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                                                   Abstract  

In this current research paper we highlight the usage of Higher Order Logic 

(HOL) to compute the sequences of Nucleic acids, DNA and RNA and illustrate 

the usefulness of higher order logic in computing the sequences for bio-sensor, 

probes, tags and gene-chip applications. What ever the application in 

question,sequences always form the heart and soul of bio-information processing 

in such demanding and promising tools. Higher order Logic provides a 

comfortable way of solving or computing the sequencing problems and related 

issues in the advancement of bio-informatics,hence we have focused in this 

interdisciplinary paper on HOL and its applications, in the design of such bio-
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devices. Further more we are of the opinion that HOL is fast becoming the de-

facto verification and computational software tool, in verifying the electronic 

hardware in demanding applications, the same methodology could be extended to 

bio-inspired systems, bio-systems, theoretical biology etc. to explore the 

untouched relevant areas of computational design paradigms. This is one of the 

pioneering research efforts in this highly promising domain, to adopt and adapt 

HOL as the design tool to model and develop sequencing, in Bio-Computing or 

Bio-Sensing platforms. 
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1  Introduction  

Introduction and Motivation on Bio-Computing using Formalisms & HOL 

We are constantly searching for biological models, that are hardly sufficient 

by querying raw model code of a certain interchange format. Further exploration 

deserves merit, it is worthwhile to include additional information about a bio-

model: 

(1) What is known about a bio-system/model's constituents? 

(2) What kind of relations exist between its bio-system constituents? 

(3) How does a model behave under certain conditions like sequencing or sensing? 

Most of these research questions can be answered by formalisms and applied 

mathematics. Thus, a thorough annotation of bio-model enhances the semantic 

description of the modeled system by far and could contribute to sophisticated bio-

applications techniques. Efforts for enhanced model annotation, such as the "HOL 

based models are already applied to some modeling formalisms, e.g. the "Systems 
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Biology Markup Language" (SBML).The main question for this research work is, 

how the information available about a bio-model can be gathered, processed and 

analyzed, and stored in a manner to efficiently retrieve bio-models for design, 

implement, verify or compute a specified bio-action such as sensing or 

sequencing. Hence we state here that we have adopted an interdisciplinary 

approach in computing, the sequences of DNA/RNA sequences by using 

Mathematics, Computer Science and Biology. This we believe will be the future 

of DNA based Sensors and Gene-Chips in the near future, [1-8]. 

 

 

2  Basics on HOL/Nucleic Acids/Sequences 

2.1 HOL 

“We develop the idea of higher-order logic programming by utilizing a 

higher order logic as the basis for computing. There are, of course, many choices 

for the higher-order logic that might be used in such a study. If the desire is only 

to emulate the higher-order features found in functional programming languages, 

it is possible to adopt a “minimalist” approach, i.e.,to consider extending the logic 

of first-order Horn clauses — the logical basis of Prolog — in as small a way as 

possible to realize the additional functionality. The approach that we adopt here, 

however, is to enunciate a notion of higher-order logic programming by describing 

an analogue of Horn clauses within a rich higher-order logic, namely, Church’s 

Simple Theory of Types”, [1-5, 15]. 

“Philosophers of mathematics usually divide logic into first-order logic and 

second-order logic. The latter is a formal basis for all of mathematics and, as a 

consequence of G¨odel’s first incompleteness theorem, cannot be recursively 

axiomatized. Thus, higher-order logic in this sense is basically a model theoretic 

study.”, [1-11, 14, 15]. 

“To a proof theorist, all logics correspond to formal systems that are 
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recursively presented and a higher-order logic is no different. The main distinction 

between a higher-order and a first order logic is the presence in the former of 

predicate variables and comprehension, i.e., the ability to form abstractions over 

formula expressions. Cut-elimination proofs for higher-order logics differ 

qualitatively from those for first-order logic in that they need techniques such as 

Girard’s “candidats de reductibilite,” whereas proofs in first-order logics can 

generally be done by induction. Semantic arguments can be employed in this 

setting, but general models (including non-standard models) in the sense of 

implementation must be considered. To many working in automated deduction, 

higher-order logic refers to any computational logic that contains typed, terms 

and/or variables of some higher-order type, although not necessarily of predicate 

type. Occasionally, such a logic may incorporate the rules of conversion, and then 

unification of expressions would have to be carried out relative to these rules.”, 

[15]. 

