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Abstract 

A new method of root finding is formulated that uses a numerical iterative process 

involving three points. A given function Y= f(x) whose root(s) are desired is fitted 

and approximated by a polynomial function curve of the form y= a(x-b)N and 

passing through three equi-spaced points using the method of least squares.  

Successive iterations using the same procedure of curve fitting is used to locate 

the root within a given level of tolerance.  The power N of the curve suitable for 

a given function form can be appropriately varied at each step of the iteration to 

give a faster rate of convergence and avoid cases where oscillation, divergence or 

off shooting to an invalid domain may be encountered. An estimate of the rate of 

convergence is provided. It is shown that the method has a quadratic convergence 

similar to that of Newton’s method. Examples are provided showing the procedure 

as well as comparison of the rate of convergence with the secant and Newton’s 

methods. The method does not require evaluation of function derivatives. 
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1 Introduction  

Finding the roots of equations through numerical iterative procedure is an 

important step in the solution of many science and engineering problems.  

Beginning with the classical Newton method, several methods for finding roots of 

equations have been proposed each of which has its own advantages and 

limitations. Newton’s method of root finding is based on the iterative formula: 

             
     

      
 

Newton’s method has a quadratic convergence and requires a derivative of the 

function for each step of the iteration. When the derivative evaluated is zero, 

Newton’s method fails. For low values of the derivative the Newton iteration 

offshoots away from the current point of iteration. The convergence of Newton’s 

method can be slow near roots of multiplicity although modifications can be made 

to increase the rate of convergence [1]. 

Accelerations of Newton’s method with higher order convergence have been 

proposed that require also evaluation of a function and its derivatives. For 

example a third order convergence method by S. Weeraksoon and T.G. Fernando 

[2] requires evaluation of one function and two first derivatives. A fourth order 

iterative method, according to J.F. Traub [3] also requires evaluation of one 

function and two derivatives.  Sanchez and Barrero [4] gave a compositing of 

function evaluation at a point and its derivative to improve the convergence of 

Newton’s method from 2 to 4. Recently other methods of fifth, sixth, seventh and 

higher order convergence have been proposed [5-11]. In all of such methods 

evaluation of function and its derivatives are necessary. 

The secant method does not require evaluation of derivatives. However, the rate of 

convergence is about 1.618.  Muller’s method is an extension of the secant 

method to a quadratic polynomial [12]. It requires three functional evaluations to 

start with but continues with one function evaluation afterwards. The method does 

not require derivatives and the rate of convergence is about 1.84.  However, 
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Muller’s method can converge to a complex root from an initial real number [13].  

 
 
2 Method development 

 
For a given function of the form Y= f(x), three starting points separated by an 

equi-spaced horizontal distance of  are chosen. The points pass through the given 

function Y= f(x). A single root polynomial function of the general form Y = 

a(x-b)
N is fitted to the given points using the method of least squares. N is the 

power of the polynomial which is generally a real number and b is the root of the 

polynomial which serves to approximate the root of the given function y= f(x) at 

any given step of the iteration process. Figure 1 shows the three different possible 

curves that can be fitted to a given function using the three points.     

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Different types of curves that can be fitted to the three points using the  
          method of least squares.  
 

Depending on the behavior of the function Y= f(x) to be approximated, the power 

of the polynomial N, where N is generally a real number, can be chosen. Figure 1 

above shows N can take values greater than 1, equal to one or can be less than one.   

The constants a and b are determined by applying the method of least squares by 
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minimizing the sum of the squares of the errors in y values over the three points 

namely (x0 - , y-1)  (x0 , y0) and (x0 + , y1). 

 

3  Derivation of the three point formula  

The sum of squares of errors in y values because of the polynomial approximation 

is computed using the formula: 

∑   
     ∑ [           ] 

   

    

   

    

 
    (1) 

Differentiating Equation 1 with respect to a and setting the resulting expression to 

zero will give the following expression for the constant a: 

     
 ∑             

    

∑            
    

 
(2) 

Differentiation of  the sum of squares of the errors (Equation 1) again with 

respect to the constant  b and setting the expression to zero will also give the 

following  equivalent expression  for a 

      
 ∑               

    

∑              
    

 
(3) 

The constant a is not desired for root approximation. The root approximation of 

the polynomial curve y = a(x-b)
N is the constant b. Therefore, the above two 

equations (Equation 2 and Equation 3) are equated to eliminate a, resulting in the 

following expression:  

( ∑          
   

    

) ( ∑           

   

    

)    ( ∑            

   

    

) ( ∑         
   

    

) 
(4) 

Choosing the three points that are equi-spaced and separated by a horizontal 

distance of  will result in a simplified expression for the root b. Therefore, the 

three points (x-1, y-1) , (x0, y0) and (x1, y1)  are replaced by  (x0- , y-1)  (x0 , y0) 

and (x0+ , y1) respectively.   

