Journal of Applied Mathematics \& Bioinformatics, vol.2, no.3, 2012, 131-150 ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2012

The Join Mapping of two Stratified Graphs

Nicolae Ţăndăreanu ${ }^{1}$ and Irina Tudor (Preda) ${ }^{2}$

Abstract

Using the mappings u_{1} and u_{2} that uniquely define [9] two stratified graphs \mathcal{G}_{1} and \mathcal{G}_{2}, respectively, we define the mapping $u_{1} \oplus u_{2}$. This mapping is used in further research to define the least upper bound of stratified graphs \mathcal{G}_{1} and \mathcal{G}_{2}. The upper bound helps us in future research to prove the closure under union set operation of stratified languages, a family of languages generated by stratified graphs. A few properties, including the associativity of the operation \oplus are proved.

Mathematics Subject Classification: 68R10, 08A70
Keywords: labeled graph, stratified graph, Peano algebra, join mapping

1 Introduction

The concept of labeled stratified graph (shortly, a $S G$ or stratified graph) was introduced in [7] as a method of knowledge representation and it is obtained by incorporating the concept of labeled graph into an algebraic environment given by a tuple of components, which are obtained applying several

[^0]concepts of universal algebra. The existence of this structure is proved in [8] and various algebraic properties are presented in [8], [9], [10] and [11]. The inference based on $S G s$ is described in [10]. An application of this structure in the communication semantics and graphical image generation are presented in [10]. A special kind of reasoning, hierarchical reasoning and its application to image synthesis are presented in [11]. In [5], [6] we show that we can generate formal languages by means of the stratified graphs, thus obtaining a new mechanism to generate formal languages.

Let M be an arbitrary nonempty set. We consider the set B given by

$$
B=\bigcup_{n \geq 0} B_{n}
$$

where

$$
\left\{\begin{array}{l}
B_{0}=M \\
B_{n+1}=B_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in B_{n} \times B_{n}\right\}, n \geq 0
\end{array}\right.
$$

and $\sigma\left(x_{1}, x_{2}\right)$ is the word $\sigma x_{1} x_{2}$ over the alphabet $\{\sigma\} \cup M$. The pair $\bar{M}=$ (B, σ) is a Peano σ-algebra over $M([1],[2],[3],[4])$.

If f and g are two mappings then we write $f \preceq g$ if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $f(x)=g(x)$ for every $x \in \operatorname{dom}(f)$.

A binary relation ρ over the set S is a subset $\rho \subseteq S \times S$. The set of all binary relations is the power set $2^{S \times S}$. There is a classical binary operation for binary relations. This is denoted by

$$
\circ: 2^{S \times S} \times 2^{S \times S} \longrightarrow 2^{S \times S}
$$

and is defined as follows:

$$
\rho_{1} \circ \rho_{2}=\left\{(x, y) \in S \times S \mid \exists z \in S:(x, z) \in \rho_{1},(z, y) \in \rho_{2}\right\}
$$

We consider the mapping $\operatorname{prod}_{S}: \operatorname{dom}\left(\operatorname{prod}_{S}\right) \longrightarrow 2^{S \times S}$, where

$$
\operatorname{dom}\left(\operatorname{prod}_{S}\right)=\left\{\left(\rho_{1}, \rho_{2}\right) \in 2^{S \times S} \times 2^{S \times S} \mid \rho_{1} \circ \rho_{2} \neq \emptyset\right\}
$$

and $\operatorname{prod}_{S}\left(\rho_{1}, \rho_{2}\right)=\rho_{1} \circ \rho_{2}$ for every $\left(\rho_{1}, \rho_{2}\right) \in \operatorname{dom}\left(\operatorname{prod}_{S}\right)$. The pair $\left(2^{S \times S}\right.$, $\left.\operatorname{prod}_{S}\right)$ becomes a partial algebra. We denote by $u \in R\left(\operatorname{prod}_{S}\right)$ the following property: $u: \operatorname{dom}(u) \longrightarrow 2^{S \times S}, \operatorname{dom}(u) \subseteq \operatorname{dom}\left(\operatorname{prod}_{S}\right), u\left(\rho_{1}, \rho_{2}\right)=\rho_{1} \circ \rho_{2}$ for every $\left(\rho_{1}, \rho_{2}\right) \in \operatorname{dom}(u)$. If $u \in R\left(\operatorname{prod}_{S}\right)$ then we denote by $C l_{u}\left(T_{0}\right)$ the
closure of T_{0} in $2^{S \times S}$. This is the least subset of $2^{S \times S}$ that contains T_{0} and is closed with respect to u.

The concept of labeled graph is a basic one for the concept of stratified graph. By a labeled graph we understand a tuple $G=\left(S, L_{0}, T_{0}, f_{0}\right)$, where S is a finite set of nodes, L_{0} is a set of elements named labels, T_{0} is a set of binary relations on S and $f_{0}: L_{0} \longrightarrow T_{0}$ is a surjective function.

We denote by $\mathcal{L}_{l g}$ the set of all labeled graphs. Consider $G_{1}=\left(S_{1}, L_{01}, T_{01}\right.$, $\left.f_{01}\right) \in \mathcal{L}_{l g}$ and $G_{2}=\left(S_{2}, L_{02}, T_{02}, f_{02}\right) \in \mathcal{L}_{l g}$. We write $G_{1} \sqsubseteq G_{2}$ if $S_{1} \subseteq S_{2}$, $L_{01} \subseteq L_{02}$ and $f_{01}(a) \subseteq f_{02}(a)$ for every $a \in L_{01}$. The relation \sqsubseteq is a partial order as proved in [13].

Also in [13] we defined the mapping

$$
f_{01} \sqcup f_{02}: L_{01} \cup L_{02} \longrightarrow T_{01} \cup T_{02} \cup\left\{\rho \mid \exists \mu \in T_{01}, \theta \in T_{02}: \rho=\mu \cup \theta\right\}
$$

as follows:

$$
\left(f_{01} \sqcup f_{02}\right)(a)=\left\{\begin{array}{l}
f_{01}(a) \quad \text { if } \quad a \in L_{01} \backslash L_{02} \\
f_{02}(a) \quad \text { if } a \in L_{02} \backslash L_{01} \\
f_{01}(a) \cup f_{02}(a) \quad \text { if } \quad a \in L_{01} \cap L_{02}
\end{array}\right.
$$

Consider a nonempty set $L_{0} \subseteq M$. We denote $L \in \operatorname{Initial}\left(L_{0}\right)$ if the following two conditions are satisfied:

1. $L_{0} \subseteq L \subseteq \bar{M}$;
2. if $\sigma(\alpha, \beta) \in L, \alpha \in \bar{M}, \beta \in \bar{M}$ then $\alpha \in L$ and $\beta \in L$.