Information on HOL Software Used  

“Isabelle is a generic proof assistant. It allows mathematical formulas to be 

expressed in a formal language and provides tools for proving those formulas in a 

logical calculus. Isabelle is developed at University of Cambridge (Larry Paulson), 

Technische Universität München (Tobias Nipkow) and Université Paris-Sud 

(Makarius Wenzel). See the Isabelle overview for a brief introduction”, [1]. 

 

 

2.2 Nucleic Acids DNA/RNA/Protein data sequencing in DNA 

There are actually 2 main types of nucleic substances within cell nuclei that 

process information. DNA is the basic form within chromosomes, that is hard-

coded into every cell. RNA is a more temporary form that is used to process 

subsequences of DNA messages. RNA is an intermediate form used to execute the 

portions of DNA that a cell is using. For example, in the synthesis of proteins, 
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DNA is copied to RNA, which is then used to create proteins :  

                                  DNA->RNA->Proteins. [1-13, 16] 

DNA code is a sequence of chemicals that form information that control how 

humans are made and how they work. It is a digital code but it is not binary, but 

quaternary with 4 distinct items. The encoding information in an ordered sequence 

of 4 different symbols called "bases", typically denoted A, C, G, and T.  

Step 1:  A: adenosine  

Step 2:  C: cytosine  

Step 3:  G: guanine  

Step 4:  T: thymine  

'These 4 substances are the fundamental "bits" of information in the genetic 

code, and are called "base pairs" because there is actually 2 substances per "bit", 

as discussed later. Everything else is built on top of this basis of 4 DNA digits.The 

entirety of human DNA code, called the "human genome", is about 3 million 

bases in total. Every human being has 2 copies of this code, one copy from each 

parent, so a human's cell DNA contains a total of around 6 billion bases. In 

computer terms, this is around 6 Gigabytes of symbols, or more like 1 Gigabyte if 

compacted, since it's about 2 binary bits of information per A/C/G/T base pair. 

DNA molecules are linear in a twisted double-helix, with a start and an end, and 

do not contain any cycles”, [12-15, 16]. 

The structure of DNA and RNA are very similar. They are both ordered 

sequences of 4 types of substances: ACGT for DNA, and ACGU for RNA. Thus 

RNA uses the same three ACG substances, but uses U (uracil) instead of T 

(thymine). The molecules uracil and thymine are only slightly different 

chemically. In DNA, there is pairing between AT and CG, and in RNA, the 

pairings are AU and CG, but since RNA is not double-stranded, this pairing is 

much rarer. Hence, RNA has the 4 substances :  

Step 1: A: adenosine  

Step 2: C: cytosine  
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Step 3: G: guanine  

Step 4: U: uracil  

“Typically, DNA is created from RNA, and this is done by faithfully copying 

the sequence of base pairs, with the only change converting T to U. Hence, an 

RNA copy of a DNA sequence encodes the identical information, though it uses a 

slightly different set of 4 substances. The differences between DNA and RNA are 

also many. The underlying sugar molecule that traps the 4 bases is different: 

deoxyribose in DNA, ribose in RNA. DNA is two strands wrapped in a double-

helix, but RNA is a single strand”, [1-12, 16]. 

 

 

2.3 Genes: Protein Data Sequences in the DNA Code 

Some parts of DNA sequences are known to be purely data. These are the 

"genes". The best understood aspect of DNA coding is the encoding of amino acid 

information in genes that is used by the body to synthesize proteins. These are 

data blocks that represent protein structures.  

“All proteins are substances made up of only 20 basic building blocks called 

amino acids. Proteins are ordered sequences of these 20 amino acids. Another 

terminology is that an amino acid is a "peptide" and a protein is a sequence of 

many peptides called a "polypeptide", [8-16]. 