The bracketed expressions in equation 4 above are each evaluated by making use 

of binomial expansion of the terms involving x0 ,  and b raised to the various 
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powers of N.  In addition, for small values of , the terms containing  3 and 

higher orders are discarded. The resulting expressions are the following: 

∑          
             

    

    

                            ( ∑   

   

    

)                                (
        

 
)                    

 

  ∑                                          

   

    

           

 

∑             

   

    

  (∑   

   

    

)                                            

 (
            

 
)                     

 

∑                                   

   

    

            

Substituting the above expressions for the bracketed products of Equation 4 and 

again discarding the terms containing 3 and higher orders (for small values of ) , 

gives the following expression 

 
[                     ]   [                         ]       

 

[        (∑   
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Since   is common to all the expressions, it is factored out from all the terms, 

and, further simplification leads to:  

                    [      ( ∑   

   

    

)]   [       (  
   

  )]  

 

Solving for the variable b, which is the approximation to the root at a given 

iteration, gives: 

                [
(
                              

  
)

(
       

  
)

] 

 

In terms of the iteration process the estimate of the root at the (k+1)th iteration is 

evaluated from functional values of the kth iteration, the above expression can be 

written as: 

                   [
(
                                 

  
)

(
          

  
)

] 
(5) 

It is interesting to mention the similarity with Newton’s expression for 

approximation of roots. The numerator in the bracket is the weighted average of y 

values with the central point having a weight of 4N-2 while the end points each 

are weighed by N+1. The denominator in the square bracket is the central 

difference approximation to the derivative for the central point (xk , yk).  The N 

value outside the brackets represents the ‘acceleration’ factor as in the Newton’s 

method whereby the iteration accelerates when the factor N is applied to the 

Newton method of root finding, for example, for roots of polynomials with root 

multiplicity of N.  

The equivalent expressions for N = 1, 2 and 3 are given as follows: 
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3.1.  Estimation of the power of the polynomial N  

It is possible to vary the power of the polynomial N in the equation y= a(x-b)N in 

each iteration step  which means different curves can be fitted depending on the 

curve defined by the three points. The estimated value of N to be used in the 

iteration formula will be derived from the y-values (yk- , yk , yk+) without 

involving any of the derivatives. However, for the purpose of derivation of N, the 

derivatives will be used which will be eventually replaced by the finite difference 

form approximations.  

From the equation   y = a(x-b)N , the first derivative dy/dx and 2nd derivative 

d2y/dx2  are given by; 
  

  
               

   

   
                    

From the expression of y, dy/dx and d2y/dx2 above the following two equations 

are obtained: 
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Eliminating (x-b) and solving for the power N gives: 

      
        

          (
   
   )

 

Replacing the derivatives by the finite difference approximations involving the 

three equidistant points (yk- , yk , yk+) gives: 

       
(
          

  
)
 

(
          

  
)
 

   (
             

  )
 

(6) 

 

 

 

3.2 . Proof of quadratic convergence 

Recalling the root approximation formula in an iteration form involving the kth 

and (k+1)th iterations (i.e. Eq. 5):  

                   [
(
                                 

  
)

(
          

  
)

] 

Expanding yk- and yk+ about yk using Taylor series expansion; 

                  
     

 
   

    
   

 
           

              
 
  

     
 

  
    

   

 
          

Inserting the above expression in the numerator of the iteration formula yields ; 

(
                                 

  
)            (

   

  
)               

 

Similarly the denominator will, after substitution of the Taylor series expression, 
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reduces to; 

(
             

  
)             

    
   

 
          

Assuming the expression      
   

 
          to be small compared to y’k and 

neglecting this term will give: 

                  (
 
 
    (

   
  

)      

  
 

)          

Defining the error Ek at the kth iteration as Ek = xk – r where r is the root. Also Ek+1 

= xk+1 – r  

Substituting Ek + r for xk  and Ek+1 + r  for xk+1  yields;  

                  (
 
 
    (

   
  

)      

  
 

)          
(7) 

The above expression will be worked out further for two different cases. The first 

case is for N=1 and the second for N is any number different from 1 and providing 

root of multiplicity N. 