A labeled stratified graph \mathcal{G} over G (shortly, stratified graph or $S G$) is a tuple (G, L, T, u, f) where

- $G=\left(S, L_{0}, T_{0}, f_{0}\right)$ is a labeled graph
- $L \in \operatorname{Initial}\left(L_{0}\right)$
- $u \in R\left(\operatorname{prod}_{S}\right)$ and $T=C l_{u}\left(T_{0}\right)$
- $f:\left(L, \sigma_{L}\right) \longrightarrow\left(2^{S \times S}, u\right)$ is a morphism of partial algebras such that $f_{0} \preceq f, f(L)=T$ and if $(f(x), f(y)) \in \operatorname{dom}(u)$ then $(x, y) \in \operatorname{dom}\left(\sigma_{L}\right)$

2 The join mapping of two stratified graphs and its properties

We consider the labeled graphs

$$
G_{1}=\left(S_{1}, L_{01}, T_{01}, f_{01}\right) \in \mathcal{L}_{l g}, G_{2}=\left(S_{2}, L_{02}, T_{02}, f_{02}\right) \in \mathcal{L}_{l g}
$$

and the labeled stratified graphs

$$
\mathcal{G}_{1}=\left(G_{1}, L_{1}, T_{1}, u_{1}, f^{1}\right) \in \mathcal{L}_{s g}, \mathcal{G}_{2}=\left(G_{2}, L_{2}, T_{2}, u_{2}, f^{2}\right) \in \mathcal{L}_{s g}
$$

over G_{1} and G_{2} respectively.
In what follows we suppose that $S_{1} \cap S_{2}=\emptyset$. Without loss of generality we can suppose that

$$
\begin{aligned}
& \operatorname{dom}\left(u_{1}\right) \subseteq T_{1} \times T_{1}, u_{1}: \operatorname{dom}\left(u_{1}\right) \longrightarrow T_{1} ; \\
& \quad \operatorname{dom}\left(u_{2}\right) \subseteq T_{2} \times T_{2}, u_{2}: \operatorname{dom}\left(u_{2}\right) \longrightarrow T_{2} ; \\
& T_{1} \subseteq 2^{S_{1} \times S_{1}}, T_{2} \subseteq 2^{S_{2} \times S_{2}} \text { and } 2^{S_{1} \times S_{1}} \cap 2^{S_{2} \times S_{2}}=\emptyset, \text { it follows that } T_{1} \cap T_{2}=\emptyset .
\end{aligned}
$$

Definition 2.1. Take $S=S_{1} \cup S_{2}$. We extend the mapping u_{1} and u_{2} as follows:

$$
\begin{aligned}
& \overline{u_{1}}: 2^{S \times S} \times 2^{S \times S} \longrightarrow 2^{S \times S} \\
& \overline{u_{1}}\left(\rho_{i}, \rho_{k}\right)=\left\{\begin{array}{l}
u_{1}\left(\rho_{i}, \rho_{k}\right) \text { if } \\
\emptyset \\
\text { otherwise }
\end{array}\right. \\
& \left.\overline{u_{2}}: 2^{S \times S} \times \rho_{i}, \rho_{k}\right) \in \operatorname{dom}\left(u_{1}\right) \\
& \overline{u_{2}}\left(\omega_{j}, \omega_{m}\right)=\left\{\begin{array}{l}
u_{2}\left(\omega_{j}, \omega_{m}\right) \text { if }\left(\omega_{j}, \omega_{m}\right) \in \operatorname{dom}\left(u_{2}\right) \\
\emptyset \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

We define

$$
T_{1} \uplus T_{2}=\left\{\rho \cup \omega \mid \rho \in T_{1} \cup\{\emptyset\}, \omega \in T_{2} \cup\{\emptyset\}\right\} \backslash\{\emptyset\}
$$

Remark 2.2. Obviously we have $T_{1} \uplus T_{2}=T_{2} 巴 T_{1}$.

Proposition 2.3. We consider the set $N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right) \subseteq T_{1}^{0} \uplus T_{2}^{0}$. The sequence $\left\{N_{k}\right\}_{k \geq 1}$ defined recursively as follows:

$$
\left\{\begin{array}{c}
N_{1}=N_{0} \cup\left\{\mu \in T_{1}^{1} \uplus T_{2}^{1} \mid \exists \rho_{1} \cup \omega_{1} \in N_{0}, \exists \rho_{2} \cup \omega_{2} \in N_{0}:\right. \tag{1}\\
\left.\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\} \\
N_{k+1}=N_{k} \cup\left\{\mu \in T_{1}^{k+1} \uplus T_{2}^{k+1} \mid \exists \rho_{1} \cup \omega_{1} \in N_{k}, \exists \rho_{2} \cup \omega_{2} \in N_{k}:\right. \\
\left.\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right.
$$

satisfies the following properties:
i1) $N_{k} \subseteq T_{1}^{k} 巴 T_{2}^{k}$, for every $k \geq 0$;
i2) $N_{0} \subseteq N_{1} \subseteq \ldots \subseteq N_{k} \subseteq N_{k+1} \subseteq \ldots$
i3) There is $k_{0} \geq 0$ such that $N_{0} \subset \ldots \subset N_{k_{0}}=N_{k_{0}+1}=N_{k_{0}+2}=\ldots$
Proof. We have $N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right)=\left\{\rho \mid \exists a \in L_{01} \backslash L_{02}: \rho=\right.$ $\left.f_{01}(a)\right\} \cup\left\{\rho \mid \exists a \in L_{02} \backslash L_{01}: \rho=f_{02}(a)\right\} \cup\left\{\rho \mid \exists a \in L_{01} \cap L_{02}: \rho=\right.$ $\left.f_{01}(a) \cup f_{02}(a)\right\} \subseteq T_{1}^{0} \cup T_{2}^{0} \cup\left(T_{1}^{0} ש T_{2}^{0}\right) \subseteq T_{1}^{0} ש T_{2}^{0}$. Thus $\left.i 1\right)$ is true for $k=0$. Suppose that $i 1$) is true for $k=m$ and we prove the property for $k=m+1$. From (1) we obtain

$$
\begin{gathered}
N_{m+1}=N_{m} \cup\left\{\mu \in T_{1}^{m+1} ש T_{2}^{m+1} \mid \exists \rho_{1} \cup \omega_{1} \in N_{m}, \exists \rho_{2} \cup \omega_{2} \in N_{m}:\right. \\
\left.\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{gathered}
$$

therefore $N_{m+1} \subseteq\left(T_{1}^{m} ש T_{2}^{m}\right) \cup\left(T_{1}^{m+1} ש T_{2}^{m+1}\right)=T_{1}^{m+1} ש T_{2}^{m+1}$. Thus $\left.i 1\right)$ is true for $k=m+1$.

For every $k \geq 0$ we have $N_{k} \subseteq T_{1}^{k} ש T_{2}^{k} \subseteq T_{1} ש T_{2}$ and the last set is a finite one because $S=S_{1} \cup S_{2}$ is finite. Thus there is $k \geq 0$ such that $N_{0} \subset \ldots \subset N_{k}=N_{k+1}$. Now, by induction on $p \geq 1$ we can verify that $N_{k}=N_{k+p}$. For $p=1$ this property is true because $N_{k}=N_{k+1}$. Suppose that $N_{k}=N_{k+p}$ for $p=m$. We have

$$
\begin{gathered}
N_{k+m+1}=N_{k+m} \cup\left\{\mu \mid \exists \rho_{1} \cup \omega_{1} \in N_{k+m}, \exists \rho_{2} \cup \omega_{2} \in N_{k+m}:\right. \\
\left.\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}=N_{k} \cup \\
\left\{\mu \mid \exists \rho_{1} \cup \omega_{1} \in N_{k}, \exists \rho_{2} \cup \omega_{2} \in N_{k}: \mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}=N_{k+1}=N_{k}
\end{gathered}
$$

Proposition 2.4. The sequence $\left\{M_{p}\right\}_{p \geq 1}$ defined as follows:

$$
\left\{\begin{align*}
M_{1}=\{ & \left.\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{0} \times N_{0} \mid \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{1}\right\} \tag{2}\\
M_{p+1}= & \left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{p-1} \times\left(N_{p} \backslash N_{p-1}\right) \cup\left(N_{p} \backslash N_{p-1}\right)\right. \\
& \left.\times N_{p}: \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{p+1}\right\}
\end{align*}\right.
$$

satisfies the following property: either $M_{1}=\emptyset$ or there is $k \geq 1$ such that $M_{j} \neq \emptyset$ for every $j \in\{1, \ldots, k\}$ and $M_{j}=\emptyset$ for $j \geq k+1$.

