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Abstract 

In this paper, we are concerned with the oscillation of a class of second-order 

nonlinear dynamic equations on time scales and obtain several sufficient 

conditions for the oscillation of the equations by developing a generalized Riccati 

transformation technique. Our results improve and extend some recent results in 

the literature. 
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1  Introduction  

The study of dynamic equations on time scales has recently received a lot of 

attention. The theory of dynamic equations not only can unify the theories of 

differential equations and difference equations, but it is also able to extend these 

classical cases to cases “in between,” e.g., to the so-called q -difference equations. 

The general idea is to prove a result for a dynamic equation where the domain of 

the unknown function is a time scale  . In this way results not only related to the 

set of real numbers   or the set of integers   but those pertaining to more 

general time scales are obtained. There are many applications of dynamic 

equations on time scales to biology, quantum mechanics, electrical engineering, 

neural networks, heat transfer, combinatorics, social sciences and so on. A time 

scale   is an arbitrary nonempty closed subset of the real numbers  . A book 

on the subject of time scales, by Bohner and Peterson [1], summarizes and 

organizes much of time scale calculus, see also the book by Bohner and Peterson 

[2] for advances in dynamic equations on time scales. 

The purpose of this paper is to investigate the oscillation of the following 

second-order nonlinear dynamic equation 

  1 1( ) | ( ) | ( ) ( ) | ( ) | ( ) 0r t x t x t q t x t x t       (1.1) 

on an arbitrary time scale  , where the following conditions are assumed to hold: 

(S1)  , 0   are constants and sup   ; (S2) r and q  are positive 

rd-continuous functions defined on the time scale interval 0[ , )t  . 

By a solution of (1.1) we mean a nontrivial real-valued function 1 [ , )rd xx C t   

for a certain 0xt t , which has the property that 1 1| | [ , )rd xr x x C t      and 

satisfies (1.1) on [ , )xt  . Our attention is restricted to those solutions of (1.1) 

which exist on the half-line [ , )xt   and satisfy *sup{| ( ) |: } 0x t t t   for any 

* xt t . A solution x  of (1.1) is said to be oscillatory if it is neither eventually 

positive nor eventually negative; otherwise it is nonoscillatory. Equation (1.1) is 
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said to be oscillatory if all its solutions are oscillatory. 

In the past years, the oscillation theory of dynamic equations has been 

developed very rapidly. For some papers on the subject, we refer to [3-8, 10-12] 

and the references cited therein. In 2005, Saker [4] presented some oscillation 

criteria for (1.1) when 1    is an odd positive integer and (S2) holds. In 

2008, Hassan [5] obtained some sufficient conditions for the oscillation of (1.1) 

when    is a quotient of odd positive integers and (S2) holds. Hassan [5] 

improved and extended the results of Saker [4]. Recently, Grace et al. [6] 

established several new oscillation criteria for (1.1) when  ,   are quotients of 

odd positive integers and (S2) holds. 

However, the cases considered by [4-6] are some special cases of (1.1), and all 

the results of [4-6] can not be applied to (1.1) when  ,   are not equal to 

quotients of odd positive integers. Thus, it is of great interest to investigate the 

oscillation of (1.1) when  , 0   are constants. In this paper, we will establish 

some new oscillation criteria for (1.1) when  , 0   are constants. Our results 

improve and extend the results of [4-6]. 

The following lemmas are useful in the proof of our main results. 

Lemma 1.1 (Bohner and Peterson [1], p. 32, Theorem 1.87) Let :f    be 

continuously differentiable and suppose :g    is delta differentiable. Then 

:f g     is delta differentiable and satisfies 

   1

 0
( ) ( ) ' ( ) ( ) ( ) ( )f g t f g t h t g t dh g t    , 

where ( ) : ( )t t t    is the graininess function on  , here 

( ) : inf{ : }t s s t     is the forward jump operator on  . 

