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Abstract

We present a mathematical model of cholera epidemics of closed pop-

ulation that comprises seasonality of infection, the loss of immunity and

control mechanism related to sanitation, hygiene, water treatment and

vaccination. This model exhibits the traditional threshold behavior.

There is always a globally asymptotically stable equilibrium state. De-

pending on the value of the basic reproduction ratio R0, this state can

be either endemic (R0 > 1), or infection - free (R0 < 1). We demon-

strate a real-world application of this model by investigating the recent

cholera outbreak in Cameroon. Meanwhile, we present numerical results

to verify the analytical prediction.
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1 Introduction

The cholera was a long time and continues to be a major question of health

in the world. In spite of a hundred years studies on the disease, there is in the

world 3 to 5 million cases of cholera with 100.000 to 120.000 deaths per year

(memory Assistance WHO N◦107, June 2010). The war and environmental

unhealthy conditions can contribute to the expansion of the disease within

the communities. Thus, because residence with cholera is a threat for the

world, it is signi�cant to continue to test to include/understand the dynamics

of the disease and how interactions between the environmental man and factors

contribute to the behavior of the epidemic.

During centuries, the disease remains unknown in Europe, propagated es-

pecially in Asia and Africa. First mention of this disease in Europe is made in

1503 by a Portuguese o�cer returning from the Indies, telling a disease having

made 20.000 deaths. It appeared thereafter in Europe and was the object of

a crowd of interpretations and theories on behalf of the medicines. It is at

the time of the epidemic of 1854, in London, that comprehension of the dis-

ease knew a major projection. One account returned with the disease struck

near certain wells, suggesting a contamination by water. But this assumption

was not immediately allowed at the time. Vibrio cholerae, the bacterium in

charge of the cholera was for the �rst time isolated like person su�ering from

cholera by the Italian anatomist Filippo Pacini in 1854. But its discovery will

be ignored because of the predominance theory of miasma, charging the re-

sponsibility for cholera (and other diseases which one did not know the origin)

with one bad quality of the air. Thirty years later, Robert Koch, who does not

know about the results of Pacini, publishes the result of its work and means of

�ghting vibrio cholerae. In 1965, the bacterium is re-elected in vibrio cholorae

in homage to Filippo Pacini.

The cholera is an extremely virulent disease. Concerning children like the

adults, one can die some in a few hours. Approximately 75 percent of the

subjects infected by v. cholorae express any symptom, although the bacillus

is present in their saddles during 7 to 14 days after the infection and is elimi-

nated in the environment, where it can potentially infect other people or those

which express symptoms, those remain benign with moderate in 80 percent of

the cases, while at approximately 20 percent of the cases, an acute aqueous
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diarrhoea, accompanying by severe dehydration, vomiting but without devel-

oping rise in temperature. Saddles, fecaloides at the beginning, quickly become

aqueous, color water of rice. This signi�cant water lead to leakage of intense

cramps being propagated in all the body, pushing the eyes in the orbits, con-

tracting orbicular muscles of the lips then resulting in giving one pace cyanosis

with the face of the patient. In the absence of treatment, it can lead to death.

Subjects having weak immunity, children su�ering from malnutrition or people

living with the HIV for example, are more exposed to the risk of death in the

event of infection.

The cholera results from absorption, by ingestion, of the vibrio choleraic

present in water or food, but also can be the result of a contaminated person

to another person through pathological products (saddles, vomiting, sweat).

Experiments show that the vibrios introduced into food are more likely to

cause an infection than those introduced into water. The infectious amount,

in experiments given is of the order of 108 with 1011 bacteria see [8]. Gastric

acidity is not very favorable with the survival of the bacterium in the stomach.

When the vibrios choleric are included in food or that the gastric acidity was

neutralized by one bicarbonate of soda solution, the infectious amount is of

the order of 104 with 108 bacteria only. After passage of gastric barrier, the

vibrios are �xed in the proximate part of the small intestine, crosses the layer

of mucus and secrete choleraic toxin. This modi�es the exchanges of water and

electrolytes by preventing the penetration of sodium inside cell. That causes

a passage in the light of the tube digestive of a very great quantity of water

being able to reach 15 liters per day, and leads to a severe dehydration on the

sick individual see [4]. The transmission of the cholera is closely related to a

bad management of the environment. One �nd in the zones with risk typical,

the shantytowns peri urban which do not have any basic infrastructure, or

them campuses of refugees or moved people, where minimal needs out of clean

water and cleansing are not assured. Catastrophes, with the interruption of

the systems of supply of water and of cleansing, or moving of populations in the

camps badly equipped and over-populated, have as a consequence to increase

the risk of transmission of the cholera, if ever its bacillus is present or if it is

introduced. there never was epidemics starting from the corpses. Remainder

on the scale is that the cholera is a world threat for the public health and

it is an indicator key of the insu�ciency of the social development. One has
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besides observed its reemergence recently, parallel to the increase continual of

the vulnerable populations living in the bad ones conditions of hygiene. The

number of the cases of the cholera noti�ed to WHO continue to grow. From

2004 to 2008, this increase was of 24 percent compared to period 2000 - 2004.

only in 2008, 56 country noti�ed 190.130 cases, including 5.143 mortals. But

many of cases are not listed because of the limitations monitoring systems

and fear of sanctions limiting voyages and trade.It is estimated that the true

assessment of the disease amounts to 3−5 million cases and 100.000−120.000

deaths per year.

