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On the attraction of positive equilibrium point
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Abstract

This article presents development of Solow model of macroeconomic

growth by replacing the original type population growth by a more

innovative population growth. Instead continuous time the problem

will be studied for the case of discrete time. These changes bring some

better properties in terms of quantitative of the obtained models.
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1 Introduction

Economic variables, production function. In practice the mod-

els written by differential or difference equations attract much attention (see
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[1],[3],[5],[9]). There have been many such models in different fields of En-

gineering, Economic, Social, Environment, Health, etc. Solow model (Nobel

Prize in Economics in 1986) is a such model. The basic variables in Solow

model of macroeconomic growth are the labor force (denoted by L), the amount

of capital (K), the amount of the output product (Y ), the ratio of capital to

labor (k = K/L), the ratio of output product to labor (y = Y/L). The impor-

tant parameters are index accumulation (s), index dropped capital (δ). In the

macroeconomic production function is given as follows

Y (t) = F (K(t), L(t)),

where Y (t) is the output, K(t) and L(t) are the inputs. In this article we use

a product function of the neo-classical type in the general form. This class is

the set of all functions satisfying the following conditions

(i) F (λK, λL) = λF (K,L)∀λ,K,L ∈ R
+ (CRS).

(ii) F (K, 0) = F (0, L) = 0, ∀K,L ∈ R
+.

(iii)
∂F

∂K
> 0,

∂F

∂L
> 0,

∂2F

∂K2
< 0,

∂2F

∂L2
< 0.

(iv) lim
K→0

∂F

∂K
= lim

L→0

∂F

∂L
= +∞; lim

K→+∞

∂F

∂K
= lim

L→+∞

∂F

∂L
= 0 (Inada).

Denoting f(k) = F (k, 1) = F (K
L
, 1), we can see that f(0) = 0, limk→0+ f ′(k) =

+∞, limk→+∞ f ′(k) = 0 and f(.) is strictly concave on R
+ := [0;+∞).

The original Solow model. Solow model analyzes the relationship

between the basic elements of each macro-economic terms. It explains very

well the trends and the nature of economic growth in certain conditions. The

original Solow model uses the Cobb-Douglas technology, ie take the production

function as

Y (t) = γKα(t)L1−α(t) (α ∈ (0; 1))

and uses the Malthus population growth: L̇(t) = nL(t) (n > 0, const).

The original Solow model is built on the basis of several assumptions quite

close to the ideal of economic quantities and remove elements or relationships

so complicated. The conditions are: Time is continuous, production platform

is simple (not the advancement of technology), production base is closed (pure

market, without interference such as international trade, government interven-

tion, the pollution of the environment) and all labor has the work etc. The
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original Solow model is given by the system of following three equations:

L̇(t) =nL(t) (n > 0, const, t ∈ R
+ := [0;+∞)),

k̇(t) =sγkα(t)− (δ + n)k(t),

y(t) =γkα(t).

We can see that the original Solow model has a binary nature: Malthus

equation of labor growth is not stable because the Lyapunov exponent λ =

n > 0. Volatility equations ratio of capital to labor and ratio of output to

labor are asymptotically stable with equilibrium points (see [3]) respectively

are:

k∗ = (
γs

δ + n
)

1

1−α ; y∗ = (
γs

δ + n
)

α

1−α .

There, instability of the population equation means that when time stretches

out indefinitely, the amount of population tends to infinity. This is nonsense

because the natural conditions of each economy are being blocked. Bertalanffy

(1937, see [3]) refer use symbol L∞ as a very large positive number charac-

terizing the maximum specific capacity of the environment, which called the

environmental carrying capacity. Some models of population growth (Swan

(1951), Richards (1959), Schoener (1973) (see [3],[4])) also use this assump-

tion. In addition, other conditions of the Solow model is also very close. It gives

us the ability to improve and expand the model. There have been many ap-

proaches to expand as the optimal correlation analysis between the parameters

(see [4]), added to the effects of external noise (see [6],[7]), edit the elements

components of the system (see [1],[3]). In this article, we improve the final

oriented model just mentioned, namely labor volatility function changes. The

aim of this work is to replace the denominator of the basic economic variables

k, y is a more appropriate expression. The determination of the values of the

parameters δ, s, L∗, L∞, ν for the models in a proper sense (best) is not belongs

to the scope of this paper and we do not present it here. In this paper, these

parameters are considered the given constants.