Proof. Suppose that $N_{1}=N_{0}$. From the definition of N_{1} we deduce that

$$
\left\{\mu \mid \exists \rho_{1} \cup \omega_{1} \in N_{0}, \exists \rho_{2} \cup \omega_{2} \in N_{0}: \mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}=\emptyset
$$

therefore $M_{1}=\emptyset$. If $N_{1} \neq N_{0}$ then by Proposition 2.3 we deduce that there is $k \geq 1$ such that $N_{0} \subset \ldots \subset N_{k}=N_{k+1}=N_{k+2}=\ldots$ In this case $M_{j} \neq \emptyset$ for $j \in\{1, \ldots, k\}$ and $M_{j}=\emptyset$ for $j \geq k+1$.

Remark 2.5. The rule by means of which the sequence $\left\{M_{p}\right\}_{p \geq 1}$ is obtained can be represented intuitively as in Figure 1.

Figure 1: The sequence $\left\{M_{p}\right\}_{p \geq 1}$

Remark 2.6. The relation (2) can be written also as in (3).

$$
\left\{\begin{array}{l}
M_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{0} \times N_{0} \mid \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{1}\right\} \tag{3}\\
M_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{p-1} \times\left(N_{p} \backslash N_{p-1}\right) \cup\left(N_{p} \backslash N_{p-1}\right) \times\right. \\
\left.\times N_{p-1} \cup\left(N_{p} \backslash N_{p-1}\right) \times\left(N_{p} \backslash N_{p-1}\right): \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{p+1}\right\}
\end{array}\right.
$$

Remark 2.7. For every $p \geq 1$ we have $M_{p} \subseteq\left(T_{1} ש T_{2}\right) \times\left(T_{1} \mathbb{\Psi} T_{2}\right)$.

Definition 2.8. Consider the mappings $u_{1}: \operatorname{dom}\left(u_{1}\right) \longrightarrow T_{1}$ and $u_{2}:$ $\operatorname{dom}\left(u_{2}\right) \longrightarrow T_{2}$, where $\operatorname{dom}\left(u_{1}\right) \subseteq T_{1} \times T_{1}$ and $\operatorname{dom}\left(u_{2}\right) \subseteq T_{2} \times T_{2}$. Consider the sequences $\left\{N_{k}\right\}_{k \geq 0}$ and $\left\{M_{p}\right\}_{p \geq 1}$ as in Propositions 2.3 and 2.4 respectively. Consider the number $k \geq 1$ such that $M_{j} \neq \emptyset$ for $j \in\{1, \ldots, k\}$ and $M_{j}=\emptyset$ for $j \geq k+1$. Define the mapping

$$
u_{1} \oplus u_{2}: \bigcup_{p=1}^{k} M_{p} \longrightarrow N_{k}
$$

as follows:

$$
\begin{gathered}
\operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\bigcup_{p=1}^{k} M_{p} \\
\left(u_{1} \oplus u_{2}\right)\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right)=\overline{u_{1}}\left(s_{1}, s_{2}\right) \cup \overline{u_{2}}\left(r_{1}, r_{2}\right)
\end{gathered}
$$

for every $\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$.

Remark 2.9. The construction from Definition 2.8 can be applied for the case $u_{2}=u_{1}$ because $S_{2}=S_{1}$ and $S_{1} \cap S_{2} \neq \emptyset$. For this reason we agree to consider $u_{1} \oplus u_{1}=u_{1}$.

Remark 2.10. As a conclusion we can relieve the following facts:

- $u_{1} \in R\left(\operatorname{prod}_{S_{1}}\right), u_{2} \in R\left(\operatorname{prod}_{S_{2}}\right)$
- $T_{1}=C l_{u_{1}}\left(T_{01}\right), T_{2}=C l_{u_{2}}\left(T_{02}\right)$
- $\operatorname{dom}\left(u_{1}\right) \subseteq T_{1} \times T_{1}, \operatorname{dom}\left(u_{2}\right) \subseteq T_{2} \times T_{2}$
- $\operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\bigcup_{p=1}^{k} M_{p} \subseteq N_{k-1} \times N_{k-1} \subseteq\left(T_{1} \mathbb{U} T_{2}\right) \times\left(T_{1} \mathbb{U} T_{2}\right)$
- $\left(u_{1} \oplus u_{2}\right)\left(\theta_{1}, \theta_{2}\right) \in N_{k} \subseteq T_{1} \uplus T_{2}$ for every $\left(\theta_{1}, \theta_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$

Proposition 2.11. The mapping $u_{1} \oplus u_{2}$ is well defined.
Proof. We show that for every $\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$ we have $\left(u_{1} \oplus u_{2}\right)\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right) \in N_{k}$. If $\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\bigcup_{p=1}^{k} M_{p}$ then $\left(s_{1} \cup r_{1}, s_{2} \cup r_{2}\right) \in M_{j}$ for some $j \in\{1, \ldots, k\}$. In this case

$$
\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{j} .
$$

But $N_{j} \subseteq N_{k}$.

Proposition 2.12. $u_{1} \oplus u_{2}=u_{2} \oplus u_{1}$
Proof. Consider $N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right)$ and denote by $\left(N_{i}, M_{i}\right)$ for $i \geq 1$ the sets defined as in (1) and (2) for $u_{1} \oplus u_{2}$. We denote by $\left(P_{i}, Q_{i}\right)$ the corresponding sets for $u_{2} \oplus u_{1}$:

$$
\begin{gathered}
\left\{\begin{array}{c}
P_{1}=N_{0} \cup\left\{\mu \mid \exists \rho_{1} \cup \omega_{1} \in N_{0}, \exists \rho_{2} \cup \omega_{2} \in N_{0}:\right. \\
\left.\mu=\overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{1}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\} \\
P_{k+1}=P_{k} \cup\left\{\mu \mid \exists \rho_{1} \cup \omega_{1} \in P_{k}, \exists \rho_{2} \cup \omega_{2} \in P_{k}:\right. \\
\left.\mu=\overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{1}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right. \\
\left\{\begin{array}{c}
Q_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{0} \times N_{0} \mid \overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{1}}\left(\omega_{1}, \omega_{2}\right) \in P_{1}\right\} \\
Q_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in P_{p-1} \times\left(P_{p} \backslash P_{p-1}\right) \cup\left(P_{p} \backslash P_{p-1}\right) \times P_{p}:\right. \\
\left.\overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{1}}\left(\omega_{1}, \omega_{2}\right) \in P_{p+1}\right\}
\end{array}\right.
\end{gathered}
$$

By induction on $i \geq 1$ we can prove that $N_{i}=P_{i}$. Consider the sets $Z_{1}=N_{1} \backslash$ N_{0} and $W_{1}=P_{1} \backslash N_{0}$. Suppose that $\left(\theta_{1}, \theta_{2}\right) \in Z_{1}$. There are $\rho_{1}, \rho_{2}, \omega_{1}, \omega_{2} \in N_{0}$ such that $\theta_{1}=\rho_{1} \cup \omega_{1}$ and $\theta_{2}=\rho_{2} \cup \omega_{2}$ and $\left(\theta_{1}, \theta_{2}\right)=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset$. Obviously $\theta_{1}=\omega_{1} \cup \rho_{1}$ and $\theta_{2}=\omega_{2} \cup \rho_{2}$ and $\left(\theta_{1}, \theta_{2}\right)=\overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \cup \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \neq \emptyset$. It follows that $Z_{1} \subseteq W_{1}$.