The bacterium vibrio cholerae (vibrio choleraic or bacillus comma in French)

is a bacterium gram negative, in the shape of stick curved, mobile, oxidase pos-

itive, belonging to the family of vibrionaceae, with the vibrio kind, the species

vibrio cholerae and person in charge of the cholera at the man.

The vibrio choleric lives in water and has a great capacity of environmental

survival. It tolerates salinity very well but really does not �nd itself in sea

but rather in the estuaries, the rivers, ground water and all sources of water

contaminated by human dejections. Sweat, rich in vibrios, plays a signi�cant

role in the contaminations inter - human especially in dry tropical zones. It

seems that certain shell�sh (in particular shrimps) play a role of vector thanks

to receivers located on their dorsal shells. The vibrio choleric is sensitive to

the acid and dies in a solution having a PH lower than 6.

All the stocks of the species vibrio choleric are not persons in charge of

the cholera. Indeed, stocks belonging to the species vibrio cholerae can be

classi�ed according to the structure of the antigen O see [5]. To date, nearly

200 semigroups O are known according to [16], but only the stocks belonging

to the semigroups O1 and O139 were associated with major epidemics. Stocks

belonging to the other serogroup can cause sporadic diarrheas, of the abscess

or of septicaemia see [11]. Among stocks of the serogroup O1, it is made

distinction of two biotype, the �rst known as "traditional" and the second

named "El Tor". For each one of these biotype, there are three serotype:

Ogawa, Iniba and Hikojima.

Production of choleraic toxin by the epidemic stocks and pandemic of vib-

rio cholerae is responsible of the phenotype of the disease. The pathogenicity

of these stocks is the result of the action combined to a whole of factors autho-

rizing the colonization of medium (motility, attachment) and of toxins. The
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genome of �lamentous bacteriophage lysogene CTXΦ contains genes ctxAB

which codes the toxin choleric [21]. CTXΦ by its capacity to lyse the bacterial

wall, integrates sound genome in that of the choleraic vibrio and thus allows

production of the toxin [12]. This transduction is a very good example of hor-

izontal transfer of genes which code the choleraic toxin, as well as transfer of

the genes which constitute the small island of pathogenicity of vibrio cholerae

[13]. Another signi�cant factor implied in virulence pathogenic stocks of vibrio

cholerae is a hair Co - controlled TCP (toxin Co - regulated pili). Its role was

initially identi�ed in colonization by vibrio cholerae of the intestinal wall, but

proved to be in reality , more directly related to the development of pathogenic

capacity by being used as receiver for the CTXΦ bacteriophage.

The various stocks of vibrio cholerae release thereafter from new bacte-

riophages on the one hand in the digestive tract of the host human and in

addition in the watery environment.

Epidemiology is dominated by the hydrous transmission, like it is the case

in other enteric diseases. It is thus little probable that wide epidemics can occur

in the countries where the bacteriological control of water is strictly applied,

even if localized hearths burst. Overpopulation, lack of personal hygiene and

food can also contribute to the propagation of the disease. The �ies also play

a considerable role in the spread of the vibrios.

In the sections above, we present and proceed to analysis of the stability

of a model of dynamics of infection of the cholera which takes into account

intrinsic and extrinsic factors.

2 The model

The mathematical model described here is a modi�ed version of a model

developed in [18] in which one considers that the population is closed, i.e., one

is unaware of immigration and emigration and focus only on births and deaths.

One considers a closed population of nonconstant size N divided into three

groups : the Susceptible, S, Infected, I and Recovered,R such asN = S+I+R.

One indicates by B the concentration of the pathogenic stocks of vibrio

choleric in water or bacterial abundance.

It is supposed that all the individuals of population N are born susceptible.

The only voice of infection of the susceptible individuals (S) is the ingestion
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of a water coming from an untreated source, in other terms, the susceptible

individuals (S) are infected with contact of contaminated water (is - with -

to say B). Infected cure at a rate r. As long as there remains infected, the

individual contribute to the increase in the population of the bacterium to

through its excretions at a rate e. Bacterial abundance (B) decrease at a rate

γ and can also grow at a rate determined by certain environmental factors (the

temperature for example).

The e�ects of the seasonality are described by a periodical variation of the

parameter of contact β between the bacteria and the hosts.

