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Analysis of stability about the CD4+

T-cells dynamics with nonlinear infection rate
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Abstract

In this paper, we analyze mathematical models for the infection of

human immunodeficiency virus-type 1(HIV-1) with target cells between

initial infection. Assuming that the infection among the cells can be ap-

proximated, we consider the classical mathematical model with nonlin-

ear infection rate. We prove that, if R0 ≤ 1, the HIV infection is cleared

from the T-cells population; if R0 > 1 the HIV infection persists.
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1 Introduction

The natural history of HIV infection and immunodeficiency that charac-

terizes AIDS typically falls into three stages. After infection with HIV-1, the

amount of virus measured in blood typically increases to high levels and flu-

like symptoms appear [2, 4]. After a few weeks, or in same cases months, this
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initial high level viremia disappears and, viral load stabilizes at some lower

values. Next, a variable but usually long period of clinical latency ensues, dur-

ing which the virus persists at a relatively stable level and the CD4+ T-cell

count gradually falls. The period, during which the patient is asymptomatic,

can last many years. In the final stages of the disease, the viral load usually

increases rapidly and the CD4+ T-cell count declines to a point at which the

immune system fails to provide protection against opportunistic infections.

Death usually occurs due to one of these infections.

In 1993, Perelson, Kirschner and De Boer proposed an ordinary differential

equation (ODE) model of cell-free viral spread of human immunodeficiency

virus (HIV) in a well-mixed compartment such as the bloodstream. Their

model consists of four components: uninfected healthy CD4+ T-cells, latently

infected CD4+ T-cells, actively infected CD4+ T-cells, and free virus [1, 3, 5].

2 Model

The body is believed to produce CD4+ T-cells from prursors in the bone

marrow and thymus at a constant rate s, and T-cells have a natural turn-over

rate α, and r is their growth rate(thus r > α in general). Then the CD4+

T-cells dynamics can be written by the following logistic equation:

Ṫ = s− αT + rT (1−
T

Tmax

), (2.1)

where T is the concentration of CD4+ T-cells and Tmax is their carrying ca-

pacity. If the popuiation ever reaches Tmax it should decrease, thus we impose

the constraint Tmaxα > s. The equation (2.1) has a single stable steady state

given by

T̂ =
Tmax

2r
(r − α +

√

(r − α)2 +
4rs

Tmax

(2.2)

In HIV infection, the most important determinant of a sustained virological

response is the clearance of infected cells during the period of viral inhibition.

The various models proposed to describe the fall in HIV differ principally in

their underlying assumptions regarding the nature and efficacy of the inhibition

of viral replication that is imposed upon the virus- host system by nucleoside

analogue therapy, the behavior of infected cell population after the commence-

ment of therapy and ultimately the residual effect of this population on the
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level of viraemia. Thus, in this paper, we investigate the model with nonlinear

infection rate, which is given by the following form:































Ṫ = s− αT + rT (1− T+I
Tmax

)− kT (t−τ)V (t−τ)
a+bT (t−τ)

+ ρI,

İ = kT (t−τ)V (t−τ)
a+bT (t−τ)

− βI + ρI,

V̇ = NβI + dV,

(2.3)

under the initial values

T (ξ) = ϕ1(ξ), I(ξ) = ϕ2(ξ), V (ξ) = ϕ3(ξ), ξ ∈ [−τ, 0],

ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, ϕ3(0) ≥ 0,

where, T , I and V denote the number of susceptible CD4+ T cells, infected

CD4+ T cells, and free HIV virus particles, respectively. Parameter α, β,

and d are natural death rate of the uninfected T cells, infected T cells, and

virus particles, respectively and τare assuming only positive values, ρ is the

rate of ”cure”. Because of the viral burden on the HIV infected T cells, we

suppose that α ≤ β. Each infected CD4+ T cell is assumed to produce N

virus particles during its life time, including any of its daughter cells.

