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Abstract

Measurements of the exposure are often contaminated by the sys-

tematic error. The systematic error then causes inconsistent exposure

effect estimates and leads to erroneous conclusions to various degrees

in statistical analysis. While some methods develop to correct for mea-

surement error, techniques for correcting this still are controversial. In

this paper, we compare Bayesian and Non-Bayesian methods to correct

measurement error. This is performed both through theoretically and

simulations. We investigate the efficiency of these methods by estimat-

ing the effect of hypothetical exposure which is subject to measurement

error by sensitivity analysis.
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1 Introduction

In most statistical analysis the measurements of exposure are frequently
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subject to error [5, 7]. That is, the true values of exposure cannot be precisely

measured and we observe some contaminated measurements instead. The sys-

tematic error is here the difference between the value of true exposure, which is

unobserved, and the value, in which are observed, of measured. As is discussed

by many authors [3, 5, 7], measurement error reduces power of exposure effect

estimate on an outcome of interest. Ignoring this issue may lead to serious bias

estimate. Despite the rather elaborate work on correcting the measurement

error in exposure over the past decades, techniques for correcting this still are

controversial.

In non-Bayesian context the methods of simulation extrapolation (SIMEX)

and instrumental variable (IV) to surmount measurement error are carried out

during [2, 3]. SIMEXmethod originally proposed by Cook and Stefanski, which

is well suited to estimate and reduce the bias due to additive measurement er-

ror. While the literature on measurement error relies on the availability of an

auxiliary dataset, we establish the method of instrumental variable (IV) for

correcting measurement error [1]. To implement the instrumental variables

(IVs) remedy for the measurement error, one must have a variable an IV, that

is correlated with the true exposure and not the measurement error [1, 6].

Furthermore IV must be correlated with outcome only through its correlation

with exposure. The aim of this paper is to compare Bayesian and (two) non-

Bayesian methods for measurement error when exposure is subject to complex

error model. Further, a sensitivity analysis for the performance of considered

methods with different error variability was performed. Moreover, in this pa-

per, we deal the correction of measurement error when the structure of the

considered error model is different with classic and Berkson error models.

2 Complex Error Structure

Suppose that a model explores the relationship between a outcome Y and

exposure X by a conditionally mean function,

Yi = E(Yi|Xi) + εi (1)

where e.g, E(Yi|Xi) = β∗
0
+ β∗

x
Xi in linear, and E(Yi|Xi) = expit(β∗

0
+ β∗

x
Xi)

in nonlinear case [1, 6].

Complex error structure is deviation from the classical additive error [2]. This
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type of error allows correlation between errors in linear regression model with

the error in the exposure. That is

W = γ0 + γ1X + U (2)

where W is observed or error-prone exposure, and U refers to the measure-

ment error component independent of X (U ⊥⊥ X). This non-classical model

assumes the true exposure is biased, that is, E(W |X) 6= X. In addition,

it can be assumed the measurement error is non-differential. The assump-

tion of non-differential measurement error refers to the fact that the distribu-

tion of W depends only on the actual exposure X and not on the response

variable or other variables in the model. That is, the conditional distribu-

tion of f(y|x, w) is identical to the conditional distribution of f(y|x). Under

the assumption that (X,U, ε) are jointly normal distributed, we will obtain

β0 = β∗
0
+ β∗

x
µx − β1(γ0 + γ1µx) and

βw =
β∗
x
γ1σ

2

x
+ ρ

√

σ2
x
σ2
u

γ1σ2
x
+ σ2

u

(3)

where E(Yi|Wi) = β0 + βwWi.

3 Correcting Measurement Error Method

Over the past decades, a number of statistical techniques have been pro-

posed for correcting the impact of measurement error in an exposure X. The

choice of methods depends on the information distribution of the variables,

the magnitude of the error variance, and the type of error model. They indeed

differ according to the assumptions about the distribution of the unobserved

exposure X, the availability of additional data about the unobserved exposure

X and the theoretical background of the approach, which may be parametric

or nonparametric. In this section, we investigate two methods of non-Bayesian

so called simulation extrapolation (SIMEX) and instrumental variable (IV).

