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Abstract

In this paper, some results of existence and uniqueness of solution of

a semi-linear parabolic problem describing the evolution of a population

subjected to a disease are presented. The population is structured into

two compartments the healthy individuals and the infected individuals

who interact between them. A continuous variable representing a be-

havioral risk is introduced. The asymptotic in time of the problem is

studied, and the existence of a non zero stationary state is proved. The

question we would like to investigate is does it exist a segmentation of

the population (here a safety group and a risky group) in the same way

as in food models with two nutriments. To answer this question, some

numerical results concerning the distribution of the population accord-

ing to the variable representing a behavioral risk are presented within

the disease of the HIV-AIDS in Mali.
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1 Introduction

Most mathematical models of infectious disease assume homogeneous mix-

ing, and so each individual is equally likely to infect any other individual.

However, real populations do not mix homogeneously: individuals tend to mix

in small groups. This has a significant impact on the spread of diseases. In

this work, we investigate the spread of an infectious disease with a simple

model aiming to describe a population structured with respect to a behavioral

risk. More precisely, we represent a population by its density of individuals

f(t, x) ≥ 0, which is structured with a risk variable x. Here x is a continuous

variable, x ∈ X = (0, 1), and time interval is denoted by (0, T ) where T > 0).

For x = 0, the behavior is considered without any risk, and for x = 1, the

behavior is considered highly risky. It is supposed that x ≤ 1/2 characterizes

the compartment of healthy individuals, and that x > 1/2 characterizes the

compartment of the infected individuals. Similar models were considered in

epidemiology in [11], [4] for example.

We assume that the density f(t, x) is subjected to a phenomenon of isotropic

diffusion due to the interactions between individuals. This phenomenon of dif-

fusion is represented by the term D∂2xf(t, x) in which D, a constant, represents

the coefficient of diffusion. To keep the presentation as much clear as possible,

we do not treat the case where the diffusion is not isotropic (as in [11] for

example).

Finally, we consider a phenomenon of interaction between the individuals, rep-

resented by the logistical term:

af(t, x)[K −

∫

X

B(x− y)f(t, y)dy]

where a is the rate of infection, K the number of infected,

∫

X

B(x− y)f(t, y)dy

the term of interaction of usual usage in epidemiology.

Combining the effects of diffusion and those due to interaction between the

individuals of different behaviors, we obtain the following equation:

∂tf(t, x) = D∂2xf(t, x) + af(t, x)[K −

∫

X

B(x− y)f(t, y)dy]. (1)

So that the model to be complete, we need to specify the kernel B. The

individuals live in quite homogeneous communities described with the variable
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x and these communities interact depending on their neighborhood of order d.

In this paper we consider that the individuals mainly interact except in their

neighborhood of order d. Which means that individuals are distant from a

distance at least d. The kernel of interaction B is defined in the following way.

For 0 < B1 << 1 and 0 < d <
1

2
be fixed, define the following functions for

everything x ∈ [0, 1]

b1(z) =







1 if z ∈ [d, x]

B1 elsewhere;

b2(z) =







1 if z ∈ [x− 1,−d]

B1 elsewhere;

define

B(z) =
1

1− 2d
[b1(z) + b2(z)] pour z ∈ [−1, 1].

The following estimates are verified:

B2 =
2B1

1− 2d
≤ B(z) ≤

1 +B1

1− 2d
= B3 ∀z ∈ [−1, 1].

Let us notice that Equation (1) can be considered as a particular regime of

presented models in [11] in the case of an asexual reproduction by taking:

µ = D a constant; n(t, x, v) = aK a constant;

σ(t, x, v,
∫

L(t, x, v, v
′

)f(t, x, v
′

)dv
′

) = a
∫

X
B(x− y)f(t, y)dy.

By using the definition of the convolution product, Equation (1) reads:

∂tf(t, x) = D∂2xf(t, x) + af(t, x)[K − B ∗ f(t, x)]. (2)

The obtained model is a semi-linear parabolic equation. We then add the

following initial condition, the value of density f at time t = 0.