2 Main results

In this section instead for continuous time we will consider the problem for

discrete time Z
+ := {0; 1; 2; ...}. This approach on the Solow model has been
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used by Brida and Pareyra in [2]. However, studies of Brida and Pareyra are

based on the assumption that rate monotonic growth nt reduced to 0.We will

adjust a little on the function equation Richards of population growth (replate

L∞ by L∗, L∗ ∈ (0;L∞)), which will lead to three situations: nt ≡ 0, nt ↑ 0 or

nt ↓ 0. Sufficient condition for monotonic variation of Lt is also given and used.

Our investigations will be done with constant growth rate nt = n, then use

the dual inequalities and ”principle clamping” and move the limit as t → +∞

to obtain the results for variable growth rate nt.

The experimental research on the nature of the difference equations in general

more difficult, fewer tools than the differential equations in the same forms (see

[2],[5],[9]). Therefore, the transfer of the results of the continuous model to

the discrete time may be less than perfect and often done by other techniques

apart. As in the original model, we consider labor accounts for a fixed pro-

portion of the population. This allows us to use the same symbol represented

them L.

Richards population growth.Original Solow model uses Malthus pop-

ulation growth. As known, with this type of growth, when t → +∞ will lead

to L(t) → ∞. It is a major limitation of the model. We will use Bentalanffy’s

assumption that there is a positive constant L∞ as the upper bound of the

amount of labor L. Thus, we are only interested in the case 0 < L < L∞.

Every economic choices for itself a value of L∗ ∈ (0;L∞) is considered to be

ideal, depending on their conditions in all aspects. It would be better if this

value L∗ is sustained on prolonged period or is asymptotically stable. The

following ”Re-Richards population growth” is a good variant according to this

criterion:

L̇(t) = rL(t)[1− (
L(t)

L∗
)ν ] (ν ∈ (0; 1)).

For simplicity we call this population growth also is the Richards growth. The

advantage of Richards growth against Malthus growth has is obvious: The

curve of Malthus growth has exponential behavior on the all semi-axis R
+.

While, we can see in the later, the curve of Richards growth has exponential

behavior in the first period and has quasi constant behavior when the time

tends to infinity. Thus, when t → +∞ labor force L(t) does not increase to

infinity as the old model, but only gradually to the positive equilibrium value

L∗.

Necessary to add that some other type of population growth, for example
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Logistic growth (see [1],[2],[3],[4]) have also the properties similar to those of

Richards growth but the differences between their most is: hit of the inflection

point of the curve Logistic always equal L∗/2 for any initial value 0 < L0 < L∗,

while hit of the inflection point of the Richards curve depends on parameter

ν. This allows us to change it by changing the value of the parameter ν.

Recalling that, the inflection point is where the growth curve varies from ”quasi

exponential” behavior to ”quasi constant” behavior.

Discretizing the Richards growth equation on Z
+, we have

Lt+1 = Lt + rLt[1− (
Lt

L∗
)ν ]

Finding the solutions of this equation is difficult. We will ignore it and direct

evaluation experience through special variation of the growth rate of labor:

nt =
Lt+1 − Lt

Lt

and amount of labor Lt of new population growth.

