encryption and

a signature scheme based on the problems of integer factorization and discrete

logarithm in such way that if any of these problems is broken, the others will

still be valid and hence the scheme will be protected, and so are adequate for

applications which need long-term cryptographic security.

2 Multiple Encryption and Signatures

A practical partial solution to this problem of the long term confidentiality

can be provided by Multiple Encryption, which encrypts a message several

times with different keys or algorithms. The idea was first seen in “product

cipher” and in “cascade cipher” [46]. Recall that the distinction between these

two types of multiple encryption is that the keys of the component cipher of
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the first need not be statistically independent, whereas they are in the second.

Multiple encryptions has been applied to many communication systems in

order to enhance security; they are basic components for designing other cryp-

tographic applications as broadcast encryption, threshold encryption, MIX-net

etc.

If the encryption algorithms are different with independent keys, then the

resulting cipher is at least as difficult to break as the first encryption algo-

rithm [34]. The security of multiple symmetric encryptions has be discussed in

several papers (see for instance [38]). Security definitions and generic construc-

tions for multiple encryption schemes based on asymmetric key encryptions are

proposed recently in [49, 14, 18]. Although the multiple encryption is used to

enhance security, there is no proof that the time needed to break a such system

is longer than the time needed to break the stronger component encryption

scheme.

In order to achieve the goal of long-term security for the signatures, Mase-

berg [33] suggested the use of more than one sufficiently independent signature

schemes. Thus, if one of them is broken, then it can be replaced by a new se-

cure one. Afterward the document has to be re-signed. Maseberg has proposed

protocols that support multiple signatures including the update management

in the case of a break. Thus, every message has at least two signatures which

take more space and has to be re-signed with a new system in the case of a

break.

The above idea of efficient replacement of insecure primitives by secure

ones has adoptet by Buchmann, May and Volmer [11] who have designed and

implemented the open source crypto library Flexi-Provider [17] that support

the Java Cryptographic Architecture and implements current and alternative

cryptography.

3 Quantum, DNA and Chaos

In this section we discuss the influence of Quantum, DNA and Chaos based

techniques to the contemporary cryptography.

Quantum Computing. In 1994, Shor [47] proposed polynomial quantum
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algorithms for integer factorization and the computation of discrete logarithms.

So, in case of the construction of efficient quantum computers all widely used

public-key cryptography will be insecure.

In 1997, Bennet, Bernstein, Brassard and Vazirani proved that quantum

computers cannot provide an exponential speedup of search algorithms, and so

current symmetric encryption and hash functions will be resistant to attacks

based on quantum computing [5]. Thus, in the presence of large scale quantum

computers we have to examine alternatives to the currently used public key

cryptographic primitives.

The following public-key cryptographic primitives are believed to be resis-

tant to quantum computing based attacks [6, 13]:

1. The NTRU family of cryptographic schemes [22, 23, 24] whose security is

relied on two NP-hard problems related to lattices: The shortest vector

problem and the closest vector problem. In moderate large dimensions

the two problems are far from being feasible in both the quantum and

classical computation models.

2. The McEliece encryption scheme [36, 16] whose security is relied on the

decoding problem for certain classes of error-correcting codes which in

large dimensions is infeasible and there is no quantum algorithm that

enhance the speed of classical algorithms.

3. Merkle’s hash-tree public-key signature scheme, building upon a one-

message-signature of Lamport and Diffie [38].

4. Multivariate-quadratic-equations schemes whose security is relied on the

difficulty of solving systems of multivariate quadratic equations over fi-

nite fields [40]. The solution of a such system requires the computation of

its Gröbner basis. Actually, there is no quantum algorithm that improve

significantly the performance of classical ones.