∀x ∈ X ; f(0, x) = g0(x).

Moreover the population is assumed to be isolated. Then we have Neumann’s

conditions as boundary conditions:

∀t ∈ [0, T ] ; ∂xf(t, x) = 0 for x = 0, and for x = 1
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By introducing the following notations X =]0, 1[; QT = (0, T )×X the problem

we are dealing with reads: find f solution to

(P.I)



















∂tf(t, x)−D∂2xf(t, x) = af(t, x)[K −B ∗ f(t, x)] in QT ;

∂xf(t, 0) = ∂xf(t, 0) = 0 ∀t ∈ [0, T ]

f(0, x) = g0(x) ; ∀x ∈ X

Section 2 is devoted to a mathematical investigation of the model. Arguing

in the same way as in [11], a fixed point method yields existence and uniqueness

of the solution to Problem (P.I). Positivity of the solution is a consequence

of the strong maximum principle. Next, in section 3 the asymptotic in time

of the solution to Problem (P.I) is considered. Existence of time independent

solutions is proved by using a Leray-Schauder’s fixed point Theorem. Section

4 is dedicated to numerical experiments. It is shown that contrary to some

food models with two nutriments, it does not appear a structuring in two

groups in the population, but it exists two peaks over a mean distribution.

The example of the HIV-AIDS disease in Mali is handled with the model, and

some predictive results are discussed.

2 Mathematical investigations of the model

In what follows, the hypothesis H1;H2 are assumed to hold true.

1. (H1): a ≥ 0, K ≥ 0;

2. (H2): g0 ∈ C2(0, 1) \ {0} nonnegative; and g′(0) = g′(1) = 0.

Concerning solutions to Problem (P.I) we have.

Theorem 2.1. Assume the hypotheses (H1) and (H2) are satisfied. Then

there is a unique positive function f in C1((0, T ), C2(X)) solution to Problem

(P.I).

Proof.

A classical method of fixed point in L∞(0, T ;L2(X)) is used. Introduce a

linearized Problem (P.A) generating a sequence {fn}n∈N which converges to-

wards the solution to Problem (P.I). The proof is decomposed in two steps.
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First it is proved that the sequence has positive elements, then it converges.

Let f0 ∈ C1[0, 1] be a nonnegative function, recursively define the sequence

{fn}n∈N of solutions to the following problem:

(P.A)



















∂tfn+1(t, x)−D∂2xfn+1(t, x) + a(B ∗ fn(t, x))fn+1(t, x) = aKfn(t, x) in QT ;

∂xfn+1(t, 0) = ∂xfn+1(t, 1) = 0 in [0, T ];

fn+1(0, x) = g0(x); in X.

Lemma 2.2. Let us suppose the hypotheses (H1) and (H2) are satisfied,

and that f0 ∈ C1(QT ) is positive. Then for all 0 < n there is a unique positive

solution to Problem (P.A) fn ∈ C1((0, T );C2(X)). Furthermore it exists 0 < C

independent of T such as

‖fn+1‖L∞(0,T ;H1(X)) ≤ C‖fn‖L2(QT )

Proof.

Arguing recursively and let fn ∈ C1(QT ) be positive. Now a technical

result which we shall use several times is given.

Lemma 2.3. Let O ⊂ R
q be an open subset, ψ ∈ C1(O;R+) be given

different from zero such as ‖Dψ‖ L∞

(O)
≤ C. Then ∀y ∈ O, there exists

0 < η < 1 such that if we set Rη =
ψ(y)

η‖Dψ‖L∞(O)
, we have:

ψ(y)

η
≤ ψ(x) ∀x ∈ B(y,Rη) ∩O.

Let us remark that Lemma 2.3 applies with the positive function fn, and

that there exist η, (tη, xη) ∈ QT such as B((tη, xη), Rη)∩QT = B((tη, xη), Rη).

