Oscillation of Neutral Delay Partial Difference Equation

Guanghui Liu ${ }^{1}$

Abstract

In this paper, some sufficient conditions for oscillation of the neutral delay partial equation : $$
\Delta_{1,2}\left(A_{m, n}-c A_{m-\tau, n-\sigma}\right)+\sum_{i=1}^{\mu} P_{i}(m, n) A_{m-k_{i}, n-l_{i}}=0
$$ are established. Our results as a special case when $c=0, \mu=1$, involve and improve some well-known oscillation results.

Mathematics Subject Classification : 35B05
Keywords: Oscillation, Neutral, Partial difference

1 Introduction

It is well known that the partial difference equations appear in considerations of random walk problems, molecular structure and chemical reactions problems

[^0][1-3].Oscillation and nonoscillation of solutions of delay partial difference equations is receiving much attention [4-7].

In this paper, we consider the neutral delay partial difference equation

$$
\begin{equation*}
\Delta_{1,2}\left(A_{m, n}-c A_{m-\tau, n-\sigma}\right)+\sum_{i=1}^{\mu} P_{i}(m, n) A_{m-k_{i}, n-l_{i}}=0 \tag{1.1}
\end{equation*}
$$

where $m, n \in N_{0}=\{0,1,2, \ldots\} \quad$ and $\tau, \sigma, k_{i}, l_{i}(i=1,2, \cdots, \mu)$ are nonnegative integers, the coefficients $\left\{P_{i}(m, n)\right\} \in N_{0}^{2}=\{0,1,2, \ldots\}^{2}$ is a sequences of nonnegative real numbers, and $0 \leq c \leq 1$. We defined

$$
\Delta_{1,2}\left(Z_{m, n}\right)=Z_{m+1, n}+Z_{m, n+1}-Z_{m, n}, \quad Z_{m, n}=A_{m, n}-c A_{m-\tau, n-\sigma} .
$$

A solution $\left\{A_{m, n}\right\}$ of (1.1) is said to be eventually positive if $A_{m, n}>0$ for all large m and n. It is said to be oscillatory if it is neither eventually positive nor eventually negative.

As a special case of Eq. (1.1), B.G.Zhang et al.[5] considered partial difference equation

$$
\begin{equation*}
A_{m+1, n}+A_{m, n+1}-A_{m, n}+P_{m, n} A_{m-k, n-l}=0, \tag{1.2}
\end{equation*}
$$

And proved that: for all large m, n, and there exists ξ such that

$$
\begin{equation*}
P_{m, n} \geq \xi>\frac{(k+l)^{k+l}}{(k+l+1)^{k+l+1}} \tag{1.3}
\end{equation*}
$$

Then every solution of equation (1.2) oscillates.

2 Main Results

In this section, we give some oscillation for Eq.(1.1). In order to prove our main results, we need the following auxiliary results.

Lemma 1. Suppose that $\left\{A_{m, n}\right\}$ is an eventually positive solution of equation (1.1), then :
(i) $\Delta_{12}\left(Z_{m, n}\right) \leq 0$, and $Z_{m, n}$ is monotone decreasing in m, n, that is $Z_{m+1, n} \leq Z_{m, n}, Z_{m, n+1} \leq Z_{m, n} ;$
(ii) $Z_{m, n}>0$.

Proof. Since $\left\{A_{m, n}\right\}$ is an eventually positive solution of (1.1), then there exists enough M, N, when $m \geq M, n \geq N$, such that

$$
A_{m, n}>0, \quad A_{m-\tau, n-\sigma}>0, \quad A_{m-k_{i}, n-l_{i}}>0, \quad i=1,2, \ldots, \mu
$$

From (1.1), we obtain

$$
\Delta_{1,2}\left(Z_{m, n}\right)=-\sum_{i=1}^{\mu} P_{i}(m, n) A_{m-k_{i}, n-l_{i}} \leq 0 .
$$

That is

$$
Z_{m+1, n}+Z_{m, n+1}-Z_{m, n} \leq 0, Z_{m+1, n} \leq Z_{m, n}, Z_{m, n+1} \leq Z_{m, n} .
$$

Next, we show that $Z_{m, n}$ is eventually positive in m, n. If $Z_{m, n} \leq 0$, then there exists $d>0$, for all large M_{1}, N_{1}, when $m \geq M_{1}, n \geq N_{1}$, such that $Z_{m, n} \leq-d$.