Lemma 1.2 (Hardy et al. [9]) If X  and Y  are nonnegative, then 

1 ( 1)XY X Y        when 1  , 

where the equality holds if and only if X Y . 
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2  Main Results 

Theorem 2.1 Assume that (S1), (S2) and the following condition hold: 

 
0

 1/

 
( )

t
r t t      (2.1) 

Furthermore, assume that there exists a positive nondecreasing delta 

differentiable function   such that for all 
1 0T t t  , 

 
1

 

1 

( / ) ( )( ( ))
limsup ( ) ( ) ,

( 1) ( ( ) ( ))

t

Tt

r s s
q s s s

s v s

 

 

  
 

 




 
     

  (2.2) 

where 
1

( ) /
2

, if ,

( ) : 1, if ,

( ( )) , if ,

c

v t

c u t   

 
 
 


 
 

 here 1c  and 2c   are any positive 

constants,   is the forward jump operator on  ,  
1

1 1/

 
( ) : ( )

t

t
u t r s s


   and 

:u u   . Then (1.1) is oscillatory. 

Proof Let x  be a nonoscillatory solution of (1.1). Without loss of generality, we 

may assume that x  is an eventually positive solution of (1.1). Then there exists 

1 0t t  such that ( ) 0x t   for 1[ , )t t  . Therefore, from (1.1) we have 

1( ( ) | ( ) | ( )) ( ) ( ) 0r t x t x t q t x t         for 1t t . 

Thus, we see that 1( ) | ( ) | ( )r t x t x t    is strictly decreasing on 1[ , )t   and is 

eventually of one sign. We claim ( ) 0x t   for 1[ , )t t  . Assume on the 

contrary, then there exists 2 1t t  such that 2( ) 0x t  . Take  3 2t t . Then we 

obtain 1 1 1
3 3 3 2 2 2( ) | ( ) | ( ) ( ) | ( ) | ( ) ( ) | ( ) | ( )r t x t x t r t x t x t r t x t x t             for 

3[ , )t t  . Let 1
3 3 3: ( ) | ( ) | ( ) 0M r t x t x t    . Then we get 

1/ 1/( ) ( ) ( )x t M r t      for 3[ , )t t  . Integrating both sides of the last 

inequality from 3t  to t , we have 
3

 1/ 1/
3  

( ) ( ) ( ) ( )
t

t
x t x t M r s s       for 

3[ , )t t  . Letting t   and using (2.1), we conclude lim ( )
t

x t


  . This 
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contradicts the fact that ( ) 0x t   for 1[ , )t t  . Thus, we have ( ) 0x t   for 

1[ , )t t  . Let 
( )

( ) : ( )( ( ))
( )

t
w t r t x t

x t




  for 1[ , )t t  . Then by the formulas 

( )FG F G F G     and  / / /( )F G F G FG GG      

for the delta derivatives of the product FG and the quotient /F G  of 

differentiable functions F  and G , where   is the forward jump operator on 

 , :F F    and :G G   , we get 

   

    1

( ) ( )

( )
    ( ) ( )   on [ , ).

( ) ( )

w r x r x
x x

x
r x r x t

x x x x

 
 

 
     

 

  


  

 
 

    
 
 

    
 

 

For 
1t t , since ( ( )( ( )) ) ( ) ( )r t x t q t x t     , we have 

   ( ) ( )
( ) .

( ) ( )

x w w x
w q r x q

x x x x

   
       

    
 

  
   
        

 
 (2.3) 

For 1[ , )t t  , since 0 ( ) ( )x t x t  , by Lemma 1.1 and by the formula 

( ) ( ) ( ) ( )x t x t t x t      we obtain 

 1  11 1

 0  0

 1 1
1

 0

1 1 1

 0

( ( )) ( ) [ ( ) ( ) ( )] ( ) [(1 ) ( ) ( )]

( ) ( ( )) , if 0 1, ( ( )) ( ), if 0 1,
            

( ) ( ), if ( ) ( ) , if 1

x t x t x t h t x t dh x t h x t hx t dh

x t x t dh x t x t

x t x tx t x t dh

   

 
 



  

   
  

     

 
 

 
 

    

     
 

 


 1.