Similarly we have $W_{1} \subseteq Z_{1}$. As a consequence we have $Z_{1}=W_{1}$ and $N_{1}=P_{1}$. Suppose that $N_{k}=P_{k}$. Take $\left(\theta_{1}, \theta_{2}\right) \in N_{k+1}$. If $\left(\theta_{1}, \theta_{2}\right) \in N_{k}$ then $\left(\theta_{1}, \theta_{2}\right) \in P_{k}$ by the inductive assumption. In this case we have $\left(\theta_{1}, \theta_{2}\right) \in P_{k+1}$. It remains to consider the case $\left(\theta_{1}, \theta_{2}\right) \in N_{k+1} \backslash N_{k}$. There are $\rho_{1}, \rho_{2}, \omega_{1}, \omega_{2}$ such that $\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{k} \times N_{k}$ such that $\left(\theta_{1}, \theta_{2}\right)=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset$. We have $\left(\theta_{1}, \theta_{2}\right)=\overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \cup \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right)$. By the inductive assumption we have
$\omega_{1} \cup \rho_{1} \in P_{k}$ and $\omega_{2} \cup \rho_{2} \in P_{k}$. Thus $\left(\theta_{1}, \theta_{2}\right) \in P_{k+1} \backslash P_{k}$. This property shows that $N_{k+1} \subseteq P_{k+1}$. The converse implication is proved in a similar manner.

Based on the fact that $N_{i}=P_{i}$ for every $i \geq 1$, it is easy to show by induction on $k \geq 1$ that $M_{k}=Q_{k}$. First we have $M_{1}=Q_{1}$ because $N_{1}=P_{1}$. Suppose that $M_{i}=P_{i}$ for every $i \in\{1, \ldots, k\}$ and we verify that $M_{k+1} \subseteq P_{k+1}$ and $P_{k+1} \subseteq M_{k+1}$.
Consider $\left(\theta_{1}, \theta_{2}\right) \in M_{k+1}$. If $\left(\theta_{1}, \theta_{2}\right) \in M_{k}$ then by the inductive assumption we have $\left(\theta_{1}, \theta_{2}\right) \in P_{k}$. Suppose that $\left(\theta_{1}, \theta_{2}\right) \in M_{k+1} \backslash M_{k}$. There are $\rho_{1}, \rho_{2}, \omega_{1}, \omega_{2}$ such that $\left(\theta_{1}, \theta_{2}\right)=\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{k-1} \times\left(N_{k} \backslash N_{k-1}\right) \cup\left(N_{k} \backslash N_{k-1}\right) \times$ $N_{k-1} \cup\left(N_{k} \backslash N_{k-1}\right) \times\left(N_{k} \backslash N_{k-1}\right)$ and $\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{k+1}$. By the inductive assumption we obtain
$\left(\omega_{1} \cup \rho_{1}, \omega_{2} \cup \rho_{2}\right) \in P_{k-1} \times\left(P_{k} \backslash P_{k-1}\right) \cup\left(P_{k} \backslash P_{k-1}\right) \times P_{k-1} \cup\left(P_{k} \backslash P_{k-1}\right) \times\left(P_{k} \backslash P_{k-1}\right)$
and

$$
\overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \cup \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \in P_{k+1}
$$

It follows that $\left(\theta_{1}, \theta_{2}\right) \in Q_{k+1} \backslash Q_{k}$. The inclusion $P_{k+1} \subseteq M_{k+1}$ is proved in a similar manner.

It follows that

$$
\operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\bigcup_{k \geq 1} M_{k}=\bigcup_{k \geq 1} Q_{k}=\operatorname{dom}\left(u_{2} \oplus u_{1}\right)
$$

Proposition 2.13. Consider $G_{1}=\left(S_{1}, L_{01}, T_{01}, f_{01}\right) \in \mathcal{L}_{l g}, G_{2}=\left(S_{2}, L_{02}\right.$, $\left.T_{02}, f_{02}\right) \in \mathcal{L}_{l g}, \mathcal{G}_{1}=\left(G_{1}, L_{1}, T_{1}, u_{1}, f^{1}\right) \in \mathcal{L}_{s g}$ and $\mathcal{G}_{2}=\left(G_{2}, L_{2}, T_{2}, u_{2}, f^{2}\right) \in$ $\mathcal{L}_{s g}$. If

$$
N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right)
$$

then $C l_{u_{1} \oplus u_{2}}\left(N_{0}\right)=N_{k_{0}}$, where $N_{k_{0}}$ is given by Proposition 2.3.
Proof. Consider the number k_{0} given by Proposition 2.3. In order to obtain $C l_{u_{1} \oplus u_{2}}\left(N_{0}\right)$ we compute the sequence $\left\{R_{n}\right\}_{n \geq 0}$ defined as follows:

$$
\left\{\begin{array}{l}
R_{0}=N_{0} \tag{4}\\
R_{n+1}=R_{n} \cup\left\{\theta \mid \exists\left(\theta_{1}, \theta_{2}\right) \in\left(R_{n} \times R_{n}\right) \cap \operatorname{dom}\left(u_{1} \oplus u_{2}\right):\right. \\
\left.\quad \theta=\left(u_{1} \oplus u_{2}\right)\left(\theta_{1}, \theta_{2}\right)\right\}
\end{array}\right.
$$

We verify by induction on $i \geq 0$ that $R_{i}=N_{i}$. For $i=0$ we have $R_{0}=N_{0}$, therefore this property is true for $i=0$. Suppose the $R_{n}=N_{n}$ and we prove that $R_{n+1}=N_{n+1}$. If $\theta \in R_{n+1}$ then we consider the cases $\theta \in R_{n}$ and $\theta \in R_{n+1} \backslash R_{n}$. If we have the first case then $\theta \in N_{n} \subseteq N_{n+1}$. Suppose that we have the second case. There are $\left(\theta_{1}, \theta_{2}\right) \in\left(R_{n} \times R_{n}\right) \cap \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$ such that $\theta=\left(u_{1} \oplus u_{2}\right)\left(\theta_{1}, \theta_{2}\right)$. But $R_{n}=N_{n}$ and $\theta=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right)$, therefore (4) can be written as follows:

$$
\left\{\begin{array}{l}
R_{0}=N_{0} \\
R_{n+1}=N_{n} \cup\left\{\theta \mid \exists\left(\theta_{1}, \theta_{2}\right) \in\left(N_{n} \times N_{n}\right) \cap \operatorname{dom}\left(u_{1} \oplus u_{2}\right):\right. \\
\left.\quad \theta=\left(u_{1} \oplus u_{2}\right)\left(\theta_{1}, \theta_{2}\right)\right\}
\end{array}\right.
$$

therefore $R_{n+1}=N_{n+1}$.

In order to relieve these aspects we take the following example.

Figure 2: The labeled graph G_{1}
We consider the labeled graph $G_{1}=\left(S_{1}, L_{01}, T_{01}, f_{01}\right)$ represented in Figure 2 and defined as follows:

- $S_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} ;$
- $L_{01}=\{a, b, c, e\}$;
- $f_{01}(a)=\left\{\left(x_{1}, x_{2}\right),\left(x_{3}, x_{5}\right)\right\}=\rho_{1} ; f_{01}(b)=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\}=\rho_{2}$; $f_{01}(c)=\left\{\left(x_{3}, x_{4}\right)\right\}=\rho_{3} ; f_{01}(e)=\left\{\left(x_{4}, x_{5}\right)\right\}=\rho_{4} ;$
- $T_{01}=\left\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\}$

We consider the mapping $u_{1} \in R\left(\operatorname{prod}_{S_{1}}\right)$ defined as follows:

$$
\begin{aligned}
& u_{1}\left(\rho_{1}, \rho_{2}\right)=\rho_{5}=\left\{\left(x_{1}, x_{3}\right)\right\} ; u_{1}\left(\rho_{2}, \rho_{2}\right)=\rho_{5} ; u_{1}\left(\rho_{2}, \rho_{3}\right)=\rho_{6}=\left\{\left(x_{2}, x_{4}\right)\right\} ; \\
& u_{1}\left(\rho_{1}, \rho_{6}\right)=\rho_{7}=\left\{\left(x_{1}, x_{4}\right)\right\} ; u_{1}\left(\rho_{5}, \rho_{3}\right)=\rho_{7} ;
\end{aligned}
$$

