Minimizing Total Completion Time in a Flow-shop Scheduling Problems with a Single Server

Shi ling ${ }^{1}$ and Cheng xue-guang ${ }^{2}$

Abstract

We consider the problem of two-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is $N P$-hard in the strong sense and present a busy schedule for it with worst-case bound ${ }^{7 / 6}$.

Mathematics Subject Classification: 90B35
Keywords: flow-shop scheduling problem, total completion time, worst-case

1 Introduction

We consider the two-machine flow-shop scheduling problem with minimizing total completion time and equal processing times, that

[^0]Article Info: Received: September 22, 2012. Revised : October 29, 2012
Published online : December 30, 2012
is $F 2\left|p_{1, j}=p\right| \sum C_{j}$. Complexity results for $F 2\left|\mid \sum C_{j}\right.$ problem obtained by Garey, et al [1], J.A. Hoogereen [2] studied some special cases for two-machine flow-shop problems with minimizing total completion times, and proved that the problem with equal processing times on first machine, that is $F 2\left|p_{1, j}=p\right| \sum C_{j}$, is $N P$-hard in the strong sense, and present an $O(n \log n)$ approximation algorithm for it with worst-case bound 4/3.Complexity results for flow-shop problems with a single server was obtained by Brucher, et al [3]. In this paper, we derive some new complexity results for two-machine problem with a single server, introduce an improved algorithm, and prove that its worst case is 7/6, the bound is tight.

2 Complexity of the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem

Let $C_{i, j}$ denote the completion times of job J_{j} on machine M_{i}. If there are no idle times on M_{1} and M_{2}, we have $C_{1,1}=s_{1,1}+p_{1,1}, C_{2,1}=s_{1,1}+p_{1,1}+s_{2,1}+p_{2,1}$, $C_{1, j}=C_{1, j-1}+s_{1, j}+p_{1, j}, C_{2, j}=\max \left\{C_{2, j-1}, C_{1, j}\right\}+s_{2, j}+p_{2, j}$, for $j=2, \ldots, n$.

Theorem 1 The problem of deciding whether for a given instance of the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem there exists a schedule with cost no more than a given threshold value y is $N P$-hard in the strong sense.

Proof. Our proof is based upon a reduction from the problem Numerical Matching with Target Sums or, in short, $T S$, which is known to be $N P$-hard in the strong sense.

TS Given two multisets $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ of positive integers and an target vector $\left\{z_{1}, \ldots, z_{n}\right\}$, where $\sum_{j=1}^{n}\left(x_{j}+y_{j}\right)=\sum_{j=1}^{n} z_{j}$, is there a position of the set $X \cup Y$ into n disjoint set Z_{1}, \ldots, Z_{n}, each containing exactly one element
from each of X and Y, such that the sum of the numbers in Z_{j} equal z_{j}, for $1, \ldots, n$?
(1) P-jobs: $s_{1, i}=b, p_{1, i}=b ; s_{2, i}=b+x_{i}, p_{2, i}=b(i=1, \ldots, n)$,
(2) Q-jobs: $s_{1, i}=0, p_{1, i}=b ; s_{2, i}=b+y_{i}, p_{2, i}=b(i=1, \ldots, n)$,
(3) R-jobs: $s_{1, i}=0, p_{1, i}=b ; s_{2, i}=b-z_{i}, p_{2, i}=b(i=1, \ldots, n)$,
(4) U-jobs: $s_{1, i}=0, p_{1, i}=b ; s_{2, i}=0, p_{2, i}=b(i=1, \ldots, n)$,
(5) V-jobs: $s_{1, i}=0, p_{1, i}=b ; s_{2, i}=0, p_{2, i}=b(i=1, \ldots, n)$,
(6) W-jobs: $s_{1, i}=0, p_{1, i}=b ; s_{2, i}=0, p_{2, i}=b(i=1, \ldots, n)$,
(7) L-jobs: $s_{1, i}=4 b, p_{1, i}=b ; s_{2, i}=b, p_{2, i}=b(i=1, \ldots, n)$.

Observe that all processing times are equal to b.To prove the theorem we show that in this constructed if the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem a schedule S_{0}
satisfying $\sum C_{j}\left(S_{0}\right) \leq y=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)+\left(77 n^{2}-13 n-4\right) b / 2$ exists if and only if $T S$ has a solution. Suppose that $T S$ has a solution. The desired schedule S_{0} exists and can be described as follows. No machine has intermediate idle time. M_{1} process the jobs in order of the sequence σ, i.e., in the sequence

$$
\sigma=\left\{\sigma_{P_{1}, 1}, \sigma_{Q}, \sigma_{R}, \sigma_{N}, \sigma_{1,1}, \sigma_{T, 1}, \sigma_{L_{1} ; 1 n} \cdot \sigma_{P_{1, n}} \sigma_{Q}{ }_{n 1} \sigma_{R}{ }_{n, 1} \sigma_{V}{ }_{n} \sigma_{V}{ }_{n} \sigma_{V}\right.
$$

While M_{2} process the jobs in the sequence
as indicated in Figure 1.
Then we define the sequence σ and τ shown in Figure 1. Obviously, these sequence σ and τ fulfills $C(S)=C(\sigma, \tau) \leq y$. Conversely, assume that the flow-shop scheduling problem has a solution σ and τ with $C(S) \leq y$.