Various mechanisms of controls are taken into account here in particular:

the reduction of the parameter of contact β by θ1 < β, the cleansing im-

proved (reduction of parameter e by θ2 < e), water treatment (increase in the

parameter γ by θ3) and vaccination (reduction in the number of susceptible

by θ4).

Remark 2.1. The parameters β, θ1, θ2, θ3 and θ4 can depend on time.

Remark 2.2. Probability so that a susceptible individual infects himself is

governed by an equation of Michaelis - Menten in [14], since the probability

of catching the cholera depend on the concentration of the vibrio choleric in

consumed water (relation proportions - answer) [1]. Here, this probability is

given by λ(B) = B
K+B

.

The compartmental model can be described by the following set of �ve

di�erential equation for the closed population, N , susceptible, S, infected, I,

recovered, R, and bacterial abundance, B :

dN
dt

= Π− µN − dI,

dS
dt

= Π− µS − (β(t)− θ1(t)) B
K+B

S + r1R− θ4(t)S,

dI
dt

= (β(t)− θ1(t)) B
K+B

S − (r + µ+ d)I,

dR
dt

= rI + θ4(t)S − (r1 + µ)R,

dB
dt

= (e− θ2(t))I − (γ + θ3(t))B.

(1)

Summarily, in the �rst equation, individuals of closed population at re-

newed at a rate Π, decrease at rates m and d respectively natural and with
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the cholera. In the second equation, susceptible individuals are renewed at

a rate Π, infect themselves at a rate (β(t) − θ1(t) and is transferred by vac-

cination in the class of cured at a rate of θ4(t). Susceptible individuals also

increases thanks to the return of people who lose their immunity at a rate r1

and decreases by natural death with a rate µ.

The third equation describes the temporal evolution of the people infected,

which increases by the contact of susceptible with vibrio choleric and decreases

by the cure by natural death or the death of people by the disease.

In the four equation, the increases in the immunizing class are due to the

individuals lately immunized at a rate r and by a rate θ4 following vaccination.

The number of cured decreases by the loss of immunity and natural death of

individuals.

Lastly, the last equation describes the dynamics of the vibrio choleric in

the watery tank (supposed to be here the untreated unit and consumed by the

population), dynamics who increases by the contribution of the individuals

infected by a rate (e − θ2(t)) and decreases by the mortality of the bacteria

(γ + θ3(t)), where γ is the rate of natural mortality.

The rate of contact β(t) can be periodic and limited to its seasonal e�ects

(�oods, dryness, variations from temperature) [10]. Mathematical analysis of

a periodic epidemic model has been study in several authors see [1], [2], [3],

[17], [22], [24].

2.1 Symbols used in the model

2.2 speci�c cases

Before proceeding to the study of the basic properties of the model, let

us consider the simple cases of infection at hundred percent in the event of

contact of one infected and one not infected (λ(B) = 1), and probability of

null infection (λ(B) = 0), [6].

Case one. We assume the concentration of V. cholerae in water are much

lower than concentration of the pathogenic stocks of the vibrio Choleric in

water, i.e., B << K. Then the incidence rate in the model λ(B) become

λ(B) =
B

K +B
≈ 0,
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Table 1: Description of the parameters of the system (1)

Symbols Description

Variables of state

N Numbers of individuals of population

S Numbers of susceptible

I Numbers of infected

R Numbers of recovered

B Concentration of the pathogenic stocks of the vibrio

Choleric in water (cells/ml)

Parameters

µ natural mortality rate

d death rate of patients with the cholera

β contact rate between bacterial and susceptible hosts

K concentration of V. cholerae in water (cells/ml)

r1 rate at which people lose immunity (day−1)

r rate at which people recover from the disease(day−1)

γ bacterial mortality rate(day−1)

e contribution of each infected person to the population of V

cholerae in the aquatic environment (cell/ml day−1person−1)

which implies the chance of getting new infection is about 0.

The model (1) in the particular conditions where β constant and in absence

of the mechanisms of control in this case is given by :

dN
dt

= Π− µN − dI,

dS
dt

= Π− µS + r1R,

dI
dt

= −(r + µ+ d)I,

dR
dt

= rI − (r1 + µ)R,

dB
dt

= eI − γB.

(2)
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Applying the theory of di�erential equation see [9], [7], [19], the exact solution

of system (2) is

N(t) = c1e
−µt +

Π

µ
+

rI(0)

r + d− r1

(
r1

r + d
− 1)e−(r+d+µ)t + I(0)e−(r+d+µ)t

S(t) = c1e
−µt +

Π

N
− c2e

−(r1+µ)t +
rr1I(0)

(r + d)(r + d− r1)
e−(r+d+µ)t

I(t) = I(0)e−(r+d+µ)t

R(t) = c2e
−(r1+µ)t − rI(0)

r + d− r1

e−(r+d+µ)t

B(t) = c3e
−γt − eI(0)

r + µ+ d− γ
e−(r+d+µ)t

where c1, c2 and c3 are constants.