For the first case, N=1 ; 

                 (
 
 
    (

 
 
)      

  
 

)          

Expanding yk about the root x= r, using Taylor series expansion where  

xk = Ek + r  ; 

                     
  

    
 

          
  

Similarly expanding y’k about r gives; 

                   
  

    
 

          
  

 

Again assuming the terms         
  

    

 
          

  to be small compared to 
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y’r 

           

Similarly expansion of y”k about r gives; 

                
     

  
   

  

 
         

  

Substituting for yk , y’k  and y”k  gives; 

                 [
       

  
    
 

          
     (

 
 
)     (         

     
  

   
  

 
         

 )

  
 

]  

         
 

Reducing further gives; 

        
  

    
   

 

    
   
   

 

        

  
   

   
 

      
   

  

   
 

           
           

The above expression results in convergence which is a function of      
 , 

          
   

 .  The  value is set as the square of the difference in x values 

of the previous successive iterations multiplied by a factor  which is given a 

value less than or equal to one.  

                 
  

The value of 2 will therefore be ; 

                   
  

So the error series will take the form: 

        
  

    
   

 

            
  (

     
   

 

)               
   (

    
   

   
 

)

             
   

 (
    

  

   
 

)           
           

 

It will now be shown that the  (Ek –Ek-1)4 term is quadratically convergent. 

Assuming the (Ek –Ek-1)4 is the dominant term in the above expression which 

means  
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 For the case positive case, i.e.,   

          
              

  

 

  
         

         

The right hand term of the above expression is evaluated for small values of Ek 

and for the following conditions; 

For n = 1  ;    Ek
1/4   = Ek  -Ek  =  0   is not a valid expression. 

For n <1 ;   Ek  >> Ek
1/n  so that  Ek

n/4 = -Ek  is also not valid expression.  

For n > 1    Ek
1/n >> Ek  so that; 

  
         

  
 

 
    

 

 
 

                     

Therefore, for positive (Ek –Ek-1)4  term,  Ek+1  Ek
2 

For the negative (Ek –Ek-1)4  term : 

          
               

  

  
       

             
Let a function f(n) be defined so that: 

        
       

         

It is possible to show that for all n  0 the function f(n) is always positive or 

always negative depending on the sign of Ek. To show this the following ranges 

are considered: 

For  0  n   1  Ek
n/4  is the dominant term so that  f(n)  =  Ek

n/4 

For  1 < n <4  ,    
       

    are both dominant so that:  

                           
       

    

For  n  4  ,    
     is the dominant term so that         

    

Therefore, the equation f(n) = 0 represents the minimum in the case of positive f(n) 
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and the maximum in the case of negative f(n) values. The value of n is then 

determined for maximum or minimum case by setting its derivative to zero, i.e.,  

  

  
      

  

  
    

 

 
   

            
 

  
   

 
           

  
       

 

  
   

    

Equating the powers of Ek results in: 
 

 
    

 

 
 

                     

Also the coefficient 4/n2  = 1  for n=2 making the expression: 

  
       

 

  
   

    

a valid expression. This proves once again that Ek+1    Ek
2 

A plot of the variation of  f(n)  for values of n between 1 and 4 for Ek= 10-22 in 

Figure 2 below shows the minimum value for f(n) occurs at n =2 as derived above. 

The function f(n) at n=2  is equal to 10-57 and is the smallest magnitude that can 

be attained and which occurs only by setting n=2. The function f(n) is not equal to 

zero as such but attains the smallest possible value (close to zero) which is made 

possible by setting n=2.  

The error series will then take the form: 
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        (
   
   

 

   
     
   

 

)  
           

   

 

This proves the quadratic convergence for N=1.  