This mapping is shortly described in Table 1. It follows that

$$
\operatorname{dom}\left(u_{1}\right)=\left\{\left(\rho_{1}, \rho_{2}\right),\left(\rho_{2}, \rho_{2}\right),\left(\rho_{2}, \rho_{3}\right),\left(\rho_{1}, \rho_{6}\right),\left(\rho_{5}, \rho_{3}\right)\right\}
$$

It is not difficult to observe that

$$
T_{1}=C l_{u_{1}}\left(T_{01}\right)=\left\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{7}\right\}
$$

Table 1: The mapping u_{1}

u_{1}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}
ρ_{1}		ρ_{5}				ρ_{7}	
ρ_{2}		ρ_{5}	ρ_{6}				
ρ_{3}							
ρ_{4}							
ρ_{5}			ρ_{7}				
ρ_{6}							
ρ_{7}							

Figure 3: The labeled graph G_{2}
Let us consider the labeled graph $G_{2}=\left(S_{2}, L_{02}, T_{02}, f_{02}\right)$ represented in Figure 3 and defined as follows:

- $S_{2}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} ;$
- $L_{02}=\{b, c, d\}$;
- $f_{02}(b)=\left\{\left(y_{1}, y_{2}\right)\right\}=\omega_{1} ; f_{02}(c)=\left\{\left(y_{2}, y_{3}\right)\right\}=\omega_{2} ; f_{02}(d)=\left\{\left(y_{3}, y_{4}\right)\right\}=$ ω_{3};
- $T_{02}=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$

We consider the mapping $u_{2} \in R\left(\operatorname{prod}_{S_{2}}\right)$ defined as follows:

$$
\begin{aligned}
& u_{2}\left(\omega_{1}, \omega_{2}\right)=\omega_{4}=\left\{\left(y_{1}, y_{3}\right)\right\} ; u_{2}\left(\omega_{2}, \omega_{3}\right)=\omega_{5}=\left\{\left(y_{2}, y_{4}\right)\right\} ; \\
& u_{2}\left(\omega_{1}, \omega_{5}\right)=\omega_{6}=\left\{\left(y_{1}, y_{4}\right)\right\} ; u_{2}\left(\omega_{4}, \omega_{3}\right)=\omega_{6} ;
\end{aligned}
$$

Table 2: The mapping u_{2}

u_{2}	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}
ω_{1}		ω_{4}			ω_{6}	
ω_{2}			ω_{5}			
ω_{3}						
ω_{4}			ω_{6}			
ω_{5}						
ω_{6}						

The mapping u_{2} is described in Table 2.
We deduce that

$$
\operatorname{dom}\left(u_{2}\right)=\left\{\left(\omega_{1}, \omega_{2}\right),\left(\omega_{2}, \omega_{3}\right),\left(\omega_{1}, \omega_{5}\right),\left(\omega_{4}, \omega_{3}\right)\right\}
$$

We consider now the set $N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right)$. We have $L_{01} \cup L_{02}=$ $\{a, b, c, d, e\}$ and taking into account the mappings f_{01} and f_{02} we obtain

$$
\begin{aligned}
& \left(f_{01} \sqcup f_{02}\right)(a)=f_{01}(a)=\rho_{1} ;\left(f_{01} \sqcup f_{02}\right)(b)=f_{01}(b) \cup f_{02}(b)=\rho_{2} \cup \omega_{1} ; \\
& \left(f_{01} \sqcup f_{02}\right)(c)=f_{01}(c) \cup f_{02}(c)=\rho_{3} \cup \omega_{2} ;\left(f_{01} \sqcup f_{02}\right)(d)=f_{02}(d)=\omega_{3} ; \\
& \left(f_{01} \sqcup f_{02}\right)(e)=f_{01}(e)=\rho_{4}
\end{aligned}
$$

It follows that

$$
N_{0}=\left\{\rho_{1}, \rho_{2} \cup \omega_{1}, \rho_{3} \cup \omega_{2}, \omega_{3}, \rho_{4}\right\} .
$$

Further, the computations can be described as follows:

$$
\begin{aligned}
& \left(N_{0} \times N_{0}\right) \cap \operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\left\{\left(\rho_{1}, \rho_{2} \cup \omega_{1}\right),\left(\rho_{2} \cup \omega_{1}, \rho_{2} \cup \omega_{1}\right),\left(\rho_{2} \cup \omega_{1}, \rho_{3} \cup \omega_{2}\right),\right. \\
& \left.\left(\rho_{3} \cup \omega_{2}, \omega_{3}\right)\right\} \\
& N_{1}=N_{0} \cup\left\{\rho_{5}, \rho_{6} \cup \omega_{4}, \omega_{5}\right\} \\
& N_{2}=N_{1} \cup\left\{\rho_{7}, \omega_{6}\right\} ; N_{3}=N_{2} \\
& M_{1}=\left\{\left(\rho_{1}, \rho_{2} \cup \omega_{1}\right),\left(\rho_{2} \cup \omega_{1}, \rho_{2} \cup \omega_{1}\right),\left(\rho_{2} \cup \omega_{1}, \rho_{3} \cup \omega_{2}\right),\left(\rho_{3} \cup \omega_{2}, \omega_{3}\right)\right\} \\
& M_{2}=\left\{\left(\rho_{1}, \rho_{6} \cup \omega_{4}\right),\left(\rho_{2} \cup \omega_{1}, \omega_{5}\right),\left(\rho_{5}, \rho_{3} \cup \omega_{2}\right),\left(\rho_{6} \cup \omega_{4}, \omega_{3}\right)\right\}
\end{aligned}
$$

$$
M_{3}=\emptyset
$$

It follows that

$$
C l_{u_{1} \oplus u_{2}}=\left\{\rho_{1}, \rho_{2} \cup \omega_{1}, \rho_{3} \cup \omega_{2}, \omega_{3}, \rho_{4}, \rho_{5}, \rho_{6} \cup \omega_{4}, \omega_{5}, \rho_{7}, \omega_{6}\right\}
$$

We obtain the mapping $u_{1} \oplus u_{2}$ from Table 3 .

Table 3: The mapping $u_{1} \oplus u_{2}$

$u_{1} \oplus u_{2}$	ρ_{1}	$\rho_{2} \cup \omega_{1}$	$\rho_{3} \cup \omega_{2}$	ω_{3}	ρ_{4}	ρ_{5}	$\rho_{6} \cup \omega_{4}$	ω_{5}	ρ_{7}	ω_{6}
ρ_{1}		ρ_{5}					ρ_{7}			
$\rho_{2} \cup \omega_{1}$		ρ_{5}	$\rho_{6} \cup \omega_{4}$					ω_{6}		
$\rho_{3} \cup \omega_{2}$				ω_{5}						
ω_{3}										
ρ_{4}										
ρ_{5}			ρ_{7}							
$\rho_{6} \cup \omega_{4}$				ω_{6}						
ω_{5}										
ρ_{7}										
ω_{6}										

The next proposition proves the associativity of the operation \oplus. First we need several auxiliary results. We mention that we use the following notations and results:

- $G_{i}=\left(S_{i}, L_{0 i}, T_{0 i}, f_{0 i}\right) \in \mathcal{L}_{l g}$ for $i=1,2,3$
- $\mathcal{G}_{i}=\left(G_{i}, L_{i}, T_{i}, u_{i}, f^{i}\right) \in \mathcal{L}_{\text {sg }}$ for $i=1,2,3$
- There is k_{0} such that $\operatorname{dom}\left(u_{1} \oplus u_{2}\right)=\bigcup_{p=1}^{k_{0}} M_{p}$, where