Thus, it is clear to see that

N(t)→ Π

N
, S(t)→ Π

N
, I(t)→ 0, R(t)→ 0, B(t)→ 0 as t→ +∞.

Hence, the point E0 = (Π
µ
, Π
µ
, 0, 0, 0) is globally asymptotically stable.

The Figure 1 presents the trajectories of the model (2) for the initial con-

ditions N(0) = 20.106; S(0) = 20.106; I(0) = 0; R(0) = 0; B(0) = 108

and parameters values given low to Table 4. One clearly notes there the global

asymptotic stability of the disease free equilibrium E0 = (Π
µ
, π
µ
, 0, 0, 0).

Case two. We now assume concentration of the pathogenic stocks of the

vibrio Choleric in water are far beyond concentration of V. Cholerae in water,

i.e., B >> K. Under this assumption, the incidence rate in the model λ(B)

become

λ(B) =
B

K +B
≈ 1

That is, the possibility of infection is about hundred percent to those exposed

to pathogens.

The model (1) in the particular conditions where β constant and in absence
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of the mechanisms of control is given by :

dN
dt

= Π− µN − dI,

dS
dt

= Π− (µ+ β)S + r1R,

dI
dt

= βS − (r + µ+ d)I,

dR
dt

= rI − (r1 + µ)R,

dB
dt

= eI − γB.

(3)

we will reconsider the model (3) later.

3 Basic properties of the model

3.1 Positivity of the solutions

Like all variables of state of the mathematical model (1) presented higher

(Closed population, Susceptible, Infected, Recovered and population of the vib-

rio choleraic in water) are densities, it matters that they are positive. Thus,

we need to show positivity of the solutions of (1).

Let us suppose that the initial conditions of the model is given by

N(ξ) = φ1(ξ), S(ξ) = φ2(ξ), I(ξ) = φ3(ξ), B(ξ) = φ4(ξ), R(ξ) = φ5(ξ),

with ξ ∈ [−∞, 0], where (φ1, φ2, φ3, φ4, φ5) ∈ C([−∞, 0], R5) and φi(t) ≥ 0

(i = 1, 2, 3, 4, 5), where C([−∞, 0],R5) is banach space of continuous functions

of [−∞, 0] towards R5.

From a biological point of view, we admit that φi(0) > 0, (i = 1, 2, 3, 4, 5).

Theorem 3.1. If there are the initial conditions

N(ξ) = φ1(ξ) ≥ 0, S(ξ) = φ2(ξ) ≥ 0, I(ξ) = φ3(ξ) ≥ 0,

B(ξ) = φ4(ξ) ≥ 0, R(ξ) = φ5(ξ) ≥ 0
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for all ξ ∈ [−∞, 0], with φi(0) > 0 (i = 1, 2, 3, 4, 5), then the solutions N(t),

S(t), I(t), B(t) and R(t) of (1) are positive for all t ≥ 0.

Proof It is established for θi(t) (i = 1, 2, 3, 4, 5) constant. The case θi(t),

(i = 1, 2, 3, 4, 5) variable spreads very easily.

Let us consider

T = sup{t > 0 : N(t) > 0, S(t) > 0, I(t) > 0, B(t) > 0, R(t) > 0 for 0 < t < T}

clearly, T > 0. However, if T = ∞, then N(t), S(t), I(t), B(t) et R(t) are

coarsely positive for t > 0.

Let us suppose T < ∞, then at least one of N(T ), S(T ), I(T ), B(T )

or R(T ) is equal to zero. In the contrary case, that would contradict the

de�nition of T .

Let us suppose B(T ) = 0. The equation out of B given by the system (1)

is
dB

dt
= (e− θ2(t))I − (γ + θ3(t))B

By solving the associated homogeneous equation and by using the method

variation of the constant, one arrives has

B(t) = B(0)e−(γ+θ3)t + [

∫ t

0

(e− θ2)I(u)e(γ+θ3)udu]e−(γ+θ3)t > 0

which is a contradiction. Therefore, B(t) > 0, for all t > 0.

Let us suppose S(T ) = 0. Then according to the equation in S of the

system (1) one can write :

d

dt
(Se

∫ t
0 (β−θ1) B

K+B
(u)du+(µ+θ4)t) = Πe

∫ t
0 (β−θ1) B

K+B
(u)du+(µ+θ4)t

+ r1Re
∫ t
0 (β−θ1) B

K+B
(u)du+(µ+θ4)t

While integrating this relation of 0 with T , one obtains

S(T )e
∫ T
0 (β−θ1) B

K+B
(u)du+(µ+θ4)T − S(0) =

∫ T

0

[Πe
∫ t
0 (β−θ1) B

K+B
(v)dv+(µ+θ4)u

+ r1Re
∫ t
0 (β−θ1) B

K+B
(v)dv+(µ+θ4)u]du

what leads to

S(T ) = S(0)e−
∫ T
0 (β−θ1) B

K+B
(u)du+(µ+θ4)T

+ e−
∫ T
0 (β−θ1) B

K+B
(u)du+(µ+θ4)T

∫ T

0

[Πe
∫ t
0 (β−θ1) B

K+B
(v)dv+(µ+θ4)u

+ r1Re
∫ t
0 (β−θ1) B

K+B
(v)dv+(µ+θ4)u]du > 0
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which is a contradiction. From the last proof arises that S(t) > 0 for t > 0.