 
 

Figure 2.  A plot of the error term f(n) for values of n between 1 and 4 and for   

           Ek= 10-22 

 

For N values other than one, the convergence is estimated by assuming a root of 

multiplicity N so that the y function is written in the form: 

                

Consider the iteration formula that is in reduced form and was given by  

Equation 7; 

                  (
 
 
    (

   
  

)   
    

  
 

)         
   

The above iteration process can be written in fixed point form xk+1  = g(xk)  by 

defining g(xk) such that: 

                   (
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)   
    

  
 

)         
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                 (
 
 

  
 

)    
(
   

 
)   

    

  
 

         
  

Substituting the root of multiplicity N term y= (x-r)N Q(x) for y and the 

corresponding derivative of the second term of the above equation; 

                 (
           

                         
)    

(
   

 
)   

    

  
 

 

        
  

It is possible to show that for the first derivative of g(x), i.e., g’(x) the first two 

terms cancel each other, i.e., 

 

  
(         (

           

                         
))              

 

Similarly at xk = r, the expression; 

 

 

  
(
(
   

 
)   

    

  
 

         
 )    

holds true because r = 0 at the root xk = r and the derivative expressions contain 

the term r=0 because; 

        
   

           
   

           
     

Therefore, g’(r)  = 0 

Expanding g(xk) about the root x=r using Taylor Series; 

                        
       

 

 
          

  

From the relation xk+1  = g(xk) and   r =  g(r) and substituting  g’(r) = 0 as 

shown above; 
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Therefore, the iteration series is also quadratically convergent for N different from 

one. 

 

 

4.  Results and discussions 

Examples of equations used to test efficiency of root finding methods are used 

here to evaluate the least square three-point methods and compare it case by case 

particularly with the Newton and secant methods.  To start with, the   value is 

arbitrarily set between 0 and 1 and the two points to the left and right of the 

central point are set as x-  and x+ respectively.  The subsequent values of  

are set from the results of the iteration using the established formula: 

                       
                  

  

Since the errors Ek and Ek-1  are unknown  the xk and xk-1 values of the kth and 

k-1th iteration are used to calculate  .  The k+1 value is set so that: 

            

              
   

A simple way of reducing k+1 to satisfy the above equations is using  value from 

either of the series 1, 0.1. 0.01, 0.001, etc. In most cases the use of  = 1 or  = 

0.1 is adequate to satisfy the above requirements. 

There are two possible options for choosing the value of the power N of the 

polynomial y=a(x-b)N used to fit the three points by least square method. In the 

first instance a uniform value of N=1 is used throughout the iteration which means 

the polynomial is a straight line which is a least square line fitted along the three 

equi-spaced points x, x+ and x-.  In fact the convergence of the method using 

N=1 is very similar to the Newton method as will be shown in the examples 
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provided.  

In the second instance of the application of the three-point least square method, 

the value of N is allowed to dynamically vary with each step of the iteration.  

This procedure provides for additional flexibility since a better curve than straight 

line can be used as defined by the three points.  Allowing N to vary with each 

step of the iteration is helpful in the initial steps of the iteration particularly for 

functions with higher gradients (derivatives). Towards the end of the iteration the 

value of N converges to N=1 in all cases.   

In order to avoid off-shooting away from a possible nearer root by the use of too 

high value of N at any step of the iteration, it is possible to limit the variation of N 

to within the range: -3   N   3 

The stopping criterion used for the iteration process is given by: 

|        |    |  |          

The rate of convergence towards the root x = r for each step of the iteration is 

evaluated using the formula: 

      
     |    | 

     |  | 
   

     |      | 

     |    | 
 

A quadratic convergence proved for this method is mostly evident with a Ck value 

being close to 2 during the iteration. The results of the iteration towards the root 

for seven equations shown in Table 1 are summarized along with the results of the 

use of Newton and secant methods for the purpose of comparison.  Figure 3 

shows a graphical display of the number of iterations required for the different 

equations tested. Referring to Table 1 below, the number of iterations required for 

the proposed method is equal to or less than that of Newton’s method. For N=1 , 

the number of iterations required are more or less the same as that of Newton’s 

method in almost all equations tested.  For the variable N case, better advantaged 

is provided for functions with higher gradients such as                   

and                as the number of iterations required is significantly 

reduced. The secant method, having a less than quadratic rate of convergence, 
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required in most cases the greatest number of iterations.  

 
Figure 3  Comparison of the number of iterations required for the different  
         equations tested.  
 
 
 
4.1  Examples for which Newton method fails 

The advantage of the use of variable N is best illustrated by the application of the 

method where the Newton method and in several cases also the secant method fail 

to converge to the root.  The failure could be due to oscillation, divergence or off 

shooting to an invalid domain.  Table 2 below shows the results of the iterative 

process for the given equations where the newton and secant methods fail to 

converge with the starting points also indicated in the table.  