A model for HIV infection similar to (2.3) but using a simplified logistic

growth rT (1 − T
Tmax

) for susceptible CD4+ T cells has been proposed in [1],

for the model (2.3), we show that, if R0 ≤ 1 the basic reproduction number,

the infection-free equilibrium E0 is globally asymptotically stable, the virus is

cleared and no HIV infection. If R0 > 1, E0 becomes unstable and the HIV

infection persists in the T-cells population. Then, a unique chronic infection

equilibrium E0 exists.

3 Local Stability and Permanence

The non-negative equilibria of the system (2.3) are E0(T̂ , 0, 0), E
∗(T ∗, I∗, V ∗),

where

T̂ =
Tmax

2r
(r − α +

√

(r − α)2 +
4rs

Tmax

,
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T ∗ = ad(ρ+β)
kNβ−bd(β+ρ)

,

I∗ =
s−αT ∗+rT ∗(1− T

∗

Tmax
)

β+r T∗

Tmax

,

V ∗ =
Nβ(s−αT ∗+rT ∗(1− T

∗

Tmax
))

d(β+r T∗

Tmax
)

,

Let E0(T 0, I0, V 0)be any arbitrary equilibrium. Then the characteristic equa-

tion about E0 is given by

∣

∣

∣

∣

∣

∣

∣

−α + r − 2eT 0

Tmax
− rI0

Tmax
− kαV 0e−λτ

(a+bT 0)2
− λ − rT 0

Tmax
+ β −kT 0e−λτ

a+bT 0

kαV 0e−λτ

(a+bT 0)2
−β − ρ− λ kT 0e−λτ

a+bT 0

0 Nβ −d− λ

∣

∣

∣

∣

∣

∣

∣

= 0.

For equilibrium E0(T̂ , 0, 0) reduces to

(−α + r −
2rT̂

Tmax

− λ)[λ2 + (β + ρ+ d)λ+ ρd+ βd−Nβ
kT̂ e−λτ

a+ bT̂
= 0.

Obviously, E0(T̂ , 0, 0) is locally asymptotically stable for T̂ < T ∗ and is a

saddle point. Let

R0 =
T̂

T ∗
=

Tmax[kNβ − bd(β + ρ)](r − α +
√

(r − α)2 + 4rs
Tmax

2rad(β + ρ)
,

which is called the basic reproductive number of the model (2.3).

When R0 < 1, the uninfected steady state E0 is stable and the infected steady

state E∗ doesn’t exist.

When R0 = 1, one eigenvalue is 0 and it is simple.

When R0 > 1, E0 becomes unstable and E∗ exist.

Thus, the basic reproductive number R0 determines the dynamical properties

of system (2.3) over a long period of time.

Remark 3.1. If R0 < 1, E0 is locally asymptotically stable. If E0 is locally

stable. If R0 > 1, E0 is a saddle point with a two-dimensional stable manifold

and a one-dimensional unstable manifold.
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In case of positive delay, the characteristic equation around the point

E0(T 0, I0, V 0) is given by

P (λ) +Q(λ)e−λτ = 0,

P (λ) = λ3 + p1λ
2 + p2λ+ p3,

Q(λ) = q1λ
2 + q2λ+ q3,

where

p1 = α− r +
2rT 0

Tmax

+
rI0

Tmax

+
kaV 0

(a+ bT 0)2
+ d+ ρ,

p2 = (α− r +
2rT 0

Tmax

+
rI0

Tmax

)(
kaV 0

(a+ bT 0)2
+ d+ ρ) +

kadV 0

(a+ bT 0)2
+ ρd,

p3 = d(α− r +
2rT 0

Tmax

+
rI0

Tmax

)(
kaV 0

(a+ bT 0)2
+ ρ),

q1 =
kaV 0

(a+ bT 0)2
,

q2 =
kaV 0

(a+ bT 0)2
(d+ 2ρ−

2rT 0

Tmax

+
rI0

Tmax

)−Nρ
kT 0

a+ bT 0
,

q3 =
kaV 0

(a+ bT 0)2
(2ρ−

2rT 0

Tmax

+
rI0

Tmax

) + (α− r +
2rT 0

Tmax

+
rI0

Tmax

)Nβ
kT 0

a+ bT 0

The steady state is stable in the absence of delay (τ = 0), if the roots of

P (λ) +Q(λ) = 0, λ3 + (p1 + q1)λ
2 + (p2 + q2)λ+ p3 + q3 = 0,

where

p1 + q1 = α +
ρI0

T 0
+

2rT 0

Tmax

+
rI0

Tmax

+ ρ+ d+
2kaV 0

(a+ bT 0)2
= β + s+M0 > 0,

p2 + q2 = (α +
βI0

T 0
+

2rT 0

Tmax

+
rI0

Tmax

) + (ρ+ d+
2kaV 0

(a+ bT 0)2
)