Solow discrete model with Richards population growth. Firstly, we

determine difference equations of the model. Discretizing difference equation

of capital stock changes, we have:

Kt+1 −Kt = sF (Kt, Lt)− δKt, (1)

where s is the cumulative index, δ is the index of capital depreciation (s, δ ∈

(0; 1)). Using discrete Richards population growth for capital volatility equa-

tion, we have

Kt+1

Lt

−
Kt

Lt

=
s

Lt

F (Kt;Lt)− δ
Kt

Lt

⇔ (1 + nt)
Kt+1

Lt+1

−
Kt

Lt

= sF (
Kt

Lt

; 1)− δ
Kt

Lt

⇔ (1 + nt)kt+1 − kt = sf(kt)− δkt

⇔ kt+1 =
s

1 + nt

f(kt) +
1− δ

1 + nt

kt.

Combining them, we get the following system:

Lt+1 = Lt + rLt[1− (
Lt

L∗
)ν ], (2)

kt+1 =
s

1 + nt

f(kt) +
1− δ

1 + nt

kt, (3)
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yt = f(kt). (4)

Some time, to distinguish the original Solow model, we call the model described

by the system of three equations (2), (3), (4) by phrase ”New Solow model”.

Necessary to repeat that the constant x∗ is called a equilibrium point of

the equation ∆xt = xt+1 − xt = φ(t, xt) if φ(t, x
∗) = 0, ∀t ∈ Z

+. Due to this

reason, two-phrase ”x∗ is a root of the equation φ(t, xt) = 0” and ”x∗ is a

equilibrium point of the equation ∆xt = φ(t, xt)” will be understand the same.

We denote now:

Ω = {X = (L; k; y)|0 < L < L∞; k > 0; y > 0}.

For some constant T > 0 will be chosen later, we call knT

t ; kn

t
; knt

t ; kt = k0
t
(t ∈

Z
+, T ∈ Z

+), the solutions of corresponding equations:

kt+1 =
s

1 + nT

f(kt) +
1− δ

1 + nT

kt, (5)

kt+1 =
s

1 + n
f(kt) +

1− δ

1 + n
kt, (6)

kt+1 =
s

1 + nt

f(kt) +
1− δ

1 + nt

kt,

kt+1 = sf(kt) + (1− δ)kt, (7)

We denote by k̂nT ; k̂n; k̂ = k̂0 the positive equilibrium points of corresponding

equations (5), (6), (7). To prove the main theorem, we need the following

propositions.

Proposition 2.1. For any constant λ > 0, equation g(t) = 0, where g(t) =

f(t)− λt, has exactly one positive solution.

Proof. From g(0) = 0, ∃f ′(t), ∀t ≥ 0 and limt→0+ g′(t) = +∞ it deduces that

there exists a t1 > 0, such that g(t1) > 0. We have also

lim
t→+∞

g′(t) = lim
t→+∞

(f ′(t)− λ) = −λ < 0.

Therefore, there exists a t0 > 0, such that g′(t) < −λ/2, ∀t ≥ t0. Thus, for

t ≥ t0, we have g(t) = g′(s)(t − t0) < −λ(t − t0)/2, where s ∈ (t0; t). Let

t → +∞, from the last inequality we get g(t) → −∞. Noting g(t1) > 0 we

can see that equation g(t) = 0 has least a root denoted by t2, where t2 > t1.

Equation g(t) = 0 has not positive roots because g(0) = g(t2) = 0 and g(.) is

a strictly concave function on R
+.
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Proposition 2.2. For arbitrary positive constants λ1;λ2, let k1; k2 respec-

tively be the solutions of equations f(t) = λ1t and f(t) = λ2t. If λ1 < λ2 then

k1 > k2.

Proof. Call M1;M2 corresponding to the intersections of curve y = f(t) to

the lines y = λ1t; y = λ2t. Because y = f(t) is strictly concave on [0;+∞),

therefore M1,M2 really exist and unique. Since f(0) = 0, therefore λ1 < λ2

implies that M2 belongs to curve ÕM1 of y = f(t). This shows that k1 > k2,

otherwise it will conflicts with the single value of the function f(.).