So how does DNA encode the structure of a protein? It uses triplets of base 

pairs. There are 4x4x4=64 possible combinations in a base pair triplet, and only 20 

amino acids. Some extra codes are used as start and stop signal markers at each 

end of the data sequence. Other triplets are mapped so that more than one triplet 

can represent a particular amino acid”, [8-16]. However, the representation is 

unique across all DNA mapping base pair triplets to the 20 amino acids:  

4.1.1. Phenylalanine (Phe): UUU, UUC  

4.2.2. Leucine (Leu): UUA, UUG  

4.3.3. Isoleucine (Ile): AUU, AUC, AUA  
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4.4.4. Methionine (Met): AUG  

4.5.5. Valine (Val): GUU, GUC, GUA, GUG  

4.6.6. Serine (Ser): UCU, UCC, UCA, UCG, AGU, ACG  

4.7.7. Proline (Pro): CCU, CCC, CCA, CCG  

4.8.8. Threonine (Thr): ACU, ACC, ACA, ACG  

4.9.9. Alanine (Ala): GCU, GCC, GCA, GCG  

4.10. 10. Tyrosine (Tyr): UAU, UAC  

4.11. 11. Histidine (His): CAU, CAC  

4.12. 12. Glutamine (Gln): CAA, CAG  

4.13. 13. Asparagine (Asn): AAU, AAC  

4.14. 14. Lysine (Lys): AAA, AAG  

4.15. 15. Aspartic acid (Asp): GAU, GAC  

4.16. 16. Glutamic acid (Glu): GAA, GAG  

4.17. 17. Cysteine (Cys): UGU, UGC  

4.18. 18. Tryptophan (Trp): UGG  

4.19. 19. Arginine (Arg): CGU, CGC, CGA, CGG, AGA, AGG  

4.20. 20. Glycine (Gly): GGU, GGC, GGA, GGG  

In addition, the following triplet codes are considered special:  

[i]  STOP: UAA, UAG, UGA  

[ii] START: AUG (same code as the Methionine amino acid)  

 

 

2.4 Sequential Calculi 

DNA sequencing using HOL is based,on the following definition of 

sequential calculus.“A sequential calculus gives a logic of sequences (of a well-

known formula). The formulae in the sequence are separated by the symbol "||-" 

which means that the formulae on the right of it, taken conjunctively make true the 

formulas to the left of it, taken disjunctively. Formulae on the right and left of "||-" 

are separated by commas”, [1-4, 17]. 
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3 Application of HOL to DNA/RNA Sequencing with basic 

code 

(*  Title:      Sequencing/dnasequence.thy 
    Author:     Nirmal;Jiangnan University,Wuxi,214122,China/Ben-Gurion University of 
the Negev,BeerSheva,84105,Israel 
    This HOL Code is easily adaptable to RNA sequencing or other bio-applications where 
sequencing is used. 
    e.g- RNA Data Sequences in DNA/Genes: Protein Data Sequences in the DNA Code.*) 
 
header {* Parsing and Printing of dna-sequences/A Novel Approach in Bio-informatics*} 
 
theory dnasequences 
 
imports Pure 
 
uses ("prover.ML") 
 
begin 
 
setup Pure_Thy.old_appl_syntax_setup 
 
declare [[unify_trace_bound = 20, unify_search_bound = 40]] 
 
typedecl o 
 
(* dna -sequences *) 
 
typedecl 
 
 dnaseq' 
 
consts 
 
 dnaSeqO'         :: "[o,dnaseq']=>dnaseq'" 
 
 dnaSeq1'         :: "o=>dnaseq'" 
 
(* concrete syntax *) 
 
nonterminal dnaseq and dnaseqobj and dnaseqcont 
syntax 
 
 "_SeqEmp"         :: dnaseq                                  ("") 
 
 "_SeqApp"         :: "[dnaseqobj,dnaseqcont] => dnaseq"            ("__") 
 
 "_SeqContEmp"     :: dnaseqcont                              ("") 
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 "_SeqContApp"     :: "[dnaseqobj,dnaseqcont] => dnaseqcont"        (",/ __") 
 