That leads to the existence of

0 < Bn = B2
fn(tη, xη)

η‖Dfn‖L∞(QT )

such as 0 < Bn ≤ B ∗ fn(t, x) (3)

for all (t, x) ∈ QT . The existence of a weak solution fn+1 ∈ L2(0, T ;H1(X)) ∩

C0(0, T ;L2(X)) is shown as in [6] Theorem 3 P; 356. Since fn ∈ L2(QT )

the results of regularity given in Theorem 5 p.360 [6], claim that fn+1 ∈

L2(0, T ;H2(X)) ∩ L∞(0, T ;H1(X)), d
dt
fn+1 ∈ L2(0, T ;L2(X)). Then, The-

orem 6 P. 365 in [6] applies when the right hand side of the first equation

of Problem (P.A) is aKfn(t, x) − a(B ∗ fn(t, x))fn+1(t, x), and we obtain
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that d2

dt2
fn+1 ∈ L2(0, T ;L2(X)) ∩ L∞(0, T ;H2(X)). Finally we deduce that

fn+1 ∈ C1(QT ) ∩ C
1((0, T );C2(X)).

Now we are going to prove that fn+1 is positive by using a comparison argu-

ment. Introduce the constant

Bn = aB3 sup
(t,x)∈QT

|fn|

and let v ∈ C1((0, T );C2(X)) be solution to



















∂tv(t, x)−D∂2xv(t, x) +Bnv(t, x) = aKfn(t, x) in QT ;

∂xv(t, 0) = ∂xv(t, 1) = 0 in [0, T ];

v(0, x) = g0(x); in X.

The reader is referred for example to [8] for the properties of the operator

A = −D∂2x + Bn with homogeneous Neumann’s boundary conditions. It is

the generator of a strongly continuous semi-group, thus there exist 0 < β, and

0 < M such that ‖etA‖ ≤ Me−βt, and we have the following representation

formula:

v(t, x) = etAg0(x) +

∫ t

0

e(t−s)AaKfn(s, x) ds.

The maximum principle claims that v is nonnegative, and Hypothesis (H2)

and Lemma 2.3 allow us to conclude that there exists xη ∈ (0, 1) such as for

all 0 ≤ t ≤ T and for all y ∈ B(xη, Rη) we have

1

η
g0(xη)e

tA ≤ v(t, y).

The principle of comparison [8] applies and we have that v ≤ fn+1 in QT . So

fn+1 is nonnegative, and verifies the following estimate in QT

1

η
inf

0<y<1
g0(y)e

tA ≤ fn+1(t, x) ≤ sup
0<y<1

g0(y) +
aKB2M

β
sup

(t,x)∈QT

|fn|. (4)

The strong maximum principle implies that if the minimum of fn+1 is reached

in QT then fn+1 is a constant, which contradicts Problem (P.A), since for

example, g0 is not assumed to be a constant. �

Remark 2.4. If g0 and f0 are nonnegative and one is different from zero,

then fn+1 is positive.



M. Alassane, O. Diallo and J. Pousin 63

Now we consider the convergence of the sequence. Let us prove that (fn)n∈N

is a Cauchy’s sequence in L∞([0, T ], L2(X)). Evaluate the expression

‖(fn+1 − fn)(t)‖L2(X)). For all (t, x) ∈]0, T [×X we have:

∂tfn+1(t, x)−D∂2xfn+1(t, x) + a(B ∗ fn(t, x))fn+1(t, x) = aKfn(t, x), (5)

∂tfn(t, x)−D∂2xfn(t, x) + a(B ∗ fn−1(t, x))fn(t, x) = aKfn−1(t, x). (6)

The difference (5)-(6) reads

∂t(fn+1(t, x)− fn(t, x))−D∂2x(fn+1(t, x)− fn(t, x)) + a(B ∗ fn(t, x))fn+1(t, x)

−a(B ∗ fn−1(t, x))fn(t, x) = aK(fn(t, x)− fn−1(t, x)).