Proposition 2.3. If parameter r is small enough such that 0 < r < L
∗

L∞

,

then for any initial value L0 ∈ (0;  L∞) the rate of Richards growth nt =
Lt+1−Lt

Lt

or equals to 0 or monotonously tends to 0 as t → ∞.

Proof. (i) Case L0 = L∗. For this case we have:

L1 − L0 = rL0[1− (
L0

L∗
)ν ] = 0. Thus L1 = L0.

Continuing this process, we have:

L2 = L1; L3 = L2; ... Lt+1 = Lt, ∀t ∈ Z
+.

In this case we get nt ≡ 0.

(In this case L0 is the positive equilibrium point of equation (2)).

(ii) Fore the case 0 < L0 < L∗, we need to show that:

Lt < Lt+1 < L∗, ∀t ∈ Z
+.

Indeed, L0 < L∗ ⇒
L0

L∗
< 1. Therefore L1 − L0 = rL0[1 − (

L0

L∗
)ν ] > 0 or

L1 > L0.

We need to show also L1 < L∗. Indeed,

L1 = L0 + rL0[1− (
L0

L∗
)ν ].

Because 0 < L0 < L∗ and ν ∈ (0; 1) so:

L1 = L0 + rL0[1− (
L0

L∗
)ν ] < L0 + rL0[1−

L0

L∗
].
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We see that:

L1 < L∗

⇔ L0 + rL0[1−
L0

L∗
] < L∗

⇔
rL0

L∗
(L∗ − L0) < L∗ − L0

⇔ r <
L∗

L0

.

The last inequality holds because r < L
∗

L∞

< 1 and 0 < L0 < L∗. Thus,

0 < L0 < L∗ ⇒ L0 < L1 < L∗

Continuing by the inductive method, we can show that

L0 < L1 < ... < Lt < Lt+1 < ... < L∗, ∀t ∈ Z
+.

Thus, sequence {Lt} is monotonically increasing and bounded upper. So it

has a limit as t → ∞. Denote this limit by L̄ = limt→∞ Lt. We show that

L̄ = L∗. Indeed, we have limt→∞ Lt = limt→∞ Lt+1 = L̄. Therefore 0 =

limt→∞(Lt−1 − Lt) = limt→∞ rLt[1 − (
Lt

L∗
)ν ] = rL̄[1 − (

L̄

L∗
)ν ]. It means that

L̄ is a positive equilibrium point of equation (2). From the uniqueness of the

positive equilibrium point of the equation (2) we have L̄ = L∗. In short, if

0 < L0 < L∗ then Lt monotonically increases to L∗. Finally, we need show

that nt monotonically decreases to 0. Indeed,

nt+1 < nt ⇔ r(1− (
Lt)

L∗
)ν) < r(1− (

Lt)

L∗
)ν) ⇔ −(

Lt)

L∗
)ν < −(

Lt−1)

L∗
)ν

⇔(
Lt)

L∗
)ν > (

Lt−1)

L∗
)ν ⇔ (

Lt)

L∗
) > (

Lt−1)

L∗
) ⇔ Lt > Lt−1.

The last inequality is shown before.

(iii) For the case L∞ > L0 > L∗, we need to show that:

Lt > Lt+1 > L∗, ∀t ∈ Z
+.

Indeed, L0 > L∗ ⇒
L0

L∗
> 1. Therefore L1 − L0 = rL0[1 − (

L0

L∗
)ν ] < 0 or

L1 < L0.

We need to show also L1 > L∗. Indeed,

L1 = L0 + rL0[1− (
L0

L∗
)ν ]
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Since L0 > L∗ > 0 and ν ∈ (0; 1) therefore L1 = L0 + rL0[1 − (
L0

L∗
)ν ] >

L0 + rL0[1−
L0

L∗
]. Then:

L1 > L∗

⇔ L0 + rL0[1−
L0

L∗
] > L∗

⇔
rL0

L∗
(L∗ − L0) > L∗ − L0

⇔ r <
L∗

L0

.