In the same way, according to the equation out of I of the system (1) one

has
d

dt
(Ie(r+µ+d)t) = e(r+µ+d)t(β − θ1)

B

K +B
S.

While integrating of 0 with T one obtains

I(T )e(r+µ+d)T − I(0) =

∫ T

0

e(r+µ+d)u(β − θ1)
B

K +B
(u)S(u)du

which leads to

I(T ) = I(0)e−(r+µ+d)T + e(r+µ+d)T

∫ T

0

e(r+µ+d)u(β − θ1)
B

K +B
(u)S(u)du > 0.

From the last proof arises that I(t) > 0 for any value from t > 0.

In a similar way, equation in R of the system (1) one can write

d

dt
(Re(r1+µ)t) = (rI + θ4S)e(r1+µ)t

What enables us to have while integrating 0 into T

R(T ) = R(0)e−(r1+µ)T + e−(r1+µ)t

∫ T

0

(rI(u) + θ4S(u))e(r1+µ)udu > 0,

which shows that R(t) > 0 for all t > 0.

Let us suppose N(T ) = 0, the equation out of N given by the system (1) is

dN

dt
= Π− µN − dI.

By solving the associated homogeneous equation and by using the method

variation of the constant, one arrives has

N(t) = N(0)e−µt + [

∫ t

0

(Π− dI(u))eµudu]e−µt > 0

which is contradiction. Therefore N(T ) > 0 for all t > 0.

One concludes as well as the solution N(t), S(t), I(t), B(t), R(t) of (1) is

positive for any value of t ≥ 0.
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3.2 Positive invariance of the nonnegative orthant

We have the following result :

Proposition 3.2. The nonnegative orthant R5
+ is positively invariant for

the system (1).

Proof The positive invariance of the nonnegative orthant R5
+ of (1) is

immediate with the assumption and positivity of the solutions on the model.

4 Equilibria

Lemma 4.1. The disease - free equilibrium of system (1) is given by

E0 = (
Π

µ
,
Π

µ
, 0,

θ4(t)Π

µ(r1 + µ+ θ4(t))
, 0)

and the endemic equilibrium by

E1 = (N∗, S∗, I∗, R∗, B∗),

where

N∗ =
1

µ
(Π− da1a2a4

(β(t)− θ1(t))a3 − a1a2

),

S∗ =

Π
µ
a1[(β(t)− θ1(t))a3 − a1a2]− a1a2a4a8

a1[(β(t)− θ1(t))a3 − a1a2]
,

I∗ =
a1a2a4

(β(t)− θ1(t))a3 − a1a2

,

R∗ =
a7 + a1a2a4a5

a1[(β(t)− θ1(t))a3 − a1a2]
,

B∗ =
a1a2a4a6

(β(t)− θ1(t))a3 − a1a2

.

with

a1 = µ(r1 + µ+ θ4(t)), a2 = r + µ+ d, a3 = (r1 + µ)(Π− d− µ)− µr,

a4 =
K(γ + θ3(t))

e− θ2(t)
, a5 = µr − θ4(t)(d+ µ), a6 =

e− θ2(t)

γ + θ3(t)
,

a7 = θ4(t)Π((β(t)− θ1(t))a3 − a1a2), a8 = (d+ µ)(r1 + µ) + µr + θ4(t)Π.
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Proof [N∗, S∗, I∗, R∗, B∗] equilibrium of system (1) if and only if :

dI∗

dt
= 0;

dR∗

dt
= 0;

dB∗

dt
= 0;

dN∗

dt
= 0; and S∗ = N∗ − I∗ −R∗,

which is equivalent to :

(β(t)− θ1(t)) B∗S∗

K+B∗ − (r + µ+ d)I∗ = 0

rI∗ + θ4(t)S∗ − (r1 + µ)R∗ = 0

(e− θ2(t))I∗ − (γ + θ3(t))B∗ = 0

N∗ = 1
µ
(Π− dI∗)

S∗ = N∗ − I∗ −R∗

(4)

The third equation of (4) leads to :

B∗ =
(e− θ2(t))I∗

γ + θ3(t)
(5)

The �fth equation of (4) makes it possible to write:

S∗ =
1

µ
Π− (

d

µ
+ 1)I∗ −R∗ (6)

The second equation of (4) allows to draw

R∗ =
θ4(t)Π + (µr − θ4(t)(d+ µ))I∗

µ(r1 + µ+ θ4(t))
, (7)