Multiplying by fn+1(t, x)− fn(t, x) we obtain:

1
2
∂t(fn+1(t, x)− fn(t, x))

2 −D(fn+1(t, x)− fn(t, x))∂
2
x(fn+1(t, x)− fn(t, x))

+a[(B ∗ fn(t, x))fn+1(t, x)− (B ∗ fn−1(t, x))fn(t, x)](fn+1(t, x)− fn(t, x))

= aK(fn(t, x)− fn−1(t, x))(fn+1(t, x)− fn(t, x))

or

1
2
∂t(fn+1(t, x)− fn(t, x))

2 −D(fn+1(t, x)− fn(t, x))∂
2
x(fn+1(t, x)− fn(t, x))

+a[(B ∗ fn(t, x))(fn+1(t, x)− fn(t, x)) +B ∗ (fn(t, x)− fn−1(t, x))]

(fn+1(t, x)− fn(t, x)) = aK(fn(t, x)− fn−1(t, x))(fn+1(t, x)− fn(t, x)).

Integrate on X and use the Green’s formula:

1

2

∫

X

∂t|fn+1(t, x)− fn(t, x)|
2dx

+ D

∫

X

|∂x(fn+1(t, x)− fn(t, x))|
2dx+ a

∫

X

(B ∗ fn(t, x))|fn+1(t, x)− fn(t, x)|
2dx

≤ aB3‖fn(t, x)− fn−1(t, x)‖L2(X)‖fn+1(t, x)− fn(t, x)‖L2(X)

+ aK

∫

X

|fn(t, x)− fn−1(t, x)||fn+1(t, x)− fn(t, x)|dx.

By using the bound from below (3) and by integrating on [0, t] we have the

following estimate:

1
2
‖(fn+1 − fn)(t)‖

2
L2(X) +D

∫ t

0

∫

X
|∂x(fn+1 − fn)(x, s)|

2dxds+

aBn

∫ t

0

∫

X
|fn+1 − fn)(x, s)|

2dxds

≤ (aB3 + aK)
∫ t

0

∫

X
|(fn+1 − fn)(x, s)||(fn − fn−1)(x, s)|dxds.
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For every 0 < α, he Young’s inequality yields:

1

2
‖(fn+1 − fn)(t)‖

2
L2(X) + aBn

∫ t

0

‖(fn+1 − fn)(s)‖
2
L2(X)ds

−(aB3 + aK)
α2

2

∫ t

0

‖(fn+1 − fn)(s)‖
2
L2(X)ds

≤
1

2α2
(aB3 + aK)

∫ t

0

‖(fn − fn−1)(s)‖
2
L2(X)ds

or

1

2
‖(fn+1 − fn)(t)‖

2
L2(X) +

[

aBn − (aB2 + aK)
α2

2

]

∫ t

0

‖(fn+1 − fn)(s)‖
2
L2(X)ds

≤
1

2α2
(aB3 + aK)

∫ t

0

‖(fn − fn−1)(s)‖
2
L2(X)ds.

Choose α such that aBn − (aB3 + aK)α
2

2
> 0, we have:

‖(fn+1 − fn)(t)‖
2
L2(X) ≤

1

α2
(aB2 + aK)

∫ t

0

‖(fn − fn−1)(s)‖
2
L2(X)ds.

Let λ1 =
1

α2
(aB3 + aK) we have:

‖(fn+1 − fn)(t)‖
2
L2(X) ≤ λ1

∫ t

0

‖(fn − fn−1)(s)‖
2
L2(X)ds.