Last inequality holds because r <
L∗

L∞

and L∞ > L∗. In the short, from

L∞ > L0 > L∗, we have L0 > L1 > L∗. By inductive method we get that

L0 > L1 > ... > Lt > Lt+1 > ... > L∗, ∀t ∈ Z
+.

Thus, sequence {Lt} is monotonically decreasing and bounded under. By the

same way above, this sequence has limit L∗.

Now we will show that nt monotonically increases to 0. Indeed,

nt+1 > nt ⇔ r(1− (
Lt)

L∗
)ν) > r(1− (

Lt)

L∗
)ν) ⇔ −(

Lt)

L∗
)ν > −(

Lt−1)

L∗
)ν

⇔ (
Lt)

L∗
)ν < (

Lt−1)

L∗
)ν ⇔ (

Lt)

L∗
) < (

Lt−1)

L∗
) ⇔ Lt < Lt−1.

This statement was shown above.

Remark 2.1. From this proposition, it is useful to note that the lin-

ear Malthus growth is not stable, but adding there a square noise −rL2/L∗

obtained equation becomes asymptotically stable.

Proposition 2.4. For any nonnegative constant n and any k0 > 0 solution

kt beginning from k0 of equation

kt+1 =
s

1 + n
f(kt) +

1− δ

1 + n
kt

is being attracted to equlibrium point k̂n of this equation.
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Proof. (i) Case k0 = k̂n. For this case we have

k1 =
s

1 + n
f(k0) +

1− δ

1 + n
k0 =

s

1 + n
f(k̂n) +

1− δ

1 + n
k̂n = k̂n.

Continuing process, we get:

k0 = k1 = k2 = ... = k̂n.

It means that k̂n is a positive equilibrium point of equation (6).

(ii) For the case k0 < k̂n. Firstly, we show that if kt < k̂n then kt+1 < kt < k̂n.

Indeed,

kt+1 =
s

1 + n
f(kt) +

1− δ

1 + n
kt

⇔ kt+1 − kt =
s

1 + n
f(kt)−

δ + n

1 + n
kt

We construct a function g : R+ −→ R
+ as follows:

g(k) =
s

1 + n
f(k)−

δ + n

1 + n
k

g(k) = 0 ⇔ sf(k) = (n+ δ)k = 0 ⇔ k = k̂n; k = 0.

For 0 < k < k̂n, we can write k as a convex combination of two points 0 and

k̂n as k = (1 − λ).0 + λk̂n = λk̂n, where 0 < λ < 1. Because f(.) is strictly

concave on R
+, we have

g(k) = g(λk̂n) =
s

1 + n
f [(1− λ).0 + λk̂n]−

δ + n

1 + n
[(1− λ).0 + λk̂n]

=
s

1 + n
f [(1− λ).0 + λk̂n]− λ

δ + n

1 + n
k̂n

> λ
s

1 + n
f(k̂n)− λ

δ + n

1 + n
k̂n = 0.

Thus, when kt < k̂n we have

kt+1 − kt = g(kt) =
s

1 + n
f(kt)−

δ + n

1 + n
kt > 0 ⇔ kt+1 > kt.

Next, since kt < k̂n and f ′(k) > 0, we have:

kt+1 =
s

1 + n
f(kt) +

1− δ

1 + n
kt <

s

1 + n
f(k̂n) +

1− δ

1 + n
k̂n = k̂n.
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Return to t = 0. From assumption 0 < k0 < k̂n according the above proof,

we have

k0 < k1 < k2 < ... < kt < kt+1 < ... < k̂n.

Thus, sequence {kt} is monotonically increasing and bounded upper by k̂n.

Therefore, it has a limit. Put limt→∞ kt = k̄. We need to show that k̄ = k̂n.

