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Abstract

Standard ordinary linear model cannot handle grouping structure

data. This induces a correlation structure through the error term in

this model. Therefore mixed effect models often allow the modeling of

such structural data setting. This study proposes different estimation

algorithms in linear and nonlinear mixed effects models when the group-

ing structure data are available. I in fact prove a consistency and oracle

optimality result in these grounds, and develop algorithms with prov-

able numerical convergence. Further, I demonstrate the performance of

the different proposed algorithms on the Landsat ETM+ scene data set.
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1 Introduction

Regression analysis is an approach to modeling the relationship between a

(scalar or vector) dependent variable and one or more explanatory variables.
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The case of one explanatory variable with linear relationship with the depen-

dent variable is called linear regression model. More than one explanatory

variable is called multiple linear regression models. The primary statistical

tools are often single-outcome, logistic regression for binary outcomes, and the

Cox proportional hazards model for time-to-event outcomes [1, 2]. This group

of regression models cannot handle the analysis when one faces on grouping

structural data [1, 2, 3]. Instead, mixed effect models have recently come into

widespread use. Applying these methods and interpreting the results requires

some information [3, 4, 5].

This paper tends to have either very brief coverage or to pay off a single

topic theoretically and practically. This study is in fact aimed to show how

the combination of common linear and linear mixed effects models can open a

huge variety of statistical methods for the analysis of high dimensional data and

enrich the inference. The term mixed model refers to the use of both fixed and

random effects in the same analysis [5, 6, 7]. Fixed effects have in fact levels

that are of primary interest and would be used again if the experiment were

repeated [2, 7]. Random effects have levels that are not of primary interest,

but rather are thought of as a random selection from a much larger set of levels

[7, 8, 9]. For instance in a case study, subject effects are almost always random

effects, while treatment levels are almost always fixed effects.

The interest is also in inferences from model-based estimators refer to the

distribution implied by the assumed model. That is; model selection and

validation play a vital role in this type of estimation [3, 7, 9]. If the assumed

models do not provide a good fit to the data, the model-based estimators will

be model biased which can lead to (sometimes completely) erroneous inferences

[1, 5]. In view of this, this study is summarized in following sections.

In next Section, I explain fixed and random effects. In Section 3 multilevel

linear mixed effect model is postulated. The Landsat ETM+ scene data set is

analyzed in by taking into account fixed and random effects in Section 4, and

conclusion is discussed in Section 5.

2 Fixed and Random Effects

Linear regression model assumes that the relationship between the depen-



M. Babanezhad 25

dent variable Y and the regressors X is linear. The formula for the linear

regression is simple and has interpretable parameters,

Y = β
′

X+ ε (1)

where β is parameter vector, and X is matrix of independent variable, and the

vector error term ε is independently and identically distributed and often has a

normal distribution with mean zero and constant variance σ2 (ε ∼ N(0, σ2I)).

The main purpose of this model is to determine how the average value of

the continuous outcome Yi varies with the value of predictor X. The average

values of the outcome are assumed to lie on a regression line or line of means.

It follows from the model (1) the outcome Yi has a normal distribution; but

often no distributional assumptions are made about the predictor X in the

linear regression model. Although often one does not need to make assump-

tions about the distribution of the predictor, these models do perform better

when it is relatively variable. β gives the slope of the regression line, and is

interpretable as the change in average X for a one unit increase (decrease) in

Y .

The regression analysis sometimes designates a type of model that relates

a continuous response to both a classification factor and to a continuous re-

gressor. If for instance Yij is the jth observation in the ith group of data and

Xij is the corresponding value of the regressor, in contrast to the model (1),

a model with fixed effects βj for the type factor and random effects bi for the

subject factor can be written [1, 3],

Yij = βj + bi + εij (2)

where e.g, bi ∼ N(0, σ2
b ) and εij ∼ N(0, σ2), or, equivalently

Yi = Xiβ + Zibi + εi (3)

where e.g, bi ∼ N(0, σ2
b ) and εi ∼ N(0, σ2I). The latter model β represents

what would be the mean of Y to arise from the jth type of Xij if the whole

population were tested. The term analysis of covariance designates a type of

model that relates a continuous response to both a classification factor and to

a continuous covariate. If yij is the jth observation in the ith group of data

and Xij is the corresponding value of the covariate, an analysis of covariance

model with a random effect for the intercept will be model (2). Although many
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common statistical models can be expressed as linear model. This incorporates

with a random effect with individual experimental units drawn at random

from a population. Here a model with both fixed effects and random effects is

needed. In model (3) , the columns of Zi are usually a subset of the columns of

Xi. Further, the assumption V ar(εi) = σ2I can be relaxed in model (3). This

can be nonconstant variances or special within-group correlation structures.

Furthermore, the random effects bi and the within-group errors εi, i = 1, ...,M

are assumed to be independent for different groups and to be independent

of each other for the same group. Because the distribution of the random

effects vectors bi is assumed to be normal (or Gaussian) with a mean of 0,

it is completely characterized by its variance-covariance matrix which must

be symmetric and positive semi-definite; that is, all its Eigen values must be

non-negative.