 "_SeqO"           :: "o => dnaseqobj"                        ("_") 
 
 "_SeqId"          :: "'a => dnaseqobj"                       ("$_") 
 
type_synonym single_seqe = "[dnaseq,dnaseqobj] => prop" 
 
type_synonym single_seqi = "[dnaseq'=>dnaseq',seq'=>seq'] => prop" 
 
type_synonym two_seqi    = "[dnaseq'=>dnaseq', seq'=>seq'] => prop" 
 
type_synonym two_seqe    = "[dnaseq,dnaseq] => prop" 
 
type_synonym three_seqi  = "[dnaseq'=>dnaseq', dnaseq'=>dnaseq', dnaseq'=>dnaseq'] => 
prop" 
 
type_synonym three_seqe  = "[dnaseq, dnaseq, dnaseq] => prop" 
 
type_synonym four_seqi   = "[dnaseq'=>dnaseq', dnaseq'=>dnaseq', dnaseq'=>dnaseq', 
dnaseq'=>dnaseq'] => prop" 
 
type_synonym four_seqe   = "[dnaseq, dnaseq, dnaseq, dnaseq] => prop" 
 
type_synonym sequence_name = "dnaseq'=>dnaseq'" 
 
syntax 
 
  (*Constant to allow definitions of SEQUENCES of formulas*) 
 
  "_Side"        :: "dnaseq=>(dnaseq'=>dnaseq')" ("<<(_)>>") 
 
ML {* 
 
(* parse translation for sequences *) 
 
fun abs_seq' t = Abs ("s", Type (@{type_name dnaseq'}, []), t); 
 
fun seqobj_tr (Const (@{syntax_const "_SeqO"}, _) $ f) = 
 
      Const (@{const_syntax SeqO'}, dummyT) $ f 
 
  | seqobj_tr (_ $ i) = i; 
 
fun seqcont_tr (Const (@{syntax_const "_SeqContEmp"}, _)) = Bound 0 
 
  | seqcont_tr (Const (@{syntax_const "_SeqContApp"}, _) $ so $ sc) = 
 
      seqobj_tr so $ seqcont_tr sc; 
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fun seq_tr (Const (@{syntax_const "_SeqEmp"}, _)) = abs_seq' (Bound 0) 
 
  | seq_tr (Const (@{syntax_const "_SeqApp"}, _) $ so $ sc) = 
 
      abs_seq'(seqobj_tr so $ seqcont_tr sc); 
 
fun singlobj_tr (Const (@{syntax_const "_SeqO"},_) $ f) = 
 
  abs_seq' ((Const (@{const_syntax SeqO'}, dummyT) $ f) $ Bound 0); 
(* print translation for dna-sequences *) 
 
fun seqcont_tr' (Bound 0) = 
 
      Const (@{syntax_const "_SeqContEmp"}, dummyT) 
 
  | seqcont_tr' (Const (@{const_syntax SeqO'}, _) $ f $ s) = 
 
      Const (@{syntax_const "_SeqContApp"}, dummyT) $ 
 
        (Const (@{syntax_const "_SeqO"}, dummyT) $ f) $ seqcont_tr' s 
 
  | seqcont_tr' (i $ s) = 
 
      Const (@{syntax_const "_SeqContApp"}, dummyT) $ 
 
        (Const (@{syntax_const "_SeqId"}, dummyT) $ i) $ seqcont_tr' s; 
 
fun seq_tr' s = 
 
  let 
 
    fun seq_itr' (Bound 0) = Const (@{syntax_const "_SeqEmp"}, dummyT) 
 
      | seq_itr' (Const (@{const_syntax SeqO'}, _) $ f $ s) = 
 
          Const (@{syntax_const "_SeqApp"}, dummyT) $ 
 
            (Const (@{syntax_const "_SeqO"}, dummyT) $ f) $ seqcont_tr' s 
 
      | seq_itr' (i $ s) = 
Const (@{syntax_const "_SeqApp"}, dummyT) $ 
 
(Const (@{syntax_const "_SeqId"}, dummyT) $ i) $ seqcont_tr' s 
 
in case s of 
 
      Abs (_, _, t) => seq_itr' t 
 
    | _ => s $ Bound 0 
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  end; 
 