Thus, (7) in (6) allows to have

S∗ =
1

µ
Π− (d+ µ)(r1 + µ) + µr + θ4(t)Π

µ(r1 + µ+ θ4(t))
I∗. (8)

(5), (8) in the �rst equation of (4) leads to

(β(t)− θ1(t))(e− θ2(t)[(r1 + µ)(Π− d− µ)− µr]
µ(r1 + µ+ θ4(t))[K(γ + θ3(t)) + (e− θ2(t))I∗]

I2 − (r + µ+ d)I∗ = 0,

that is to say

{ (β(t)− θ1(t))(e− θ2(t))[(r1 + µ)(Π− d− µ)− µr]
− µ(r + µ+ d)(r1 + µ+ θ4(t))(e− θ2(t)) }I2

−Kµ(r + µ+ d)(r1 + µ+ θ4(t))(γ + θ3(t))I∗ = 0
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What makes it possible to �nd:

I∗ = 0

or

I∗ = (9)

=
Kµ(r1 + µ+ θ4(t))(r + µ+ d)(γ + θ3(t))

(e− θ2(t))[(β(t)− θ1(t))[(r1 + µ)(Π− d− µ)− µr]− µ(r + µ+ d)(r1 + µ+ θ4(t))]

Let us suppose:

a1 = µ(r1 + µ+ θ4(t)), a2 = r + µ+ d,

a3 = (r1 + µ)(Π− d− µ)− µr, a4 =
K(γ + θ3(t))

e− θ2(t)

Then, according to (9) we have :

I∗ =
a1a2a4

(β(t)− θ1(t))a3 − a1a2

(10)

• For I∗ = 0 one obtains according to (5), (7) and (8) :

B∗ = 0, (11)

R∗ =
θ4(t)Π

µ(r1 + µ+ θ4(t))
(12)

and

S∗ =
Π

µ
(13)

Thanks to the fourth equation of (4), one obtains :

N∗ =
Π

µ
, (14)

fromwhere disease - free equilibrium is taking into account (11), (12), (13) and

(14)

E0 = (
Π

µ
,
Π

µ
, 0,

θ4(t)Π

µ(r1 + µ+ θ4(t))
, 0) (15)

• For

I∗ =
a1a2a4

(β(t)− θ1(t))a3 − a1a2

(16)
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Let us suppose:

a5 = µr − θ4(t)(d+ µ), a6 =
e− θ2(t)

γ + θ3(t)
,

a7 = θ4(t)Π((β(t)− θ1(t))a3 − a1a2), a8 = (d+ µ)(r1 + µ) + µr + θ4(t)Π.

One has then taking into account (5), (7), (8), and of the fourth equation of

(4) :

B∗ =
a1a2a4a6

(β(t)− θ1(t))a3 − a1a2

, (17)

R∗ =
a7 + a1a2a4a5

a1[(β(t)− θ1(t))a3 − a1a2]
, (18)

S∗ =

Π
µ
a1[(β(t)− θ1(t))a3 − a1a2]− a1a2a4a8

a1[(β(t)− θ1(t))a3 − a1a2]
. (19)

and,

N∗ =
1

µ
(Π− da1a2a4

(β(t)− θ1(t))a3 − a1a2

), (20)

fromwhere endemic equilibrium is :

E1 = (N∗, S∗, I∗, R∗, B∗) (21)

with N∗, S∗, I∗, R∗ and B∗ de�nes respectively by (20), (19), (16), (18) and

(17).

Remark 4.2. The model (3) does not have disease - free equilibrium for

obvious reason and its endemic equilibrium is E1 = (N∗, S∗, I∗, R∗, B∗ with

I∗ =
βΠ(r1 + µ)

(r + µ+ d)(r1 + µ)(β + µ)− βr1r

R∗ =
r

r1 + µ
I∗

B∗ =
eI∗

γ

S∗ =
1

β + µ
(Π +

r1r

r1 + µ
)I∗

N∗ = S∗ + I∗ +R∗
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5 Analysis of stability

In this part, we study stability in the case β constant and in absence of the

mechanisms of control.

5.1 Basic reproduction number analysis and stability of

the disease - free equilibrium

We have in the case considered and taking into account the lemma 4.1

E0 = (Π
µ
, Π
µ
, 0, 0, 0).