+Nβ
kT 0

a+ bT 0
(

dkaV 0

(a+ bT 0)2
+ ρd) +

kaV 0

(a+ bT 0)2
(
kaV 0

a+ bT 0
+ d+ 2ρ−

rI0

Tmax

)

p3 + q3 = (α +
βI0

T o
+

2rT 0

Tmax

+
rI0

Tmax

)(
kaV 0

(a+ bT 0)2
+ ρ) +

kaV 0

(a+ bT 0)2
(

kaV 0

(a+ bT 0)2

+ 2ρ−
rI0

Tmax

+Nβ(α +
βI0

T 0
+

2rT 0

Tmax

+
rI0

Tmax

)

(p2 + q2)(p1 + q1)− (p3 + q3) > 0,
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Theorem 3.1. If

(i)R0 > 1, (ii)M0 ≥ 0, (iii) (p2 + q2)(p1 + q1)− (p3 + q3) > 0,

then the positive equilibrium E∗(T ∗, I∗, V ∗) is locally asymptotically stable.

It is to see that solution of the system (2.3) always exists and stays positive

and bounded. In fact, it is obvious for system (2.3), we have

lim
t→∞

T (t) ≤ T̂ =
Tmax

2r
[r − α +

√

(r − α)2 +
4rs

Tmax

]

Then there is a t1 ≥ 0 such that for any sufficiently small ε0, we get

T (t) ≤ T̂ + ε0,

for t > t1.

Theorem 3.2. There exists an M > 0 such that for any positive solution

(T (t), I(t), V (t)) of the system (2.3), I(t) < M, V (t) < M, for all large t.

Proof. Let

L1(t) = T (t) + I(t).

Calculating the derivative of L1(t) along the solutions of the system (2.3), we

can find

L̇1(t) = s− αT (t) + rT (t)(1−
T (t) + I(t)

Tmax

)− βI(t)

≤ −αT (t)− βI(t) + rT (t)−
rT (t)2

Tmax

+ s ≤ −αL1(t) +M1,

here M1 =
rTmax+4S

4
. Recall that T (t) ≤ T̂ + ε0, for all t > t1.

Then there exists an M2 > 0, depending only on the parameters of the model

(2.3), such that L1(t) < M2, for t > t1. Then I(t) has an ultimately above

bound. It follows from the third equation of (2.3) that V (t) has an ultimately

above bound. Say, their maximum is M. Then, the proof of Theorem 3.2 is

completed.
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4 Estimation of the length of delay to preserve

stability

Firstly, we give the following lemma.

Lemma 4.1. (Nyquist criterion). If L is the arc length of a curve encircling

the right half-plane, the curve P̄J(L) will encircle the origin a number of times

equal to the difference between the number of poles and the number of zeroes

of P̄J(L) in the right half-plane.

We consider the system (2.3) and the space of all real valued continuous

functions defined on [−τ, 0] satisfying the initial conditions (2.3) on [−τ, 0].