Indeed, since limt→∞ kt = limt→∞ kt+1 = k̄ we have

0 = lim
t→∞

(kt+1 − kt) = lim
t→

(
s

1 + n
f(kt)−

δ + n

1 + n
kt)

=
s

1 + n
f(k̄)−

δ + n

1 + n
k̄

This means that k̄ is also a positive root of g(k) = 0. Uniqueness of positive

root of this equation implies that k̄ = k̂n. Thus, it is shown that if k0 < k̂n

then kt monotonically increases to k̂n.

(iii) Fore the case k0 > k̂n by the similar ways we can show that sequence kt

monotonically decreases to k̂n.

Remark 2.2. If n = 0 equation (6) becomes (7) as follows:

kt+1 = sf(kt) + (1− δ)kt

There we denote it’s positive equilibrium point by k̂0 or more simply by k̂.

Proposition 2.5. For any integer positive constant T, solutions of equa-

tions (3), (5), (7) with the same initial value kT = k0 > 0 at t = T satisfy the

following order:

(i) k0

t
≥ knt

t
≥ knT

t , ∀t ≥ T for the case nt ↓ 0.

(ii) k0

t
≤ knt

t
≤ knT

t , ∀t ≥ T for the case nt ↑ 0.

Proof. Firstly, we check the right inequality: knt

t ≥ knT

t . Indeed, at t = T this

inequality satisfied by assuming the same initial conditions. Suppose that this

inequality is true at step t (t ≥ T ). We check for steps t + 1. Since δ ∈ (0; 1)

and f ′(t) > 0 so knt

t ≥ knT

t involves f(knt

t ) ≥ f(knT

t ). On the other hand,
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because nt monotonically decreases to 0 as t → +∞ therefore:

knt

t+1 =
s

1 + nt

f(knt

t
) +

1− δ

1 + nt

knt

t

≥
s

1 + nt

f(knT

t ) +
1− δ

1 + nt

knT

t

≥
s

1 + nT

f(knT

t ) +
1− δ

1 + nT

knT

t = knT

t+1.

The right inequality is proven. Next we proof the left inequality: k0
t
≥

knt

t . Indeed, at t = T this inequality satisfied by assuming the same initial

conditions. Suppose that the inequality is true in step t (t ≥ T ). We check for

steps t + 1. Since δ ∈ (0; 1) and f ′(t) > 0 so k0
t
≥ knt

t implies f(k0
t
) ≥ f(knt

t ).

Thus:

k0

t+1 =
s

1 + 0
f(k0

t
) +

1− δ

1 + 0
k0

t

≥
s

1 + 0
f(knt

t
) +

1− δ

1 + 0
knt

t

≥
s

1 + nt

f(knt

t
) +

1− δ

1 + nt

knt

t
= knt

t+1.

The double inequality is proved.

(ii) For the case nt ↑ 0, the proof is similar to (i).

Corollary 2.1. With the same assumptions as in Proposition 2.4, inde-

pendently to initial values, we have

(i) k̂0 ≥ k̂nT for the case nt ↓ 0.

(ii) k̂0 ≤ k̂nT for the case nt ↑ 0.

Proof. (i) For the same initial conditions at t = T , according to Proposition

2.5, we have:

kt ≥ knT

t , ∀t > T.

According Proposition 2.4, the upper limit of all solutions of equation is the

same, which is not depend to the initial value k0. Therefore, letting t → ∞,

we have

k̂ ≥ k̂nT
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(ii) This statement is proved by the similar way.

Proposition 2.6. The following relation holds:

lim
T→∞

k̂nT = k̂

Proof. (i) It is obvious for the case nt ≡ 0.

(ii) If nt ↓ 0 then for any positive integer T we have nT+1 < nT . Then,

according Proposition 2.5 and Corollary 2.1, we have

k̂nT ≤ k̂nT+1 ≤ k̂0.