Now, let us define the following L∞(0, T, λ, L2(X)) norm by:

‖f‖L∞(0,T,λ,L2(X)) = sup
0≤t≤T

‖|f(t, .)|e−λt‖L2(X)

From the previous estimate we deduce:

‖(fn+1 − fn)(t)‖
2
L2(X) ≤ λ1

∫ t

0

‖(fn − fn−1)(s)‖
2
L2(X)e

λse−λsds,

so

‖(fn+1 − fn)(t)‖
2
L2(X)e

−λt ≤
λ1
λ
(eλt − 1)e−λt‖fn − fn−1‖

2
L∞(0,T,λ,L2(X))

which gives

‖fn+1 − fn‖
2
L∞(0,T,λ,L2(X)) ≤

λ1
λ
‖fn − fn−1‖

2
L∞(0,T,λ,L2(X)).
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Choose λ so such that λ1
λ
< 1. Arguing recursively, it comes:

‖fn+1 − fn‖
2
L∞(0,T,λ,L2(X)) ≤ λn‖f1 − f0‖

2
L∞(0,T,λ,L2(X)).

Finally we deduce:

∀m ∈ N , ∀p ∈ N
∗ , ‖fm+p−fm‖

2
L∞(0,T,λ,L2(X)) ≤ λm

1− λp

1− λ
‖f1−f0‖

2
L∞(0,T,λ,L2(X)).

Ifm→ ∞ then λm
1− λp

1− λ
‖f1 − f0‖

2
L∞(0,T,λ3,L2(X)) → 0 because ‖fn‖L∞(0,T,L2(X))

is bounded according to (4).

So the sequence (fn)n∈N is a Cauchy’s sequence in L∞(0, T, λ, L2(X)) which

is a Banach. Finally the sequence (fn)n∈N converges in L∞(0, T, λ, L2(X)) to-

wards a function noted f . Lemma 2.2 and a continuity argument show that

Problem (P.A) has a fixed point f which is the solution to Problem (P.I). �

3 Asymptotic with respect to time of the so-

lution to Problem (P.I)

In this subsection, the behavior for large times of the solution to Problem

(P.I) is investigated. First, the limit problem denoted stationary problem,

is introduced and we prove the existence of a solution f ∈ H2(X) for this

problem.

Let us consider the following stationary problem (P.S):

(P.S)



















−Df
′′

(x) = a[K − (B ∗ f(x))]f(x) in X

f
′

(0) = f
′

(1) = 0.

Theorem 3.1. Assume the hypotheses (H1) to be satisfied, then there exists

a unique nonegative f ∈ H2(X) solution of the stationary problem(P.S).

Proof. To get existence of solutions, Leray-Schauder fixed point Theorem is

used. Define the following operators:

A : L∞(X) → H2(X)

ψ 7→ Aψ = θ
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solution to
−Dθ

′′

(x) + θ(x) = ψ(x) in X

θ
′

(0) = θ
′

(1) = 0.

N : L∞(X) → L∞(X)

ψ 7→ ψ + a[K − (B ∗ ψ)]ψ

According to the Rellich-Kondrachov compactness Theorem we have:

Lemma 3.2. The operator A ∈ L(L∞(X);L∞(X)) is compact. The opera-

tor N is continuous.

It is obvious that Problem (P.S) is equivalent to:

ϕ = AN(ϕ).

Let Y = {ψ ∈ L∞(X); 0 ≤ ψ}. Invoking Theorem 4 p. 504 in ([6]), we have to

prove that for all 0 ≤ λ ≤ 1, ϕλ = λAN(ϕλ) remains bounded in Y irrespective

of λ.

First observe that for 0 < λ ≤ 1 solutions ϕλ ∈ Y to

1

λ
A−1ϕλ = N(ϕλ)

are more regular. Thus by integrating on X the previous equation, from the

bounds for function B, we have the following estimate:

K

B3

≤ ‖ϕλ‖L1(X) ≤
K

B2

.

The following bound from below for B ∗ ϕλ is deduced;

KB2

B3

≤ B2

∫

X

ϕλ(x) dx ≤ B ∗ ϕλ.

Multiply Equation (3 ) by ϕλ, and integrate by parts, the previous inequality

allows us to estimate

1

λ

∫

X

(ϕ′
λ)

2 dx+
aKB2

B3

‖ϕλ‖
2
L2(X) ≤ aK‖ϕλ‖L1(X)‖ϕλ‖L∞(X) ≤

aK2

B2

‖ϕλ‖L∞(X).