We linearize the system (2.3) about its interior equilibrium E0(T 0, I0, V 0) and

get































Ṫ = (−α + r − 2rT 0

Tmax
− rI0

Tmax
)T − kaV 0T (t−τ)

(a+bT 0)2
+ (ρρ− rI0

Tmax
)I − kT 0V (t−τ)

a+bT 0 ,

İ = kaV 0T (t−τ)
(a+bT 0)2

− (β + ρ)I − kT 0V (t−τ)
a+bT 0 ,

v̇ = NβI − dV,

(4.1)

Taking Laplace transform of the system given by (4.1), we get

(ξ + α− r +
rI0

Tmax

+
kaV 0e−λτ

(a+ bT 0)2
)LT (ξ)

=
kaV 0e−λτ

(a+ bT 0)2
K1(ξ) + (ρ−

rI0

Tmax

)LI(ξ) −
kT 0e−λτ

a+ bT 0
LV (ξ) −

kT 0e−λτ

a+ bT 0
K2(ξ) + T (0),

(ξ + β + ρ)LI(ξ)

=
kaV 0e−λτ

(a+ bT 0)2
LT (ξ) +

kaV 0e−λτ

(a+ bT 0)2
K1(ξ)−

kT 0e−λτ

a+ bT 0
LV (ξ) −

kT 0e−λτ

a+ bT 0
K2(ξ) + I(0),

(d+ ξ)LV (ξ) = NβLI(ξ) + V (0), (4.2)

where

K1(ξ) =

∫

∞

0

e−ξτT (t)dt,K2(ξ) =

∫

∞

0

e−ξτI(t)dt,

and LT , LI , LV are the Laplace transform of T (t), I(t) and V (t), respec-

tively. Using Nyquist criterion, it can be shown that the conditions for local
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asymptotic stability of E∗(T ∗, I∗, V ∗) are given by

{

ImH(iw) > 0,

ReH(iw) > 0,
(4.3)

where H(ξ) = wξ3 + p1ξ
2 + p2ξ + p3 + e( − ξτ)(q1ξ

2 + q2ξ + q3) and W0 is

the smallest positive root of (4.3). Now substituting λ = iw(w > 0) into (4.3)

and separating the real and imaginary parts we obtain the following

p3 − P1(w0)
2 = (q1w0 − q3w0) cos(w0τ)− q2w0 sin(w0τ),

w0p2 + q1w0 − (w0)
3 > −(q1w0 − q3) sin(w0τ) + q2w0 cos(w0τ), (4.4)

if satisfied simultaneously, are sufficient conditions to guarantee stability. We

shall utilize them to get an estimate on the length of delay. Our aim is to

find an upper bound w+ on w0, independent of τ and then to estimate τ so

that (4.3) holds for all values of w, w ≤ w ≤ w+ and hence in particular at

w = W0. We rewrite (4.4) as

p1w
2 = p3 + (q1w − q3) cos(wτ)− q2w sin(wτ). (4.5)

Maximizing p3 + (q1w − q3)cos(wτ)− q2w sin(wτ) subject to | sin(w0τ)| ≤ 1,

| cos(w0τ)| ≤ 1 we obtain

p1w
2 ≤ p3 + |q1w

2 − q3|+ q2w. (4.6)

Hence, if

w+ =

√

p3 + |q1w2 − q3|+ q2w

p1
, (4.7)

then clearly from (4.7) we have w0 ≤ w+. From(4.4) we obtain

(w0)
2 < p2 + q1 + q1 sin(w0τ)−

q3

w0

sin(w0ττ)− q2 cos(w0τ). (4.8)

As E∗ is locally asymptotically stable for τ = 0, therefore sufficiently small

τ > 0, (4.8) will continue to hold. Substituting 4.5 in 4.8 and rearranging we

get,

(q1w
2 − q3 − p1q2) cos(w0τ) + (

p1q3

w0

− q2w0 − p1q1(w0)
2) sin(w0τ) ≤ p1p2 − q3,

(4.9)
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Using the bounds

(q1w
2
0 − q3 − p1q2) cos(w0τ) ≤ (q1w

2 − q3 − p1q2)τ
2,

p1q3

w0

− q2w0 − p1q1w
2
0 ≤ (

p1q3

w0

− q2w0 − p1q1w
2
0)τ,

we obtain from (4.9)

K1τ
2 +K2τ < K3,

where

K1 = q1w
2
0 − q3 − p1q2, K2 =

p1q3

w0

− q2w0 − p1q1w
2
0, K3 = p1p2 − q3.

Hence, if τ+ = 1
2K1

(−K2 +
√

(K2)2 + 4K1K3), then stability is preserved for

0 ≤ τ ≤ τ+.
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