fun single_tr c [A, G] = 
 
  Const (c, dummyT) $ seq_tr A $ singlobj_tr G; 
 
fun two_seq_tr c [A, G] = 
 
Const (c, dummyT) $ seq_tr A $ seq_tr G; 
 
fun three_seq_tr c [A, G, C] = 
 
Const (c, dummyT) $ seq_tr A $ seq_tr G $ seq_tr C; 
 
fun four_seq_tr c [A, G, C, T] = 
 
  Const (c, dummyT) $ seq_tr A $ seq_tr G $ seq_tr C $ seq_tr T; 
fun singlobj_tr' (Const (@{const_syntax SeqO'},_) $ fm) = fm 
 
  | singlobj_tr' id = Const (@{syntax_const "_SeqId"}, dummyT) $ id; 
 
fun single_tr' c [A, G] = 
 
Const (c, dummyT) $ seq_tr' A $ seq_tr' G; 
 
fun two_seq_tr' c [A, G] = 
 
Const (c, dummyT) $ seq_tr' A $ seq_tr' G; 
 
fun three_seq_tr' c [A, G, C] = 
 
Const (c, dummyT) $ seq_tr' A $ seq_tr' G $ seq_tr' C; 
 
fun four_seq_tr' c [A, G, C, T] = 
 
 Const (c, dummyT) $ seq_tr' A $ seq_tr' G $ seq_tr' C $ seq_tr' T; 
 
(** for the <<...>> notation **) 
fun side_tr [A] = seq_tr A; 
*} 
 
parse_translation {* [(@{syntax_const "_Side"}, side_tr)] *} 
 
use "prover.ML" 
 
end 
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4  Discussion and Analysis 

Development of “theory of logic programming”, within higher-order logic has 

another fortunate outcome. The clarity of presentations of the central results 

regarding higher-order horn clauses require the use of the “sequent calculus”- 

resolution and model theory based methods that are traditionally used in the 

analysis of first-order logic programming are either not useful or not available in 

the higher-order context. It turns out that the “sequent calculus”, is a quite useful 

tool for characterizing the intrinsic role of logical connectives within logic 

programming and a study such as the one undertaken here illuminates this fact. 

This observation was mentioned, in a more complete fashion in one of the 

chapters by Loveland and Nadathur in [8-15].  

“Given the increasing demand for practical and low-cost analytical 

techniques, bio-sensors and Gene-Chips have attracted attention for use in the 

quality analysis of drugs, medicines, and other analytes of interest in the 

pharmaceutical area. Bio-sensors and Gene-Chips allow quantification,not only 

of the active component in pharmaceutical formulations, but also the analysis of 

degradation products and metabolites in biological fluids”, [11-15].  

***Please note: We are not going to discuss the underlying concepts in detail 

because the current paper is intended as a Technical Note. Hence only the basic 

framework is discussed.              

 

 

5  Conclusion 

Finally we conclude that the DNA is digital, but is quaternary, not binary. 

DNA is a base-4 code using the digits A, C, G and T. Proteins are a base-20 code 

using the 20 amino acids. DNA represents a protein has an ordered sequence of 

base-4 triplets, using 64 possible values to 20 amino acids. Some DNA sequences 

are ignored: introns. Each Chromosome has sub-sequences of DNA bases that 
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encode particular features, and these are called "genes". Thus genes are not 

independent molecules, but are abstract sequences within chromosomes. All genes 

have different lengths. Genes are too small to be physically seen on a microscope, 

but are analyzed using indirect chemical, molecular, and computational methods. 

This paper describes two experiments in program design, coding and verification, 

carried out within two automated proof assistants, namely the HOL (Higher Order 

Logic) system and Isabelle. 

Basic approaches to programming language semantics are described. Theories 

and tactics for proving the correctness of programs written in small functional and 

imperative language ML, are then constructed within HOL and Isabelle 

Programming environment. 
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