3 Multilevel Linear Mixed Effect Model

Single-level linear mixed effect model (3) can be extended to multiple,

nested levels of random effects. For instance, in the case of two nested levels

of random effects the response vectors at the innermost level of grouping are

written yij , i = 1, ...,M , j = 1, ...,Mi where M is the number of first-level

groups and Mi is the number of second-level groups within first-level group

i. The fixed-effects model matrices are Xij , i = 1, ...,M , j = 1, ...,Mi of size

nijp. Using first-level random effects bi of length q1 and second-level random

effects bij of length q2 with corresponding model matrices Zi,j of size niq1 and

Zij of size niq2, we can postulate the model as follows [1, 6],

yij = βXij + Zi,jbi + Zijbij + εij (4)

where bi ∼ N(0, φ1), bij ∼ N(0, φ2), and εij ∼ N(0, σ2I). The level-1 random

effects bi are assumed to be independent for different i, the level-2 random

effects bij are assumed to be independent for different i or j and to be in-

dependent of the level-1 random effects, and the within group errors εij are

assumed to be independent for different i or j and to be independent of the

random effects.
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Several methods of parameter estimation have been used for mixed effects

models (2), (3), (4) [6, 7]. Although the approaches are different in these three

models one often employs on two general methods: maximum likelihood (ML)

and restricted maximum likelihood (REML). Consider first the model (2) that

has a single level of random effects. The parameters of the model are β, σ2. We

use θ to represent an unconstrained set of parameters. The likelihood function

for the model (2) is the probability density for the data given the parameters,

but regarded as a function of the parameters with the data fixed, instead of

as a function of the data with the parameters fixed. That is,

L(β, σ2, θ|y) = P (y|β, σ2, θ)

where L(.) is the likelihood, P (.) is a probability density, and y is the entire N-

dimensional response vector, N =
M
∑

i=1

ni. Because the non-observable random

effects bi, i = 1, ...,M are part of the model, we must integrate the conditional

density of the data given the random effects with respect to the marginal

density of the random effects to obtain the marginal density for the data. We

can use the independence of the bi and the εi to express the latter as,

L(β, σ2, θ|y) =
M
∏

i=1

P (yi|β, σ
2, θ) =

M
∏

i=1

∫

P (yi|β, σ
2, θ, bi)P (bi|σ

2, θ)dbi

Descriptions and comparisons of the various estimation methods used for

LME models can be found, for example, in [6] and [7].

4 Illustrative Application

We here analyzed the Landsat ETM+ scene data set which comes in [10].

The ETM+ images had been previously ortho-rectified by Iranian National

Cartography Center (NCC) with a high geometric precision. The geometric

precision of images was also verified using road vector layer and field collected

GPS control points. The aim of this study is to evaluate relationships between

forest characteristics as dependent and ETM+ bands and vegetation indices as

independent variables. Stepwise regression analysis selects a subset of indepen-

dent variables that explains most of the variability in the dependent variable.
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Independent variables of the final model were selected based on a combina-

tion of both their individual contribution to the model, adjusted coefficient

of determination and residual mean square. We analyzed this data based on

linear mixed effect model. Linear and linear mixed effect models were built to

investigated the effect of the forest characteristics on stand volume and tree

density.

4.1 Applied Methods

In the considered data set, the special inventory design of the SNFI, in

which each plot is composed of four circular sub-plots with the same centre

and different radial and minimum diameter threshold. It is determined that

each tree i in each plot j has an unequal selection probability. Although this

unequal selection probability scheme was mainly chosen for cost and adminis-

trative reasons, the hierarchical population structure underlying such schemes

is of interest from a modeling point of view. It is usually argued that when

the sample selection probabilities are related to the response variable even af-

ter conditioning on covariates of interests, the conventional estimators of the

model parameters may be (asymptotically) biased. In such cases, weighted re-

gression analysis with the weighting factor equal to the inverse of the selection

probability leads to unbiased estimations. Linear or nonlinear regression (tree

regression) can then be applied to this expanded data. By applying the same

regression model to the SNFI data-type, and using weighted regression, with

fixed pij as the weighting factor, the same parameter estimates are obtained.

The same results are obtained when all the weighting factors are multiplied by

a constant, so that they can be calculated on the basis of any per unit area,

all providing unbiased estimates of the real population relationship parame-

ters. The problem here is to choose the correct weighting factor, because the

real population is unknown. In fact four statistical criteria obtained from the

residuals were examined: the root mean square error (RMSE); the coefficient

of determination (R2); the mean bias (E); and Schwarz’s Bayesian Information

Criteria (BIC; Schwarz, 1978) under squared error loss as follows [10, 11];

RMSE =

√

N∑

i=1

RF expij ×(Yij−Ŷij)2

N−p
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R2 = 1−

N∑

i=1

RF expij ×(Yij−Ŷij)
2

N∑

i=1

RF expij ×(Yij−Y )2

E =

N∑

i=1

RF expij ×(Yij−Ŷij)
2

N−p

BIC = N × ln





N∑

i=1

RF expij ×(Yij−Ŷij)
2

N−p



+ p ln(N)

where Yij, Ŷij and Y = RF expij Yij/N are the measured, estimated and av-

erage values of the dependent variable respectively, and p is the number of

models parameters.