Therefore, we conclude 
1( ( )) ( ) / ( ), if 0 1,( ( ))

( ) ( ) / ( ), if 1

x t x t x tx t

x t x t x t

  



 
 

 



  
 


 for 

1[ , )t t  . Since 0 ( ) ( )x t x t   for 
1[ , )t t  , we obtain ( ( )) ( )

( ) ( )

x t x t

x t x t



 

 

  

for all 0   and for 
1[ , )t t  . Hence, from (2.3 ) we find 

 
w w x

w q
x

 

    
 


      on 1[ , )t  . (2.4) 
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From the definition of w  we get  1/ 1/( / )r x wx    . Since 1/ ( ) ( )r t x t   is 

strictly decreasing and ( )t t  on 
1[ , )t  , we have 1/ 1/( )r x r x      

1/[ ( ) / ]w x      on 
1[ , )t  . Thus, from (2.4) we obtain 

 
(1 ) /

( ) /
1/ (1 ) /

( )
( )

( )

w w
w q x

r

   
   

    

 
 


  

     for 1[ , )t t  . (2.5) 

Next, we consider the following three cases: 

Case (i). Let   . For 
1[ , )t t  , since 

1( ) ( ) ( ) 0x t x t x t    , we have 

 ( ) / ( ) /
1 1( ) ( ) ( ( )) :x t x t c         . (2.6) 

Case (ii). Let   . Then, for 
1[ , )t t   we get 

 ( ) /( ) ( ) 1x t     . (2.7) 

Case (iii). Let   . Since ( )( ( ))r t x t   is strictly decreasing on 
1[ , )t  , we 

have 

1 1( )( ( )) ( )( ( )) :r t x t r t x t b     for 
1[ , )t t  . 

Hence, we obtain 1/ 1/( ) ( )x t b r t    for 
1[ , )t t  . Integrating both sides of the 

last inequality from 
1t  to t , we have 

1

 1/ 1/
1  

( ) ( ) ( )
t

t
x t x t b r s s     for 

1[ , )t t  . Therefore, there exist a constant 
1 0b   and 

4 1t t  such that 

1

 1/ 1
1 1 

( ) ( ) : ( )
t

t
x t b r s s b u t     for 

4[ , )t t  . Hence, for 
4[ , )t t   we get 

 ( ) / ( ) /
2( ( )) ( ( ))x t c u t         , (2.8) 

where ( ) /
2 1: ( )c b    . Thus, for all , 0    and for 

4[ , )t t  , from (2.5)-(2.8) 

it follows that 

 
(1 ) /

1/ (1 ) /

( )

( )

w w
w q v

r

   

    

 
 


 

    . (2.9) 
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Taking ( 1) /    , 
1/

1/( 1)

( )v
X w

r




 


  and 

1/

/

( )

( )

r
Y

v

 

  


 



 , by (2.9) and 

Lemma 1.2 we obtain 

1

1

( / ) ( )

( 1) ( )

r
w q

v

 

 

  
 

 


  


  on 
4[ , )t  . 

Integrating both sides of the last inequality from 
4t  to t , we obtain 

4

1
 

4 41 

( / ) ( )( ( ))
( ) ( ) ( ) ( ) ( )

( 1) ( ( ) ( ))

t

t

r s s
q s s s w t w t w t

s v s

 

 

  
 

 



 
      

  for 
4[ , )t t  . 

Therefore, we get 
4

1
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( / ) ( )( ( ))
limsup ( ) ( ) ( )

( 1) ( ( ) ( ))

t

tt

r s s
q s s s w t

s v s

 

 

  
 

 




 
      

 , 

which contradicts (2.2). The proof is complete.                            