Thus, sequence k̂nT is monotonically increasing and bounded upper as nT → 0+

or as T → ∞. Therefore, this sequence has a limit as T → ∞. Denote this

limit by k̄. From above inequality transferring to limits as T → ∞, we have

k̄ ≤ k̂0. We will show that k̄ = k̂0. Indeed, since k̂nT is a positive equilibrium

point of (5) therefore

sf(k̂nT ) = (δ + nT )k̂
nT .

Transferring to limits as T → +∞, we have

sf(k̄) = δk̄.

Thus, k̄ is also a positive equilibrium point of (7), therefore k̄ = k̂0. Thus, we

prove that

lim
T→∞

k̂nT = k̂0 = k̂.

(iii) Case nt ↑ 0. For this case, the proof is similar as above.

The proof is similar to the previous parts.

Theorem 2.1. If own rate r of Richards population growth is small

enough so r < L
∗

L∞

then for any initial point X0 = (L0, k0, y0) ∈ Ω the solution

X(t) = (L(t), k(t), y(t)) begining from X0 of Solow discrete model (2), (3), (4)

attracts to X∗ = (L∗, k̂, ŷ), where k̂ is the positive equilibrium point of equation

(7) and ŷ = f(k̂).

Proof. (i) For the case nt ↓ 0.

According to the above propositions, we have that for each positive integer

T , taking the same initial conditions at t = T for k0
t
, knt

T
, knT

T
the following

relations hold:

k0

t
≥ knt

t
≥ knT

t , ∀t ≥ T.
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k0

t
→ k̂ as t → ∞.

knT

t → k̂nT as t → ∞.

Transferring to limits as t → ∞, we have

lim
t→∞

k0

t
≥ lim

t→∞

knt

t
≥ lim

t→∞

knT

t .

Letting T → ∞, we have

lim
T→∞

lim
t→∞

k0

t
≥ lim

T→∞

lim
t→∞

knt

t
≥ lim

T→∞

lim
t→∞

knT

t .

⇔ k̂ ≥ lim
T→∞

lim
t→∞

knt

t
≥ k̂.

Thus,

lim
T→∞

lim
t→∞

knt

t
= k̂.

And therefore

lim
t→∞

knt

t
= k̂.

The statement on ratio of product to labor y is directly implied from (4),

f ′(t) > 0 and all above statements on k.

(ii) For the case nt ↑ 0, the proof is similar. Theorem is proved.

Remark 2.3. The proved statements in this theorem are not other as the

state (L∗, k̂, ŷ) of obtained model is asymptotically stable (see [5],[6],[7). This

positive equilibrium state is globally attracted from the set Ω.

Theorem 2.2. Suppose that all assumptions of Theorem 2.1 hold and all

parameters, production function are same. Then for Solow discrete model with

Richards population growth (2), (3), (4) at positive equilibrium point the ratio

of capital on labor and ratio of product on labor really higher than in Solow

discrete model with Malthus population growth.

Proof. Now we denote k∗∗, y∗∗ being the positive equilibrium points of accord-

ing equations in Solow discrete model with Malthus population growth. For

the New model: Though the above statements we know that k̂ is the positive

root of equation

sf(k)− δk = 0,
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while, k∗∗ is the positive root of equation

sf(k)− (δ + n)k = 0.

Since n > 0 or δ + n > δ. Using Proposition 2.2, we get k̂ > k∗∗. About y∗∗,

since y = f(k) and f ′(k) > 0, ∀k ∈ [0; +∞), we have also ŷ > y∗∗. Theorem is

proved.

3 Conclusion

In this paper, the Solow economic model with Richards population growth

and with product function in general form has been considered in discrete time.

For this proposed model the positive equilibrium point is globally attracted on

a some set Ω ⊂ R
3 and for this discrete model, at the equilibrium state the

basic values are really higher than in the original model.
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