Another grouping regression analysis is tree regression method. Using re-

cursive partitioning, a sample is repeatedly subdivided on the basis of predic-

tor variables into groups that are as internally homogeneous as possible, in

terms of the outcome. For a continuous outcome such as our example, this

means minimizing the within-group variance, while maximizing the differences

between groups; for a categorical outcome, it means finding groups that are

composed of one outcome category to the greatest extent possible. The results

of Landsat ETM+ scene data set are summarized in Table 1.

Table 1: Goodness of fit statistics for the considered mixed effects models. The

values in are calculated with the fixed part of the parameter estimates only.

Equation R2 RMSE E BIC

(1) 0.895 1.911 -0.1001 33892

(2) 0.8847 2.003 0.0010 36326

(3) 0.8902 1.954 0.0396 35083

(4) 0.8874 1.980 0.0578 35724

In addition, we examining the scatter plot (Figure 1). As may well be the

case, since the observations are taken in different species on the same study

area, the Figure 1 incorporates a flexible mechanism for specifying correlation

structures, and supplies constructor functions for several such structures. Most

of these correlation structures, however, are appropriate only for equally spaced

observations. An exception is each plot, the correlation between the appeared
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Figure 1: Variables actually used in tree construction

tress regression trees. This appears a reasonable specification in the current

context, where there are at most nij = 5, ...11 species per plot. The model

bias did not follow the same patterns in all considered models. As the tested

samples are biased, they tend to increase bias in some way. The only method

that maintains bias at a low level is the random selection (Figure 2). However,

this procedure makes it necessary to repeat the selections, in order to avoid

large errors if an inadequate tree is selected, and at least five trees should be

randomly selected for the same level of accuracy as achieved by selection of

the two smallest trees in the plot.
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Figure 2: Defaults to one for all variables. These are scaling to be applied when

considering splits, so the improvement on splitting on a variable is divided by

its cost in deciding which split to choose.

5 Conclusion

A mixed model is a statistical model containing both fixed effects and

random effects. These models are useful in a wide variety of disciplines. They

are particularly useful in settings where repeated measurements are made on

the same statistical units, or where measurements are made on clusters of

related statistical units.

In this paper we compare three methods of mixed model. In the analysis of

considered data set [10], from models tested in this study, the equations that

showed the best fit to the dataset included dominant diameter and dominant

height in their formulation. In general, the inclusion of stand variables in all
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models reduces bias and increases precision.

In the present study, models that included the species as a nested mixed

effect provided more accurate results than those including this or are done

without nested mixed effect models. This may be advantageous, since fewer

trees need to be measured to estimate the volumes effect than to estimate

mean number of species in each considered plot (unless the mean tree density

is obtained as the tree density of the average species richness, which is, on the

other hand, a less accurate way of obtaining the mean tree density), and this

great sampling effort may limit future use of the models).

The best results for the calibration were obtained by selecting the smallest

tree density in the plot. This may be attributed to the fact that the tree species

of the plot was already considered as a fixed effect in the basic model (2) and,

therefore, corresponding to the tree species did not provide much additional

information for calibrations [10, 11].

In addition, the fact that the model is restricted to pass through the point

implies that it cannot change much in this part of the species in nested rela-

tionship. In contrast, although measurement of the smallest tree density per

plot provides a biased sample, the accuracy was greater than that of the fixed

effects model, and even in comparison with the calibrated model with the ran-

domly selected species. The greater the number of measurements included in

the subsample, the greater the decrease in RMSE and increase in R2 (Table

1).
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Appendix

To analyze the Landsat ETM+ scene data set, I used the nlme library in

implementations of the R Software version R-2.15.1 by using of lme and nlme

functions. The current version of the nlme library for R supports the same
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range of graphics presentations as does the S-PLUS version. This function

may cover a large number of practical applications of mixed-effects models,

but does not include generalized linear mixed-effects models.

For Tree regression analysis, there are two common packages in R: tree and

rpart. Rpart package is easier to do that the tree. Rpart in fact implements

alternative splitting functions for fitting a classification tree when interest lies

in predicting an ordinal response. Some R-codes are follows;

model.lme¡- lme(N Msi+Sr32+Swir+Ndvic, data = , random = — )

summary(model.lme )

library(party)

model.rpart¡-rpart(n msi+sr32+red+swir3+ndvic,data=data, method=”anova”)

summary(model.lme ) plotcp(m)

par(mfrow=c(1,2))

rsq.rpart(m)

plot(m)

text(m)

plot(m, uniform=TRUE)

text(m, use.n=TRUE, all=TRUE, cex=.8)

par(mfrow=c(1,2))

model¡-ctree(n msi+sr32+red+swir3+ndvic,data=data)

plot(model)

library(randomForest)

model=randomForest(n msi+sr32+red+swir3+ndvic,data=data)

print(model)

importance(model)
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