Considering the path composed of M_{1} operations of jobs $\left\{P_{1,1}, Q_{1,1}, R_{1,1}, U_{1,1}, V_{1,1}, W_{1,1}\right\}, M_{2}$ operations of jobs
$\left\{R_{2,1}, U_{2,1} V_{2,1}, W_{2,1}, L_{2,1}, \ldots, R_{2, n}, U_{2, n}, V_{2, n}, W_{2, n}, L_{2, n}\right\}$, we obtain that

$$
\begin{aligned}
C(S) \geq & 3 b+x_{1}+5 b+x_{1}+y_{1}+7 b+x_{1}+y_{1}-z_{1}+8 b+9 b+10 b+\ldots+ \\
& (3+(n-1) 11) b+x_{+}+(5+(n-1) 11) b+x_{n}+y_{n}+(7+(n-1) 11) b \\
& +\ldots+(11 n+1) b \\
= & \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)+\left(77 n^{2}-13 n-4\right) b / 2=y .
\end{aligned}
$$

So we have $C(S)=y$.

Figure 1: Gant chart for the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem
(a) If S has a partition μ, then there is a schedule with finish times y. One such schedule is shown in Figure 1.
(b) If S has no partition, then all schedule must have a finish times $>y$. Since S has no partition, then $x_{i}+y_{i} \neq z_{i}(i=1, \ldots, n) . \operatorname{Let} \xi_{i}=x_{i}+y_{i}-z_{i}(i=1, \ldots, n)$, so

$$
\begin{aligned}
\sum C_{j}(S)= & \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)+\left(77 n^{2}-13 n-4\right) b / 2+5 \sum_{i=1}^{n} \xi_{i} \\
& +10 \sum_{i=1}^{n-1} \xi_{i}+\ldots+5 n \xi_{1}>y
\end{aligned}
$$

3 Worst-case for the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem

In examining "worst" schedule, we restrict ourselves to busy schedule. A busy schedule is a schedule in which at all times from start to finish at least one server is processing a task.

Theorem 2 The $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem, let S_{0} be a busy schedule for this problem, S^{*} be the optimal solution for the $F 2, S 1\left|p_{i, j}=p\right| \sum C_{j}$ problem, then

$$
\sum C_{j}\left(S_{0}\right) / \sum C_{j}\left(S^{*}\right) \leq 7 / 6, \text { the bound is tight. }
$$

Proof. For a schedule S, let $I_{i, j}(S)(i=1,2 ; j=1, \ldots, n)$ denote the total idle times of job J_{j} on M_{i}. Considering the path composed of M_{1} operations of jobs $1, \ldots, j, M_{2}$ operation of job j, we obtain that

$$
\begin{equation*}
C_{j}=\sum_{i=1}^{j}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+s_{2, j}+p_{2, j} \tag{1}
\end{equation*}
$$

Considering the path composed of M_{1} operations of jobs $1, M_{2}$ operation of job $1,2, \ldots, j$, we obtain that

$$
\begin{equation*}
C_{j}=s_{1,1}+p_{1,1}+\sum_{i=1}^{j}\left(s_{2, i}+p_{2, i}\right)+I_{2, j} \tag{2}
\end{equation*}
$$

Considering the path composed of M_{1} operations of jobs $1, \ldots, l, M_{2}$ operation of job l, \ldots, j, we obtain that

$$
\begin{equation*}
C_{j}=\sum_{i=1}^{l}\left(s_{1, i}+p_{1, i}\right)+I_{1, i}+\sum_{i=l}^{j}\left(s_{2, i}+p_{2, i}\right)+I_{2, j} \tag{3}
\end{equation*}
$$

So we have

$$
\begin{aligned}
6 \sum C_{j}\left(S_{0}\right)= & \left(2\left(\sum_{i=1}^{j}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}\right)\right)+\left(2\left(\sum_{i=1}^{j}\left(s_{2, i}+p_{2, i}\right)+I_{2, j}\right)\right)+ \\
& \quad\left(2 \left(\sum_{i=1}^{l}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+\sum_{i=1}^{j}\left(s_{2, i}+p_{2, i}+\left(2\left(s_{1,1}+p_{1,1}\right)+2\left(s_{2, j}+p_{2, j}\right)\right)\right.\right.\right. \\
\leq & 7 \sum C_{j}\left(S^{*}\right) \\
\sum C_{j}\left(S_{0}\right) / & \sum C_{j}\left(S^{*}\right) \leq 7 / 6 .
\end{aligned}
$$

To prove the bound is tight, introduce the following example as follows and show in Figure 2 and Figure 3.
(1) P-jobs: $s_{1, i}=2 b, p_{1, i}=b, s_{2, i}=2 b, p_{2, i}=b(i=1,2)$;
(2) Q-jobs: $s_{1, i}=0, p_{1, i}=b, s_{2, i}=0, p_{2, i}=b(i=3,4)$.

Figure 2: $\quad \sum C_{j}\left(S_{0}\right)=35 b$

Figure 3: $\quad \sum C_{j}\left(S^{*}\right)=30 b$

So we have $\sum C_{j}\left(S_{0}\right) / \sum C_{j}\left(S^{*}\right)=35 b / 30 b=7 / 6$, the bound is tight.

References

[1] M.R.Garey, D.S.Johson, and R.Sethi. The complexity of flowshop and jobshop scheduling, Math. Oper.Res.m, 12, (1976), 117-129.
[2] J.A. Hoogereen, T.Kaweguchi. Minimizing total completion time in a two-machine flowshop: analysis of special cases, Processing of the 5th IPCO conference, (1996), 374-388.
[3] P. Brucker, S. Knust,G.Q. Wang,et al. Complexity of results for flow-shop problems with a single server, European J. Oper. Res., 165(2), (2005), 398-407.

[^0]: 1 Department of Mathematics, Hubei University for Nationalities, shiling59@126.com,
 ${ }^{2}$ School of Mathematics and Statistics, Wuhan University, e-mail: chengxueguang6011@msn.com.