As shown in Table 2, the proposed three point method with variable N does not 

result in failure to converge in all cases whereas the same method with N=1 shows 

failure in most of the cases where the Newton method fails also. This illustrates 

the advantage of using variable N rather than using N=1 for such non-convergent 

cases. This result also illustrates how the proposed method with fixed N (N=1) is 

closely similar to Newton’s method in terms of both failure as well as rate of 

convergence. 
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Table 1.  Comparison of result of iteration of the three point method with  
         Newton and secant methods. 

Function Root 
Starting 

point 

Comparison of number of iterations required 

secant 

Method 

Newton 

Method 

Least 

Square 3 –

point 

Method 

Least square 3 –

point Method 

  N= 1 N = Variable 

             1.365230013414100 
0.5 10 8 8 8 

1 8 6 6 7 

   [       ]     

   
-1.404491648215340 

-1 9 7 7 7 

-3 10 7 7 6 

                -2.0000000000000 
-3 168 119 116 10 

1.4 116 81 81 14 

            2.00000000000000 

1.5 252 16 15 10 

2.5 11 8 8 8 

3.5 15 11 11 9 

 

          

          

-0.603231971557215 

-0.8 8 7 6 7 

-0.65 8 5 5 6 

               3.000000000000000 
4 27 20 20 11 

4.5 39 28 28 16 

              1.857183860207840 
2 7 5 5 5 

0.5 11 8 8 8 
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Table 2. Results of application of the method for cases Newton or secant method  
       fail to converge to the root.  

Function Root 
Starting 

point 

Comparison of number of iterations required 

secant 
Method 

 

Newton 
Method 

Least 
Square 3 –

point 
Method 

N= 1 

Least square 
3 –point 
Method 

N = 
Variable 

  

            

            
1.053392031515730 

3.0 13 Oscillates 10 7 

-2.5 14 Oscillates 11 8 

          1.000000000000000 3.0 Fails Fails Fails 7 

              0.0000000000000 
3.0 Diverges Diverges Diverges 7 
-3.0 Diverges Diverges Diverges 7 

          -1.167303978261420 
2.0 48 Oscillates Oscillates 10 
-3.0 14 Oscillates 11 7 

 

           

          
4.00000000000000 3.0 7 Oscillates Oscillates 7 

        0.00000000000000 
1.0 Oscillates Diverges Diverges 14 
-1.0 Oscillates Diverges Diverges 14 

         
   

1.679630610428450 3.0 Diverges Diverges Diverges 11 
0.101025848315685 -1.0 Diverges Diverges Diverges 13 

 

 

4.2 Limitation of the proposed method 

In some cases during the iteration it might appear that y(x+) = y(x-). In this case 

because y(x+) - y(x-)=0, this results in division by zero and the value of  

should be readjusted to avoid such cases. However, this will not halt the iteration 

but calls for readjusting the value of  such that y(x+)  y(x-). 

The method requires evaluation of function for three points in each step of the 

iteration. In this regard the number of function evaluations required per each step 

of the iteration is higher than Newton and secant methods.  
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5. Conclusion 

A method of root finding has been presented using a numerical iterative process 

involving three points together with a discussion of the derivation and proof of 

quadratic convergence. A given function Y= f(x) whose root(s) are desired is 

fitted and approximated by a polynomial function curve of the form y= a(x-b)N 

and  passing through three equi-spaced points using the principle of least squares.  

The method does not require evaluation of derivatives and requires only functional 

evaluations. The method has a quadratic convergence. The power of the 

polynomial curve used to fit the three equi-spaced points by least square method 

can be dynamically varied at each step of the iteration in order to provide better 

convergence characteristics or avoid oscillation, divergence and off shooting out 

of the valid domain for functional evaluation.   From functional evaluation of the 

three equi-spaced points it is possible to make an estimate of the power N 

beforehand to be used in the next step of the iteration. An alternative application 

of the method using a uniform power of N=1 also gives a satisfactory result in 

many cases.  

The limitation of the method is the necessity to evaluate the function at three 

points within each step of the iteration and the need to guard and alter the value of 

interval  such that division by zero is avoided in the event y(x+) = y(x-). 

However, this will not halt the iterative process only requiring adjusting the  

value.  
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