On the other hand, QC provides primitives for key agreements whose se-

curity relies on the laws of quantum mechanics and information theory and

not on the difficulty of certain computational problems. Such primitives are

the protocols BB84 [4] and E91 [15]. Actually, quantum computing is not

yet sufficiently efficient and many basic cryptographic primitives cannot be

realized.
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DNA Computing. DNA cryptography uses DNA as the computational

tool exploiting the extreme complexity and randomness in the DNA structure

for coding and decoding. DNA computing has a high level computational

ability and is capable of storing huge amounts of data.

Several encryption schemes have been proposed based on DNA computing;

more precisely there are some propositions for encryption schemes based on

DNA binary strands [31], the technology of DNA synthesis, PCR amplification

and DNA digital coding [12], etc.

Classical algorithms as One-Time-Pad, IDEA, RSA, etc has been connected

with DNA computing techniques [20, 45, 26]. On the other hand, a number

of proposals have been submitted for breaking conventional cryptosystems by

DNA computing, as DES, RSA, NTRU, IDEA and ECC (over the finite fields

GF (2n)) [8, 3, 50, 21, 32].

The main problems of the present DNA computing is the lack of the related

theoretical basis, the difficulty of realization and the cost of application. Thus,

it is not able to construct real intimidation to the security of the current

cryptography or to apply in practice the proposed cryptographic schemes based

on it.

Chaos. Chaos theory is the mathematical study of nonlinear dynamical

systems. It has many potential applications in a digital communication sys-

tem: compression, encryption and modulation. Chaotic encryption makes use

of chaotic systems which are known to be very sensitive to initial conditions

and have very random behavior. In the last two decades many chaos-based

encryption methods have been proposed (for instance, see [25, 29, 30, 44, 39]).

In general they are two approaches in the use of chaotic systems in cryptog-

raphy. The first one is the generation of pseudo-random sequences while the

second is the used of plaintext as initial state and the cipher text follows from

the orbit being generated. These two approaches correspond to stream and

block ciphers, respectively. A review of attacks on chaos-based ciphers and

recommendations about security in given in [1]. Chaos-based schemes have

also being proposed for hashing, key-exchange protocols, etc.

Security and performance of almost all proposed chaos-based methods are

not analyzed in terms of the techniques developed in the conventional cryp-

tography. Most of the proposed methods generate cryptographically weak and

slower algorithms than the corresponding conventional ones. Since chaos-based
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cryptographic algorithms use dynamical systems defined on the real numbers,

they are difficult for practical realization and circuit implementation. For the

above reasons, although, at theoretical level, it seems that chaotic systems are

ideal candidates for cryptographic primitives, at the practical level, the impact

that this research has made on cryptography is rather marginal. It seems that

much work must be done in order chaos-based cryptography reaches the same

standard of security and speed of conventional cryptography

4 An Encryption Scheme

In this section we describe briefly an encryption scheme proposed in [42]

based on the integer factorization problem and the discrete logarithm problem.

If any of these problems is broken, the other will still be valid and hence the

encrypted message will be protected. Thus, this encryption scheme is suitable

for applications requiring long term security.

Bases of Z∗n. Let n be an integer > 0. For every x ∈ Z, we denote

by ordn(x) the order of x (mod n) and by φ the Euler’s totient function.

Suppose that n is odd and n = pa1
1 · · · pak

k its prime factorization. Then there

exist g1, . . . , gk ∈ Z with ordn(gi) = φ(pai
i ) (i = 1, . . . , k) such that for every

x ∈ Z with gcd(x, n) = 1 there are uniquely determined n1, . . . , nk ∈ Z with

0 ≤ ni < φ(pai
i ) satisfying x ≡ gn1

1 · · · gnk
k (mod n). We call the set {g1, . . . , gk}

a basis of Z∗n.

