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Abstract 

In this paper, we conside a SIV epidemic disease model with two delays and 

vertical infection, and the dynamic behaviors of the model under pulse vaccination 

are analyzed. Using a new modeling method, we obtain sufficient condition for the 

permanence of the epidemic model with pulse vaccination. 
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1  Introduction  

Many infectious diseases in nature transmit through both horizontal and 

vertical modes [2, 3]. These diseases include such human diseases as rubella, 

herpes simplex Hepatitis B, AIDS, and so on. For human and animal diseases, 

horizontal transmission typically occur through direct or indirect physical contact 

with infectious host, or through disease vector such as mosquitoes, tick, or other 

biting insects. Vertical transmission can be accomplished through transplacental 

transfer of disease agents. Busenberg and Cooke [1] discussed a variety of 

diseases that transmit both vertically and horizontally and gave a comprehensive 

survey of the formulation and the mathematical analysis of compartment models 

that incorporate vertical transmission. In our paper, we assume a fraction of the 

offspring of infected hosts is infected at birth, and hence the infected birth flux 

will enter class I . Besides a susceptible individual goes through an infectious 

period. Since time delay has important biologic meaning in epidemic models.     

Therefore, in our paper, we consider two time delays, that is, the number of 

the susceptible individuals during an infectious period and temporary immunity 

period should be considered, denoted by ,  , respectively. Now we create a new 

delay SIV epidemic model with vertical infection, pulse vaccination into epidemic 

model and to obtain some important qualitative properties with delays and valid 

pulse vaccination strategy. 

 

 

2 Main Results  

 In the following, we consider the SIV epidemic model with vaccination.            
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    (1)             

Since the natural birth rate and death rate are the same and the disease is assumed 

not to inflict death on the infected host, so the total population is constant, without 

loss of generality, let ( ) 1N t  , thus, the system (1) can be reduced as following:  
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   (2)          

Since ( ) 1 ( ) ( ),V t S t I t   therefore we may just discuss ( ), ( )S t I t . Let  
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Theorem 2.1 Suppose (1 ) 0.p b      If 2 1R  , then there exists a 

positive constant 2m  such  that 2( )I t m  for t  large enough. 

Proof:  Suppose that ( ) ( ( ), ( ))x t S t I t  is any positive solution of system (2). 

The second equation of system (2) may be rewritten as follow: 
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                   (3)    

calculating the derivative of ( )R t  along the solution (2), it follows from (3)  
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            (4)  

since 2 1R  , then *
2 0m   and there exists a positive constant 1  small enough  

such that 1.   Where 
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for any positive constant 0t , we claim that the inequality *
2( )I t m  can not hold 

for 0t t  otherwise, there is a positive constant 0t , such that *
2( )I t m  for all 

0t t . From the first and the fourth equations of system (2), we have   
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we know that there exists such  1 0T t    for 1t T , that  
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We have that ( )S t   for 1t T . 

By (4) and (6), we see that  
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 Thus from the second equation of (2), (4) and (7), we easily see 

that    
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This contradiction. Hence, we get that ( ) lI t I >0,  for all 1t T .   

From (7), we have 

( )
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This implies ( )R t   as t  . This is a contradiction to ( ) 1R t    for 

t  large enough. Therefore, for any positive constant 0t , the inequality *
2( )I t m  

can not hold for all 0.t t  

On the other hand, if *
2( )I t m  holds true for all t  large enough, then our aim is 

obtained. On the other hand, ( )I t  is oscillatory about *
2m .  

where, 
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arbitrarily chosen, we get that 2( )I t m  for t  large enough. In view of our 

arguments above, the choice of 2m  is independent of the positive solution of 

system (2) which satisfies that 2( )I t m  for sufficiently large t . This completes 

the proof.                                                                       

 

Theorem 2.2 If 2R >1, then system (2) is uniformly permanent. 

Proof: Suppose that ( ) ( ( ), ( ))X t S t I t  is any positive solution of system (2) with 

initial conditions (3). From the first and the fourth equations of (2), we have that  
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Set 2
1 2{( , ) : ( ) 1, ( ) 1}.D S I R m S t m I t      Then D  is a bounded 

compact region in which has positive distance from coordinate hyperplanes. One 

obtains that every solution of system (2) eventually enters and remains in the 

region D . The proof is completed.                                       
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