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{0}=\left(f_{01} \sqcup f_{02}\right)\left(L_{01} \cup L_{02}\right) \\
N_{k+1}=N_{k} \cup\left\{\mu \in T_{1}^{k+1} ש T_{2}^{k+1} \mid \exists \rho_{1}, \rho_{2} \in T_{1}^{k}, \exists \omega_{1}, \omega_{2} \in T_{2}^{k}:\right. \\
\left.\rho_{1} \cup \omega_{1} \in N_{k}, \rho_{2} \cup \omega_{2} \in N_{k} ; \mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right. \tag{5}\\
& \left\{\begin{array}{l}
M_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{0} \times N_{0} \mid \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{1}\right\} \\
M_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in N_{p-1} \times\left(N_{p} \backslash N_{p-1}\right) \cup\left(N_{p} \backslash N_{p-1}\right) \times N_{p} \mid\right. \\
\left.\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\omega_{1}, \omega_{2}\right) \in N_{p+1}\right\}
\end{array}\right.
\end{align*}
$$

where $T_{1}=C l_{u_{1}}\left(T_{01}\right)$ and $T_{2}=C l_{u_{2}}\left(T_{02}\right)$. We denote by $\left\{T_{1}^{k}\right\}_{k \geq 0}$ and $\left\{T_{2}^{k}\right\}_{k \geq 0}$ the sequences that give T_{1} and T_{2} respectively.

Denote $L_{12}=L_{01} \cup L_{02}$ and $g_{12}=f_{01} \sqcup f_{02}: L_{12} \longrightarrow T_{01} ש T_{02}$. From (5) we observe that

$$
C l_{u_{1} \oplus u_{2}}\left(N_{0}\right)=N_{k_{0}}
$$

- We consider the following sequences of sets:

$$
\left\{\begin{array}{l}
P_{0}=\left(g_{12} \sqcup f_{03}\right)\left(L_{12} \cup L_{03}\right) \tag{6}\\
P_{k+1}=P_{k} \cup\left\{\mu \in N_{k+1} \uplus T_{3}^{k+1} \mid \exists \rho_{1}, \rho_{2} \in N_{k}, \exists \omega_{1}, \omega_{2} \in T_{3}^{k}:\right. \\
\left.\rho_{1} \cup \omega_{1} \in P_{k}, \rho_{2} \cup \omega_{2} \in P_{k} ; \mu=\overline{u_{1} \oplus u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right.
$$

where $T_{3}=C l_{u_{3}}\left(T_{03}\right)$. We denote by $\left\{T_{3}^{k}\right\}_{k \geq 0}$ the sequence of sets that are used to obtain T_{3}.

$$
\left\{\begin{array}{l}
R_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in P_{0} \times P_{0} \mid \overline{u_{1} \oplus u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \in P_{1}\right\} \\
R_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in P_{p-1} \times\left(P_{p} \backslash P_{p-1}\right) \cup\left(P_{p} \backslash P_{p-1}\right) \times P_{p} \mid\right. \\
\left.\overline{u_{1} \oplus u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \in P_{p+1}\right\}
\end{array}\right.
$$

There is m_{0} such that $P_{m_{0}}=P_{m_{0}+1}$ and $\operatorname{dom}\left(\left(u_{1} \oplus u_{2}\right) \oplus u_{3}\right)=\bigcup_{k=1}^{m_{0}} R_{k}$.
We remark that

$$
P_{m_{0}}=C l_{\left(u_{1} \oplus u_{2}\right) \oplus u_{3}}\left(P_{0}\right)
$$

- There is s_{0} such that $S_{s_{0}}=S_{s_{0}+1}$ and $\operatorname{dom}\left(u_{2} \oplus u_{3}\right)=\bigcup_{p=1}^{s_{0}} Q_{p}$, where

$$
\begin{align*}
& \left\{\begin{array}{l}
S_{0}=\left(f_{02} \sqcup f_{03}\right)\left(L_{02} \cup L_{03}\right) \\
S_{k+1}=S_{k} \cup\left\{\mu \in T_{2}^{k+1} \uplus T_{3}^{k+1} \mid \exists \rho_{1}, \rho_{2} \in T_{2}^{k}, \exists \omega_{1}, \omega_{2} \in T_{3}^{k}:\right. \\
\left.\rho_{1} \cup \omega_{1} \in S_{k}, \rho_{2} \cup \omega_{2} \in S_{k} ; \mu=\overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right. \tag{7}\\
& \left\{\begin{array}{l}
Q_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in S_{0} \times S_{0} \mid \overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \in S_{1}\right\} \\
Q_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in S_{p-1} \times\left(S_{p} \backslash S_{p-1}\right) \cup\left(S_{p} \backslash S_{p-1}\right) \times S_{p} \mid\right. \\
\left.\overline{u_{2}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \in S_{p+1}\right\}
\end{array}\right.
\end{align*}
$$

Denote $L_{23}=L_{02} \cup L_{03}$ and $g_{23}=f_{02} \sqcup f_{03}: L_{23} \longrightarrow T_{02} ש T_{03}$. From (7) we observe that

$$
C l_{u_{2} \oplus u_{3}}\left(S_{0}\right)=S_{s_{0}}
$$

- We consider the following sequences of sets

$$
\begin{gather*}
\left\{\begin{array}{l}
U_{0}=\left(f_{01} \sqcup g_{23}\right)\left(L_{01} \cup L_{23}\right) \\
U_{k+1}=U_{k} \cup\left\{\mu \in T_{1}^{k+1} 巴 S_{k+1} \mid \exists \rho_{1}, \rho_{2} \in T_{1}^{k}, \exists \omega_{1}, \omega_{2} \in S_{k}:\right. \\
\left.\rho_{1} \cup \omega_{1} \in U_{k}, \rho_{2} \cup \omega_{2} \in U_{k} ; \mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\omega_{1}, \omega_{2}\right) \neq \emptyset\right\}
\end{array}\right. \\
\left\{\begin{array}{l}
V_{1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in U_{0} \times U_{0} \mid \overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\omega_{1}, \omega_{2}\right) \in U_{1}\right\} \\
V_{p+1}=\left\{\left(\rho_{1} \cup \omega_{1}, \rho_{2} \cup \omega_{2}\right) \in U_{p-1} \times\left(U_{p} \backslash U_{p-1}\right) \cup\left(U_{p} \backslash U_{p-1}\right) \times U_{p} \mid\right. \\
\left.\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\omega_{1}, \omega_{2}\right) \in U_{p+1}\right\}
\end{array}\right. \tag{8}
\end{gather*}
$$

There is j_{0} such that $U_{j_{0}}=U_{j_{0}+1}$ and $\operatorname{dom}\left(u_{1} \oplus\left(u_{2} \oplus u_{3}\right)\right)=\bigcup_{k=1}^{j_{0}} V_{k}$.
We observe that

$$
U_{j_{0}}=C l_{u_{1} \oplus\left(u_{2} \oplus u_{3}\right)}\left(U_{0}\right)
$$

Lemma 2.14. For every $\lambda_{1} \cup \gamma_{1} \in N_{k_{0}}$ and $\lambda_{2} \cup \gamma_{2} \in N_{k_{0}}$ we have

$$
\begin{equation*}
\overline{u_{1} \oplus u_{2}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \tag{9}
\end{equation*}
$$

Proof. We have

$$
\overline{u_{1} \oplus u_{2}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\left\{\begin{array}{c}
u_{1} \oplus u_{2}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \quad \text { if } \tag{10}\\
\quad\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right) \\
\emptyset \quad \text { otherwise }
\end{array}\right.
$$

We remark that if $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \notin \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$ then $\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup$ $\overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right)=\emptyset$. Suppose the contrary, $\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \neq \emptyset$. But $\lambda_{1} \cup \gamma_{1} \in$ $N_{k_{0}}, \lambda_{2} \cup \gamma_{2} \in N_{k_{0}}$ and $N_{0} \subseteq N_{1} \subseteq N_{k_{0}}=N_{k_{0}+1}$. There is $k \leq k_{0}$ such that $\lambda_{1} \cup \gamma_{1} \in N_{k}$ and $\lambda_{2} \cup \gamma_{2} \in N_{k}$. If this is the case then $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in$ $M_{k} \subseteq \operatorname{dom}\left(u_{1} \oplus u_{2}\right)$, which is not true. Now, from (10) we obtain

$$
\overline{u_{1} \oplus u_{2}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\left\{\begin{array}{c}
u_{1} \oplus u_{2}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \quad \text { if } \tag{11}\\
\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in \operatorname{dom}\left(u_{1} \oplus u_{2}\right) \\
\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \quad \text { if } \\
\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \notin \operatorname{dom}\left(u_{1} \oplus u_{2}\right)
\end{array}\right.
$$

But $u_{1} \oplus u_{2}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right)$ if $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in$ $\operatorname{dom}\left(u_{1} \oplus u_{2}\right)$ and thus from (11) we obtain (9).