SIMEX is a useful tool for correcting measurement error in a very broad range

of settings. This is the only method that provides a visual display of the im-

pact of measurement error on regression parameter estimations. To use the

methods of IV, we start by making natural assumptions regarding the condi-

tional densities of all the variables of the model.
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Assumptions. (i) f(y|x, w, z) = f(y|x) and (ii) f(w|x, z) = f(w|x), where Z is

an instrumental variable. To use the Bayesian paradigm, the posterior density

of the unknown quantities is given by

f(x, θ|w, γ) ∝ f(x, w|γ, θ)f(θ) (4)

where f(x, θ|w, γ) is the joint posterior distribution of the true exposures X

and the observed exposure W , θ refers to the unknown parameter, and f(θ) is

prior distribution of θ.

4 Sensitivity Analysis

To compare of the considered methods, a sensitivity analysis of the mea-

surement error variability with assuming U ∼ N(µu = 0, σ2

u
= 0.25) in the

model (2) is carried out. All simulation results are based on 1000 replications.

The sensitivity analysis was carried out under the assumption of normality

and nondifferential measurement error. We have generated Z ∼ N(0, 1) as

continuous IV, W |Z ∼ N(0.5 + 0.25Z, σ2

w|z), and X|Z ∼ N(0.5 + 0.25Z, σ2

x|z).

For the Bayesian method (4), we consider the prior density of θ ∼ N(1, 4) and

conjugate posterior density. The results were summarized in Table I. Poste-

rior means and 95% equal-tailed credible intervals of the estimation obtained

for the models under the naive Bayesian analysis and the proposed Bayesian

method to correct for measurement error are depicted in Table 1. This table

indicates that under the two types of analysis, the point and credible intervals

estimates of the estimation under both cases are not similar, suggesting that

a slight adjustment is manifested for the level of measurement error exhibited

in the sensitivity analysis. Figure 1 shows how variability exits on the true

and observed exposure. In addition, it shows the the behaviour of Simulation

extrapolation method.
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Figure 1: True and error-prone, and prior distribution. The behavior of simu-

lation extrapolation method

5 Conclusion

In this paper we compare three methods of correcting complex systematic

measurement error. In sensitivity analysis shows Bayesian method performs

well under with small variance of U and outperform SEMIX and IV techniques.

While there is misspecified prior density and posterior density, sensitivity anal-

ysis shows IV and SEMIX are doing well and outperform Bayesian method.

Moreover, the analysis shows also in case where the variability of U is somewhat

large by postulating correct prior density and posterior density three consid-

ered methods are doing approximately the same (unreported). This might be

because the structure of measurement error is complex. We have also car-

ried out with the additive classic and Berkson error models. This shows three

considered methods are doing approximately the same (unreported) whether

misspecified prior and posterior density. The choice of the SIMEX approach al-
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Table 1: Sensitivity analysis where U is normally distributed in two cases with

µu = 0; σ2

u
= 0.5 and σ2

u
= 0.25

Methods Coefficient 95 % C.I. P.value

Bayesian 0.17 (0.03, 0.30) 0.04

SIMEX 0.33 (0.12, 0.65) 0.02

IV 0.45 (0.10, 0.85) 0.02

Bayesian -0.11 (-0.23, 0.04) 0.01

SIMEX -0.33 (-0.58, 0.31) 0.04

IV -0.29 (-0.14, 0.72) 0.07

lows us to consider linear or nonlinear regression models, because this approach

does not depend on the functional form of the measurement error model. In

general, SIMEX [3, 4], and IV can reduce the bias except for the structure of

complex error in simple linear regression. IV tends more relatively stable on

estimation with the increasing of measurement error compared with SIMEX.
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