Next, we consider the case when 

 
0

 1/

 
( )

t
r t t      (2.10) 

holds, which implies that (2.1) doesn’t hold. 

Theorem 2.2 Assume that (S1), (S2) and (2.10) hold. Furthermore, assume that 

there exists a positive nondecreasing delta differentiable function   such that for 

all 
1 0T t t  , (2.2) and the following condition hold: 

  1/  1

  
( ) ( ) ( )

z

T T
r z k s q s s z


        (2.11) 

where 
 1/

 
( ) : ( )

t
k t r s s   . Then (1.1) is oscillatory. 

Proof Assume that x  is a nonoscillatory solution of (1.1). Without loss of 

generality, we may assume that x  is an eventually positive solution of (1.1). 

Then there exists 
1 0t t  such that ( ) 0x t   for 

1[ , )t t  . Proceeding as in the 

proof of Theorem 2.1, we obtain that 1( ) | ( ) | ( )r t x t x t    is strictly decreasing 

on 
1[ , )t   and is eventually of one sign. Therefore, there are two cases for the 
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sign of ( )x t . The proof when ( )x t  is eventually positive is similar to that of  

Theorem 2.1 and hence is omitted. 

Next, assume that ( )x t  is eventually negative. Then there exists 
2 1t t  

such that ( ) 0x t   for 
2[ , )t t  . Thus, from (1.1) we have 

 ( )( ( )) ( ) ( ) 0r t x t q t x t     for 
2[ , )t t  , which implies that ( )( ( ))r t x t   

is strictly increasing on 
2[ , )t  . Hence, we have ( )( ( )) ( )( ( ))r s x s r t x t      

for 
2s t t  . Then for 

2s t t   we conclude 1/ 1/( ) ( ) ( )( ( ))x s r s r t x t      . 

Integrating both sides of the last inequality from 
2t t  to z t  and letting 

z  , we get 

  1/ 1/ 1/

 

1/
2 2

( ) ( ) ( )( ( )) : ( ) ( )( ( ))

                                                          ( ) ( )( ( )) : ( )

t
x t r s s r t x t k t r t x t

k t r t x t ck t

  



   



    

  

  

for 
2[ , )t t  , where 1/

2 2: ( ) ( ) 0c r t x t    . Thus, from (1.1) we obtain 

 ( )( ( )) ( ) ( ) ( ) ( )r t x t q t x t c k t q t       for 
2[ , )t t  .  Integrating both sides 

of the last inequality from 
2t  to t , we have 

2 2

  

2 2   
( )( ( )) ( )( ( )) ( ) ( ) ( ) ( )

t t

t t
r t x t r t x t c k s q s s c k s q s s               

for 
2[ , )t t  . Hence, we obtain  

2

1/ 1

 
( ) ( ) ( ) ( )

t

t
x t r t c k s q s s


      for 

2[ , )t t  . Integrating both sides of the last inequality from 
2t  to t , we find 

 
2 2

1/  / 1
2   

( ) ( ) ( ) ( ) ( )
t z

t t
x t x t c r z k s q s s z


        for 

2[ , )t t  . Letting t   

and using (2.11), we see lim ( )
t

x t


  . This contradicts the fact that ( ) 0x t   

for 
1[ , )t t  . The proof is complete.                                   

Remark 2.1 From Theorems 2.1 and 2.2, we can obtain many different sufficient 

conditions for the oscillation of (1.1) with different choices of the function  . 
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For instance, let ( ) 1t  , then ( ) 0t   and Theorems 2.1 and 2.2 imply 

the following results, respectively. 

Corollary 2.1 Suppose that (S1), (S2) and (2.1) hold. Furthermore, assume that 

0

 

 
( )

t
q t t


   . Then (1.1) is oscillatory. 

Corollary 2.2 Suppose that (S1), (S2), (2.10) and (2.11) hold. Furthermore, 

assume that 
0

 

 
( )

t
q t t


   . Then (1.1) is oscillatory. 
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