Lemma 2.15. For every $\lambda_{1} \cup \gamma_{1} \in S_{s_{0}}, \lambda_{2} \cup \gamma_{2} \in S_{s_{0}}$ we have

$$
\begin{equation*}
\overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right) \tag{12}
\end{equation*}
$$

Proof. Directly from the definition of $\overline{u_{2} \oplus u_{3}}$ we obtain

$$
\overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\left\{\begin{array}{c}
u_{2} \oplus u_{3}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \quad \text { if } \tag{13}\\
\quad\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in \operatorname{dom}\left(u_{2} \oplus u_{3}\right) \\
\emptyset \quad \text { otherwise }
\end{array}\right.
$$

We remark that if $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \notin \operatorname{dom}\left(u_{2} \oplus u_{3}\right)$ then $\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup$ $\overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right)=\emptyset$. Really, let us suppose the contrary, that $\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right) \neq$ \emptyset. But $S_{0} \subset S_{1} \subset S_{s_{0}}=S_{s_{0}+1}$ and $\lambda_{1} \cup \gamma_{1} \in S_{s_{0}}, \lambda_{2} \cup \gamma_{2} \in S_{s_{0}}$. There is $s \leq s_{0}$ such that $\lambda_{1} \cup \gamma_{1} \in S_{s}$ and $\lambda_{2} \cup \gamma_{2} \in S_{s}$. It follows that $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in$ $Q_{s} \subseteq \operatorname{dom}\left(u_{2} \oplus u_{3}\right)$, which is not true. Now, from (13) we obtain

$$
\overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\left\{\begin{array}{c}
u_{2} \oplus u_{3}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \quad \text { if } \tag{14}\\
\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in \operatorname{dom}\left(u_{2} \oplus u_{3}\right) \\
\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right) \quad \text { if } \\
\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \notin \operatorname{dom}\left(u_{2} \oplus u_{3}\right)
\end{array}\right.
$$

But $u_{2} \oplus u_{3}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right)$ if $\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \in$ $\operatorname{dom}\left(u_{2} \oplus u_{3}\right)$ and thus from (14) we obtain (12).

Proposition 2.16.

$$
\left(u_{1} \oplus u_{2}\right) \oplus u_{3}=u_{1} \oplus\left(u_{2} \oplus u_{3}\right)
$$

Proof. We prove that for every $k \geq 0$ we have

$$
\begin{equation*}
P_{k}=U_{k} \tag{15}
\end{equation*}
$$

For $k=0$ the relation (15) is true by [12]. Suppose that (15) is true. We verify that

$$
\begin{equation*}
P_{k+1} \subseteq U_{k+1} \tag{16}
\end{equation*}
$$

Consider $\mu \in P_{k+1}$. We have the following two cases:

1) If $\mu \in P_{k}$ then $\mu \in U_{k}$, therefore in this case $\mu \in U_{k+1}$ and (16) is true.
2) Suppose that $\mu \in P_{k+1} \backslash P_{k}$. There are $\theta_{1} \cup \omega_{1} \in P_{k}$ and $\theta_{2} \cup \omega_{2} \in P_{k}$ such that

$$
\begin{equation*}
\mu=\overline{u_{1} \oplus u_{2}}\left(\theta_{1}, \theta_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right) \tag{17}
\end{equation*}
$$

From (6) we have $\theta_{1}, \theta_{2} \in N_{k}$ and $\omega_{1}, \omega_{2} \in T_{3}^{k}$. But $N_{k} \subseteq T_{1}^{k} ש T_{2}^{k}$, therefore there are $\lambda_{1}, \lambda_{2} \in T_{1}^{k} \cup\{\emptyset\}, \gamma_{1}, \gamma_{2} \in T_{2}^{k} \cup\{\emptyset\}$ such that

$$
\theta_{1}=\lambda_{1} \cup \gamma_{1}, \theta_{2}=\lambda_{2} \cup \gamma_{2}
$$

As a consequence we have $\theta_{1} \cup \omega_{1}=\lambda_{1} \cup \gamma_{1} \cup \omega_{1}$. But $\theta_{1} \cup \omega_{1} \in P_{k}$ and $P_{k} \subseteq N_{k} \cup T_{3}^{k}$. It follows that $\lambda_{1} \cup \gamma_{1} \cup \omega_{1} \in P_{k}$. But $\omega_{1} \in T_{3}^{k}$ and thus we obtain $\lambda_{1} \cup \gamma_{1} \in N_{k}$. Similarly we have $\lambda_{2} \cup \gamma_{2} \in N_{k}$. Applying Lemma 2.14 we obtain

$$
\begin{equation*}
\overline{u_{1} \oplus u_{2}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \tag{18}
\end{equation*}
$$

From (17) and (18) we obtain

$$
\mu=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right)
$$

We come back to (17). We have $\theta_{1}=\lambda_{1} \cup \gamma_{1}, \theta_{1} \cup \omega_{1} \in P_{k}, \lambda_{1} \cup \gamma_{1} \cup \omega_{1} \in P_{k}=$ $U_{k} \subseteq T_{1}^{k} ש S_{k}$ and $\lambda_{1} \in T_{1}^{k}$. It follows that $\gamma_{1} \cup \omega_{1} \in S_{k}$. Similarly we have $\gamma_{2} \cup \omega_{2} \in S_{k}$.
We can apply Lemma 2.15 and obtain

$$
\overline{u_{2} \oplus u_{3}}\left(\gamma_{1} \cup \omega_{1}, \gamma_{2} \cup \omega_{2}\right)=\overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right)
$$

It follows that

$$
\begin{gathered}
\mu=\overline{u_{1} \oplus u_{2}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right)=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{2}}\left(\gamma_{1}, \gamma_{2}\right) \cup \overline{u_{3}}\left(\omega_{1}, \omega_{2}\right)= \\
=\overline{u_{1}}\left(\lambda_{1}, \lambda_{2}\right) \cup\left(\overline{u_{2} \oplus u_{3}}\right)\left(\gamma_{1} \cup \omega_{1}, \gamma_{2} \cup \omega_{2}\right)
\end{gathered}
$$

Thus $\mu \in U_{k+1} \backslash U_{k}$, therefore in this case (16) is true.
The converse inclusion

$$
\begin{equation*}
U_{k+1} \subseteq P_{k+1} \tag{19}
\end{equation*}
$$

is proved in a similar manner. Consider $\mu \in U_{k+1}$. We have the following two cases:

1) If $\mu \in U_{k}$ then $\mu \in P_{k}$, therefore in this case $\mu \in P_{k+1}$ and (19) is true.
2) Suppose that $\mu \in U_{k+1} \backslash U_{k}$. There are $\rho_{1} \cup \omega_{1} \in U_{k}$ and $\rho_{2} \cup \omega_{2} \in U_{k}$ such that

$$
\begin{equation*}
\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\omega_{1}, \omega_{2}\right) \tag{20}
\end{equation*}
$$