Define Cm = min(1, aKB2

B3
), and let Ci be the the Sobolev embedding constant

of H1(X) into L∞(X), then we have:

CmCi‖ϕλ‖
2
L∞(X) ≤

aK2

B2

‖ϕλ‖L∞(X).
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Consequently, irrespective of λ, a bound for ‖ϕλ‖L∞(X) is obtained. �

In this subsection the convergence of the solution to Problem (P.I) towards

a solution to Problem (P.S) is investigated. Let us remind the bound from

below given in (3) for the function f :

0 < S = B2
f 2(tη, xη)

2η‖Df‖L∞(QT )

such that 0 < S ≤ B ∗ f(t, x). (7)

The maximum principle gives the following estimation:

‖f‖L∞(QT ) ≤
K

B2

(8)

.

Theorem 3.3. The solution f to problem (P.I) converges towards f ∈

H2(X), a solution to Problem (P.S) when t goes to +∞.

Proof. Take the difference of the two following equations:

∂tf −D∂2xf + a(B ∗ f)f = aKf.

−D(f)
′′

+ a(B ∗ f)f = aKf.

The difference f − f verifies:

∂t(f − f)−D∂2x(f − f) + a(B ∗ f)f − a(B ∗ f)f = aK(f − f).

or equivalently

∂t(f − f)−D∂2x(f − f) + a(B ∗ f)(f − f) + aB ∗ (f − f)f = aK(f − f).

Multiply this equation by f − f

1
2
d
dt
(f − f)2 −D(f − f)∂2x(f − f) + a(B ∗ f)(f − f)2 + aB ∗ (f − f)f(f − f) =

aK(f − f)2.

By taking into account the bound from below of 0 ≤ (B ∗ ψ)φψ for all 0 ≤ φ,

we have the following estimation:

1

2

d

dt
(f − f)2 −D(f − f)∂2x(f − f) + a(B ∗ f)(f − f)2 ≤ aK(f − f)2.
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Integrate on X and use the Green’s formula, we have:

1

2

d

dt

∫

X

|f−f |2dx+D

∫

X

|∂x(f−f)|
2dx+a

∫

X

(B∗f)|f−f |2dx ≤ aK

∫

X

|f−f |2dx.

or
1

2

d

dt

∫

X

|f − f |2dx+ a

∫

X

(B ∗ f)|f − f |2dx ≤ aK

∫

X

|f − f |2dx.

By using (7) and the L∞ bounds for f (8) and f we have:

1

2

d

dt

∫

X

|f − f |2dx+ aS

∫

X

|f − f |2dx ≤ 4aK
a2K4

C2
mC

2
i B

2
2

a2K2

B2
2

.

Define α = 2aS and β = 8aK
a2K4

C2
mC

2
i B

2
2

a2K2

B2
2

, it comes:

d

dt
‖f − f‖2L2(X) + α‖f − f‖2L2(X) ≤ β.

Let us introduce q(t) = ‖f − f‖2L2(X), the function q verifies the following

differential inequality:
d

dt
q(t) + αq(t) ≤ β (9)

or equivalently
d

dt
[eαtq(t)] ≤ βeαt.

By integrating between 0 and t we have:

0 ≤ q(t) ≤ e−αtq(0) + β

∫ t

0

e−α(t−τ)dτ.

Now integrate (9) between t and t+ 1 and define the function

h(t) =

∫ t+1

t

q(s)ds, it is obvious that h verifies the same inequation as q with

a different initial condition. Therefore the following estimation holds true:

h(t) ≤ e−αth(0) + β

∫ t

0

e−α(t−τ)dτ

≤ e−αth(0) +
β

α
.

Define cb =
β

α
, it comes:

h(t) ≤ e−αth(0) + c. (10)
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Now let us integrate (9) from t to s for t < s < t+ 1

q(s) ≤ eα(t−s)q(t) +
β

α
e−αs

∫ s

t

eατdτ

≤ eα(t−s)q(t) + cb[1− eα(t−s)].