We will study stability of the disease - free equilibrium by using the lin-

earization method presented in [20]. The jacobian matrix of the system (1) in

a point (N, S, I, R, B) are given by:

J =


−µ 0 −d 0 0

0 −µ− β B
K+B

0 r1 −β KS
(K+B)2

0 β B
K+B

−r − µ− d 0 β KS
(K+B)2

0 0 r −r1 − µ 0

0 0 e 0 −γ

 (22)

At the point E0 = (Π
µ
, Π
µ
, 0, 0, 0), this matrix is worth

JE0 =


−µ 0 −d 0 0

0 −µ 0 r1 −β Π
µK

0 0 −r − µ− d 0 β Π
µK

0 0 r −r1 − µ 0

0 0 e 0 −γ

 (23)

The characteristic polynomial of (23) is given by

P (λ) = P1(λ)P2(λ), (24)

with

P1(λ) = (−µ− λ)2(−r1 − µ− λ),

and

P2(λ) = λ2 + (r + µ+ d+ γ)λ+ γ(r + µ+ d)− β Πe

µK
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Thus,

Pλ = 0⇔ P1(λ) = 0 or P2(λ) = 0

however,

P1(λ) = 0⇔ λ1 = λ2 = −µ < 0, and λ3 = −r1 − µ < 0

In the same way,

P2(λ) = 0⇔ ∆ = (r + µ+ d− γ)2 + 4βe
Π

µK
> 0

what makes it possible to have

λ4 =
−r − µ− d− γ −

√
∆

2
< 0 and λ5 =

−r − µ− d− γ +
√

∆

2
(25)

As regards the sign λ5, let us notice that one has:

∆− (r + µ+ d+ γ)2 = 4γ(r + µ+ d)[
βΠe

µKγ(r + µ+ d)
− 1] (26)

We de�ne the basic reproduction number, R0, of this model by

R0 =
βΠe

µKγ(r + µ+ d)
, (27)

one has the following Lemma:

Lemma 5.1. If R0 < 1 then the disease - free equilibrium E0 = (Π
µ
, Π
µ
, 0, 0, 0)

is globally asymptotically stable in R5
+. If R0 > 1, it is unstable.

Proof E0 = (Π
µ
, Π
µ
, 0, 0, 0) is asymptotically stable if only if λ5 < 0.

However according to (25), (26) and (27), that is checked if R0 < 1. For the

global attractivity, let us consider the Lyapunov function de�nes by :

L = eI + (r + µ+ d)B

Clearly, L ≥ 0 and we have :

L̇ = eİ + (r + µ+ d)Ḃ

= eβ
B

K +B
S − γ(r + µ+ d)B

=
eβΠ

Kµ
(

K

K +B
.
Sµ

Π
− 1

R0

)B ≤ eβΠ

Kµ
(

K

K +B
− 1

R0

)B ≤ 0,
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because K
K+B

< 1 and R0 < 1. We also remark that L̇ = 0 if and only if

B = 0.

Largest under - together compact invariant in {(N,S, I, R,B) ∈ R5
+/L̇ = 0}

is the singleton {E0}. Thus according to the asymptotic stability theorem of

Lyapunov - LaSalle (see [19]), E0 is overall globally asymptotically stable in

R5
+.

5.2 Stability of endemic equilibrium

5.2.1 Condition of existence of endemic equilibrium

Theorem 5.2. Endemic equilibrium E1 = (N∗, S∗, I∗, R∗, B∗) exists if

and only if R0 > 1.

Proof E1 = (N∗, S∗, I∗, R∗, B∗) exists if and only if I∗ > 0, what is not

possible while posing A = βe[(r1 + µ)(d + µ) + µr] and taking into account

(9) that if and only if

βΠe(r1 + µ) > A+ eµ(r + µ+ d)(r1 + µ)

That is to say :

βΠe(r1 + µ)

µKγ(r + µ+ d)(r1 + µ)
> e(

A

e(r1 + µ)(r + µ+ d)
+ 1)

it is - with - to say

R0 > 1

Lemma 5.3. If R0 > 1, endemic equilibrium E1 = (N∗, S∗, I∗, R∗, B∗)

of system (1) is globally asymptotically stable in R5
+.

Proof The jacobian matrix of system (1) at the point E1 = (S∗, I∗, R∗, B∗)

is taking into account (22) given by :

JE1 =


−µ 0 −d 0 0

0 −µ− β B∗

K+B∗ 0 r1 −β KS∗

(K+B∗)2

0 β B∗

K+B∗ −r − µ− d 0 β KS∗

(K+B∗)2

0 0 r −r1 − µ 0

0 0 e 0 −γ

 (28)
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The corresponding characteristic equation reads

det|JE1 − λI| = 0, (29)

where I is identity matrix.

(29) is equivalent to

λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0, (30)

with

a1 = r1 + µ+ r + µ+ d+ γ + µ+ β
B∗

K +B∗

a2 = (r1 + µ)(r + µ+ d+ γ) + γ(r + µ+ d) + β
KS∗e

(K +B∗)2

+ (µ+ β
B∗

K +B∗ )(r1 + µ+ r + µ+ d+ γ)

+ µ(r1 + µ+ r + µ+ d+ γ + µ+ β
B∗

K +B∗ )

a3 = γ(r1 + µ)(r + µ+ d)− β KS∗e

(K +B∗)2
(r1 + µ)

+ (µ+ β
B∗

K +B∗ )[(r1 + µ)(µ+ d+ γ) + µr + γ(r + µ+ d) + β
KS∗e

(K +B∗)2
]