From (8) we have $\rho_{1}, \rho_{2} \in T_{1}^{k}$ and $\omega_{1}, \omega_{2} \in S_{k}$. But $S_{k} \subseteq T_{2}^{k} ש T_{3}^{k}$, therefore there are $\lambda_{1}, \lambda_{2} \in T_{2}^{k} \cup\{\emptyset\}, \gamma_{1}, \gamma_{2} \in T_{3}^{k} \cup\{\emptyset\}$ such that

$$
\omega_{1}=\lambda_{1} \cup \gamma_{1}, \omega_{2}=\lambda_{2} \cup \gamma_{2}
$$

We have $\rho_{1} \cup \omega_{1}=\rho_{1} \cup \lambda_{1} \cup \gamma_{1} \in U_{k}$ and $U_{k}=P_{k}$, therefore $\rho_{1} \cup \lambda_{1} \cup \gamma_{1} \in P_{k}$. But $\gamma_{1} \in T_{3}^{k}, P_{k} \subseteq N_{k} \oplus T_{3}^{k}$, and $T_{i}^{k} \cap T_{j}^{k}=\emptyset$ for $i \neq j$. It follows that $\rho_{1} \cup \lambda_{1} \in N_{k}$. From (20) we have

$$
\begin{equation*}
\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right) \tag{21}
\end{equation*}
$$

But $\lambda_{1} \cup \gamma_{1} \in S_{k}$ because $\omega_{1} \in S_{k}$ and $\omega_{1}=\lambda_{1} \cup \gamma_{1}$. Similarly we have $\lambda_{2} \cup \gamma_{2} \in S_{k}$. We can apply Lemma 2.15 and obtain

$$
\begin{equation*}
\overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right) \tag{22}
\end{equation*}
$$

We have $\omega_{1}=\lambda_{1} \cup \gamma_{1}, \rho_{1} \cup \omega_{1}=\rho_{1} \cup \lambda_{1} \cup \gamma_{1} \in U_{k}=P_{k} \subseteq N_{k} ש T_{3}^{k}$ and $\gamma_{1} \in T_{3}^{k}$. It follows that $\rho_{1} \cup \lambda_{1} \in N_{k}$. Similarly we have $\rho_{2} \cup \lambda_{2} \in N_{k}$. We can apply Lemma 2.14 and obtain

$$
\begin{equation*}
\overline{u_{1} \oplus u_{2}}\left(\rho_{1} \cup \lambda_{1}, \rho_{2} \cup \lambda_{2}\right)=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \tag{23}
\end{equation*}
$$

From (21), (22) and (23) we obtain

$$
\begin{gathered}
\mu=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2} \oplus u_{3}}\left(\lambda_{1} \cup \gamma_{1}, \lambda_{2} \cup \gamma_{2}\right)=\overline{u_{1}}\left(\rho_{1}, \rho_{2}\right) \cup \overline{u_{2}}\left(\lambda_{1}, \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{2}, \gamma_{2}\right)= \\
=\overline{u_{1} \oplus u_{2}}\left(\rho_{1} \cup \lambda_{1}, \rho_{2} \cup \lambda_{2}\right) \cup \overline{u_{3}}\left(\gamma_{1}, \gamma_{2}\right)
\end{gathered}
$$

Thus $\mu \in P_{k+1} \backslash P_{k}$, therefore in this case (19) is true and finally (15) is true.
It follows that $V_{k}=R_{k}$ for every $k \geq 0$. But

$$
\begin{aligned}
& \operatorname{dom}\left(u_{1} \oplus\left(u_{2} \oplus u_{3}\right)\right)=\bigcup_{k \geq 1} V_{k} \\
& \operatorname{dom}\left(\left(u_{1} \oplus u_{2}\right) \oplus u_{3}\right)=\bigcup_{k \geq 1} R_{k}
\end{aligned}
$$

therefore $\operatorname{dom}\left(u_{1} \oplus\left(u_{2} \oplus u_{3}\right)\right)=\operatorname{dom}\left(\left(u_{1} \oplus u_{2}\right) \oplus u_{3}\right)$ and the proposition is proved.

3 Conclusion

In this paper we used the concept of stratified graph, introduced for the first time in $[7]$. We know by ([9]) that a mapping u can uniquely define a
stratified graph \mathcal{G} over a labeled graph G. We used two mappings u_{1} and u_{2} that define two stratified graphs \mathcal{G}_{1} and \mathcal{G}_{2}, respectively and we defined the mapping $u_{1} \oplus u_{2}$. This mapping will be used in further research to generate the least upper bound of stratified graphs \mathcal{G}_{1} and \mathcal{G}_{2} over the labeled graph $\sup \left\{G_{1}, G_{2}\right\}$ ([12]). We proved a few properties of the operation \oplus, including the associativity.

Acknowledgements. This work was partially supported by the strategic grant POSDRU/ 88/1.5/S/52826, Project ID52826 (2009), co-financed by the European Social Fund - Investing in People, within the Sectoral Operational Programme Human Resources Development 2007-2013.

References

[1] V. Boicescu, A. Filipoiu, G. Georgescu and R. Rudeanu, LukasiewiczMoisil Algebra, Annals of Discrete Mathematics, 49, North-Holland, (1991).
[2] V.E. Căzănescu, Course of Computer Science Fundamentals, Bucharest University, Lesson I, University Publishing Center (in Romanian), 1975.
[3] Paul Moritz Cohn, Universal algebra, Springer, 1981.
[4] George Grätzer, Universal algebra, Springer, 2008.
[5] Tudor (Preda) Irina-Valentina, Labelled Stratified Graphs can Generate Formal Languages, European Conference for the Applied Mathematics and Informatics, Athens, Greece, 29-31 December, 2010, ISBN 978-960-474-260-8, (2010), 184-189.
[6] Tudor (Preda) Irina-Valentina, Considerations Regarding Formal Languages Generation Using Labelled Stratified Graphs, International Journal of Applied Mathematics and Informatics, University Press, 5(2), (2011), 101-108.
[7] N. Ţăndăreanu, Knowledge Bases with Output, Knowledge and Information Systems, 2(4), (2000), 438-460.
[8] N. Ţăndăreanu, Proving the Existence of Labelled Stratified Graphs, Annals of the University of Craiova, XXVII, (2000), 81-92.
[9] N. Ţăndăreanu, Distinguished Representatives for Equivalent Labelled Stratified Graphs and Applications, Discrete Applied Mathematics, 144(1), (2004), 183-208.
[10] N. Ţăndăreanu, Knowledge Representation by Labeled Stratified Graphs, The 8th World Multi-Conference on Systemics, Cybernetics and Informatics, July 18-21, 2004, Orlando, Florida, USA, Computer Science and Engineering, V(2), (2004), 345-350.
[11] N. Tुăndăreanu, M. Ghindeanu, Hierarchical Reasoning Based on Stratified Graphs. Application in Image Synthesis, 15th International Workshop on Database and Expert Systems Applications, Proceedings of DEXA2004, Zaragoza, Spania, IEEE Computer Society, Los Alamitos California, 3, (2004), 498-502.
[12] Nicolae Ţăndăreanu, Irina-Valentina Tudor (Preda), The Join Semilattice of Labeled Graphs, (to appear), 1, (2012).
[13] Nicolae Ţăndăreanu, Irina-Valentina Tudor (Preda), Join Semilattices of Labeled Graphs and Algebraic Properties of the Embedding Mappings, International Conference on Mathematical Sciences and Computer Engineering, Kuala Lumpur, Malaysia, 29-30 November, 2, (2012).

[^0]: ${ }^{1}$ University of Craiova, Romania, e-mail: ntand@rdslink.ro
 ${ }^{2}$ University of Piteşti, Romania, e-mail: irisxiphium@yahoo.com