Since t < s, we have:

q(s) < q(t) + cb. (11)

Integrate ( 11) with respect to t for s− 1 < t < s:

∫ s

s−1

q(s)dt ≤

∫ s

s−1

q(t)dt+

∫ s

s−1

cbdt

or

q(s) ≤

∫ s

s−1

q(t)dt+

∫ s

s−1

cbdt. (12)

Combining (10) and (12), we have:

q(s) ≤ h(s− 1) +

∫ s

s−1

cbdt

q(s) ≤ e−α(s−1)h(0) + 2

∫ s

s−1

cbdt.

So we have:

lim
s→+∞

q(s) = 0 because s and s− 1 have the same limit at +∞.

Consequently the solution of Problem (P.I) converges towards a solution of

Problem (P.S) when t goes to +∞. �

4 Numerical results

Within the case the spread of HIV-AIDS in Mali, in this section, a finite

difference method is used for the (P.S.) model to investigate numerically the

segmentation of the sexually active population of the Mali in two compart-

ments, a risky one and a safety one.

The numerical computations are conducted with non dimensional quanti-

ties.
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Let I = 100, the space step is defined by:

∆x =
1

I
.

Introduce the family of points {xi} defined by:

xi = i∆x for 0 ≤ i ≤ I.

The time step ∆t = 0.01 is fixed according to:

D∆t

(∆x)2
≤ 0.5. (13)

the family of time points {tn} is defined by:

tn = n∆t for 0 ≤ n.

The solution to Problem (P.I) is approximated at points (tn, xi) by

f(tn, xi) ∼ fni computed recursively with the following scheme: for {f 0
i }

i=100
i=0

to be given with f 0
j = f 0

j+1 for j = {0, 99};























fn+1
j = fn+1

j+1 for j = {0, 99};

fn+1
i = fni +

D∆t

(∆x)2
(fni+1 − 2fni + fni−1) + a∆tfni (K −∆x

I
∑

l=0

B(xi, xl)f
n
l )

for 1 ≤ i ≤ 99

(14)

Observe that Condition (13) is a CFL condition for the backward Euler’s

scheme (14), thus the positivity of the approximated density function is en-

sured.

Population sexually active in 2007 in Mali is taken to be 6357563, the

number of infected individuals is taken to beK = 140000. The rate of infection

is fixed to a = 0.7, the coefficient of spread is fixed to D = 0.0004, and the

size of the neighborhood of the kernel B is d = 0.02, the value for the constant

B1 = 0.000001S. Starting from the following initial condition:






f 0
i = 1 if i ∈ [49, 51]

f 0
i = 0 if not,

the numerical results are yielded for the three next years by the numerical

scheme (14). In the following table, the available datum in literature for the
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sexually active part of the population (Psexlit), the computed sexually active

part of the population (Psexnum) predicted by the presented model (14) and

the risky part (corresponding to the left peak in Figures 1-3) are reported.

Year Psexlit Psexnum Risky Error Pop

2008 6 531 735 6 531 100 20% 9, 7210−5

2009 6 713 503 6 719 700 18% 2, 9310−5

2010 7 312 068 7 312 700 15% 8, 6410−5

In the following figures, the distribution of the sexually active part of the

population is depicted according to the behavioral risk variable for the years

2008, 2009 and 2010.
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Figure 1: Sexually active population density in Mali for 2008
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Figure 2: Sexually active population density in Mali for 2009

The comparison of the numerical results presented with the data available

in Literature for the population show that model (P.S) can be considered as a

predictive one. Moreover, the adults part with a risky sexual behavior is eval-

uated at 15,7% in [1] for example. If the size of the exclusion neighborhood

is double (d = 0.04) the numerical results are almost unchanged. As conclu-

sion, the presented model (P.S) for the spread of HIV-AIDS in Mali does not

predict a strong segmentation in two compartments of the population, as it is

predicted by some food models with two compartments of nutriment.
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Figure 3: Sexually active population density in Mali for 2010
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