+ µ[(r1 + µ)(r + µ+ d+ γ) + γ(r + µ+ d) + β
KS∗e

(K +B∗)2

+ (µ+ β
B∗

K +B∗ )(r1 + µ+ r + µ+ d+ γ)] + β2 KS∗e

(K +B∗)3

a4 = µ[γ(r1 + µ)(r + µ+ d)− β KS∗e

(K +B∗)2
(r1 + µ)]

+ β
B∗

K +B
[γµ(r + µ+ d) + γr1(µ+ d)]

+ µ[γ(r1 + µ)(r + µ+ d)− β KS∗e

(K +B∗)2
(r1 + µ)

+ β
B∗

K +B∗ [r1(r + µ+ d+ γ) + γ(r + µ+ d) + 2β
KS∗e

(K +B∗)2
]

+ µ[(r1 + µ)(r + µ+ d+ γ) + γ(r + µ+ d) + β
KS∗e

(K +B∗)2
]]

a5 = −µβ B∗

K +B∗ [r1r + β
KS∗e

(K +B∗)2
(r1 + µ)]

Thus, conditions necessary and su�cient according to the criteria of Routh -

Hurwitz [19] are :
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a1 > 0, a1a2 − a3 > 0, a1a2a3 + a1(a5 − a1a4)− (a3)2 > 0,

a1a2a3a4 − a1a2a5 − a1(a4)2 + a4a5 − (a3)2a4 + a2a3a5 + a1a4a5 − (a5)2 > 0,

a1a2a3a4a5−a1(a2a5)2−(a1a4)2a5−a1a4(a5)2−(a3)2a4a5+a2a3(a5)2+a1a4(a5)2−
(a5)3 > 0.

Clearly, a1 > 0 and a2 > 0.

In addition,

γ(r1 + µ)(r + µ+ d)− β KS∗e

(K +B∗)2
(r1 + µ)

= γ(r1 + µ)(r + µ+ d)[1−R0
µK2S∗

Π(K +B∗)2
] > 0

because R0 > 1. What makes it possible to see that a3 > 0 and a4 > 0 and

of to check by calculating the other conditions. Thus the endemic equilibrium

E1 is asymptotically stable. For the global attractivity, we establish it thanks

to the method developed in [15]. Let us reconsider for this fact the Lyapunov

function

L = eI + (r + µ+ d)B ≥ 0.

We have :

L̇ = eİ + (r + µ+ d)Ḃ

= eβ
B

K +B
S − γ(r + µ+ d)B

=
eβΠ

Kµ
(

K

K +B

Sµ

Π
− 1

R0

)B ≤ eβΠ

Kµ
(

K

K +B
− 1

R0

)B.

When R0 > 1, for any point (N, S, I, R, B) taken into R∗5
+ and su�ciently

near to E0, we have L̇ > 0, therefore it cannot approach E0 and conse-

quently, E0 cannot be the limit of an orbit resulting from R∗5
+. Thus, only

interior equilibrium is E1. As E1 is asymptotically stable and that (1) checks

the poincarré - Bendixon theorem [7], one concludes that E1 is globally asymp-

totically stable.

Remark 5.4. The endemic equilibrium of model (3) is also globally asymp-

totically stable in R5
+.
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5.2.2 Numerical simulations

To illustrate the theoretical results obtained in this case, we simulated

the model (1) thanks to the software matlab. The data and values of the

parameters used are those of Cameroon and are summarized in the following

table:

Table 2: values of the parameters when β constant

Parameters Values Source

Π 200.200 NIS(National Institute of Statistics of Cameroon)

µ 0.0101 NIS

β − -

K 106 Assumed

r1 0.0025 Assumed

r 0.14 Assumed

d 0.037 National service of Epidemiology of Cameroon

γ 0.33 Assumed

e 10 Assumed

The Figure 2 describe the dynamics of R0 according to β. It is noted there

clearly that R0 < 1 if β < 0, 04348 and R0 > 1 if β > 0, 04348.

The Figure 3 shows the trajectories of model (1) for the values of the

parameter given to Table 2 and β = 0.0001; 0.01; 0.02; 0.03; and 0.04.

The Figure 4, shows the trajectories of model (1) for values of the parameter

given to Table 2 and β = 0.045; 0.06; 0.07; 0.5; and 0.8.

6 Conclusion

In this paper, we presented a model of the cholera being able to allow to

better include/understand the dynamics of this disease within a nonconstant

population. We in addition have proceed with the analysis of the stability of

the disease free and endemic equilibria. It was established that the knowledge

of the rate of basic reproduction R0 is enough to conclude on this stability.
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Figure 1: Trajectories of the model (2)
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Figure 2: Curve describing the dynamics of R0 according to beta
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Figure 3: trajectories of model (1) when R0 < 1
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Figure 4: trajectories of model (1) when R0 > 1