Public and private key generation. A user A, who wants to create a

public and a private key, selects two large primes p and q of almost equal length

such that the factorization of n = pq is infeasible and δ = gcd(p − 1, q − 1)

is quite large. He also finds a basis gp, gq ∈ {1, . . . , n − 1} of Z∗n. Next, A
selects cp ∈ {0, . . . , p − 2}, cq ∈ {0, . . . , q − 2}, b ∈ {0, . . . , φ(n) − 1} and

computes γp = g
cp
p mod n, γq = g

cq
q mod n, yp = γb

p mod n, yq = γb
q mod n.

Finally, he selects e, d ∈ {1, . . . , φ(n) − 1} such that ed ≡ 1 (mod φ(n)). (In

[42] a typographic error has replaced φ(n) by n). The public key of A is

(n, e, γp, γq, yp, yq) and its private key (p, q, d, b).

Encryption. The plaintext space is the set P of integers x satisfying

1 ≤ x ≤ n − 1 and gcd(x, n) = 1. Suppose that another user B wants to

send a message m ∈ P to A using his public key. He selects (secret) integers
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k ∈ {1, . . . , n − 1} with gcd(k, n) = 1, zp, zq ∈ {0, . . . , n − 1} and computes

B = ke mod n, C = γ
zp
p γ

zq
q mod n, and D = y

zp
p y

zq
q (k + 1)em mod n. B sends

to A the encrypted message (B, C, D).

Decryption. For the decryption of the message (B, C, D), A computes

k = Bd mod n, M = (k + 1)−eD mod n, and N = C−bM mod n. Since

N ≡ m (mod n) and 0 < m, N < n− 1, it follows N = m.

Security. The computation of the secret key from the private requires the

factorization of n (provided that d is large enough) and the computation of b

from yp = γb
p mod n, yq = γb

q mod n. An attacker who knows p, q but not b,

and the encrypted message (B, C, D) is able to recover m if he can calculate

zp and zq from C.

If there is an oracle O that given a public key (n, e, γp, γq, yp, yq) for our

cryptosystem and a ciphertext v, gives the corresponding plaintext u for v,

then it can also break the DRSA [41] and ElGamal cryptosystems. Note that

the DRSA Encryption Scheme, which is a version of the RSA, is semanti-

cally secure against chosen plaintext attacks and the semantic security of the

ElGamal cryptosystem (with messages from a subgroup) is equivalent to the

Decision Diffie-Helman problem [48, Theorems 1 and 2]. Finally, note that our

scheme is more efficient from the trivial use of the two above schemes.

5 A Signature Scheme

In this section we present an signature scheme based on the integer factor-

ization problem and the discrete logarithm problem for elliptic curves. If any

of these problems is broken, the other will still be valid and hence the signature

will be protected. In this case, the signature should be regenerated with a new

system, without the chain of valid signatures being broken. So, this scheme

is suitable for applications requiring long-term security and provides a more

efficient solution than that in Section 2. For all details and proofs one can see

[43].

Public and private key generation. A user A, who wants to create a

public and a private key selects two primes p1, p2 such that the factorization

of n = p1p2 is infeasible, an elliptic curve E over a finite field Fq with a

point P ∈ E(Fq) having ord(P ) = n and an efficiently computable pairing
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en such that en(P, P ) is a primitive n-th root of 1. Furthermore, he selects

g ∈ {1, . . . , n−1} with gcd(g, n) = 1 and a, b ∈ {1, . . . , φ(n)−1}, and computes

Q = gaP , r = gb (mod n) and R = ga−abP ; Finally, he chooses two hash

functions, H : {0, 1}∗ →< P >, where < P > is the subgroup of E(Fq)

generated by P , and h : {0, 1}∗ → {0, . . . , n − 1}. A publishes the elliptic

curve E, the pairing en and the hash functions h and H. The public key of A
is (g, P, Q,R, r, n) and his private key (a, b, p1, p2).

Signature generation. A wants to sign a message m ∈ {0, 1}∗. Then he

computes S = gabH(m) and s = bh(m) + a − ab mod φ(n). Let x(S) be the

x-coordinate of S. The signature of m is the couple (x(S), s).

Verification. Suppose that (x, s) is the signature of m. The receiver

determines y such that Σ = (x, y) is a point of E(Fq). He accepts the signature

if and only if en(±gsΣ, P ) = en(rh(m)H(m), Q) and gsP = rh(m)R.

Security. For the determination of a and b from the public key, an attacker

has to compute at least a discrete logarithm in the group < P > and two

logarithms modulo n. Note that an algorithm which computes the discrete

logarithm modulo n implies an algorithm which breaks the Composite Diffie-

Hellman key distribution scheme for n and any such algorithm can be used

to factorize n [35, 7]. Furthermore, if there is an oracle O such that given a

public key of our scheme and a message m provides a signature for m, then we

can construct an algorithm for the factorization of n which and to solve the

computational problem co-Diffie-Hellman for the subgroups of orders p1 and

p2 of < P > [9].

The Elliptic Curve and the Pairing. A practical method for the con-

struction of an elliptic curve having a point of order n is as follows. We draw

at random a prime number p1 of a given size l; next we draw at random a

number p2 of size l and we repeat p2 = NextPrime(p2) until p = 4p1p2 − 1 is

prime. Then the elliptic curve E : y2 = x3 + ax, where −a is not a square in

Fp, is supersingular and so |E(Fp)| = p+1 = 4p1p2. Hence there is P ∈ E(Fp)

with ord(P ) = p1p2.

If ε is one of the Weil, Tate, eta, ate, omega pairings on E[n], then we use

the distorsion map ψ(Q) = ψ(x, y) = (−x, iy) with i2 = −1 and so, we have

the pairing with the desired properties: e(P, Q) = ε(P, ψ(Q)). In [43] we give

another deterministic algorithm for the construction of a such curve running

in polynomial time and a new map to point function.
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6 Conclusion

The method we use today in order to enhance security in many applica-

tions is multiple encryption. Since no proof exists that the time needed to

break a such system is considerably longer than the time needed to break the

stronger component encryption scheme, it cannot actually used as solution

to the problem of long term confidentiality. Thus the long-term confidential-

ity of encrypted data has turned out to be one of the most challenging open

problems.

The method of multiple signature can provide a solution of the problem

of long-term security for digital signatures. Since every message has more

than one signature, we need more space in order to store a signed message.

Of course, another drawback of the method is that the document has to be

re-signed in case where a valid signature is broken.

Quantum and DNA computing are in the development phase and it requires

a lot of work and research to reach an established stage. Thus, at the present,

they do not consist a real threat to the security of conventional cryptography.

To prepare for the future and unexpected attacks coming from Quantum and

DNA computing, the designers of cryptographic primitives suitable for appli-

cations requiring long-term security have to bear in mind these two methods.

On the other hand, since these methods are not yet sufficiently efficient, many

basic cryptographic primitives of Quantum and DNA Cryptography cannot

actually be realized. Finally, note that the research on Chaos cryptography

is still at the initial stage, and since there are many problems to be solved,

it is not able to provide efficient cryptographic primitive comparable with the

conventional ones.

In addition to the aforementioned schemes, a number of additional ap-

proaches have been proposed based on algebraic problems, as for instance

encryption and signature schemes based on problems of combinatorial group

theory [2, 27, 28]. It is not clear when these or other problems will be well

understood in order to provide practical public-key cryptographic primitives

with reliable security.

As a solution of the problem of long term security we propose the con-

struction of primitives which are based on two or more hard problems in such

way that if any of these problems is broken, the others will still be valid and
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hence the cryptographic scheme will be protected. Following this idea we

have presented two such primitives. An encryption scheme which is based on

the problems of integer factorization and integer logarithm problem, and a

signature scheme relied on the problems of integer factorization and discrete

logarithm of elliptic curves. Of course, a drawback of these schemes is that are

not secure under the presence of quantum or DNA computers.
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