$$
A_{m, n}-A_{m-\tau, n-\sigma} \leq A_{m, n}-c A_{m-\tau, n-\sigma}=Z_{m, n} \leq-d, A_{m, n} \leq-d+A_{m-\tau, n-\sigma} .
$$

Therefore,
$A_{m+h \tau, n+h \sigma} \leq-d+A_{m+(h-1) \tau, n+(h-1) \sigma} \leq-2 d+A_{m+(h-2) \tau, n+(h-2) \sigma} \leq \cdots \leq-(h+1) d+A_{m-\tau, n-\sigma}$
as $h \rightarrow \infty, A_{m+h \tau, n+h \sigma} \rightarrow-\infty$. Which contradiction to $\left\{A_{m, n}\right\}$ is an eventually positive solution. This completes the proof.

Theorem 1. Assume that

$$
\begin{equation*}
\liminf _{m, n \rightarrow \infty}(1+c) \sum_{i=0}^{\mu} P_{i}(m, n)>\frac{\hat{k}}{(\hat{k}+1)^{\hat{k}+1}} \frac{\hat{l}}{(\hat{l}+1)^{\hat{t}+1}}, \tag{2.1}
\end{equation*}
$$

where $\hat{k}=\min \left(k_{1}, k_{2}, \ldots, k_{\mu}\right), \quad \hat{l}=\min \left(l_{1}, l_{2}, \ldots, l_{\mu}\right)$, then every solution of equation (1.1) oscillates.

Proof. Suppose to the contrary that the equation (1.1) has a nonoscillatory solution $\left\{A_{m, n}\right\}$. Without loss of generality, we may assume that $\left\{A_{m, n}\right\}$ is an eventually positive solution of equation (1.1), then from (1.1), we have

$$
\begin{aligned}
0 & =\Delta_{1,2}\left(Z_{m, n}\right)+\sum_{i=1}^{\mu} P_{i}(m, n) A_{m-k_{i}, n-l_{i}} \\
& =\Delta_{1,2}\left(Z_{m, n}\right)+\sum_{i=1}^{\mu} P_{i}(m, n)\left(Z_{m-k_{i}, n-l_{i}}+c A_{m-k_{i}-\tau, n-l_{i}-\sigma}\right) \\
& >\Delta_{1,2}\left(Z_{m, n}\right)+\sum_{i=1}^{\mu} P_{i}(m, n)\left(Z_{m-k_{i}, n-l_{i}}+c Z_{m-k_{i}-\tau, n-l_{i}-\sigma}\right)
\end{aligned}
$$

By Lemma 1, we have

$$
\Delta_{1,2}\left(Z_{m, n}\right)+\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) Z_{m-\hat{k}, n-\hat{i}}<0
$$

That is

$$
\begin{equation*}
Z_{m+1, n}+Z_{m, n+1}-Z_{m, n}<-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) Z_{m-\hat{k}, n-\hat{i}} \tag{2.2}
\end{equation*}
$$

dividing the both sides of (2.2) by $Z_{m, n}$, we have

$$
\begin{equation*}
\frac{\mathrm{Z}_{m+1, n}}{Z_{m, n}}+\frac{Z_{m, n+1}}{Z_{m, n}}<1-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \frac{Z_{m-\hat{k}, n-\hat{-}}}{Z_{m, n}} \tag{2.3}
\end{equation*}
$$

Set $r_{m, n}=\frac{Z_{m, n}}{Z_{m+1, n}}, t_{m, n}=\frac{Z_{m, n}}{Z_{m, n+1}}$. It is easy to see that $r_{m, n} \geq 1, t_{m, n} \geq 1$, for all large m and $n .\left\{r_{m, n}\right\},\left\{t_{m, n}\right\}$ are bounded. Let $\liminf _{m, n \rightarrow \infty} t_{m, n}=b \geq 1$, then from (2.3), we have

$$
\begin{align*}
\frac{1}{r_{m, n}}+\frac{1}{t_{m, n}} & <1-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \frac{Z_{m-\hat{k}, n-\hat{l}}}{Z_{m, n}} \\
& \leq 1-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) r_{m-\hat{k}, n} r_{m-\hat{k}+1, n} \cdots r_{m-1, n} t_{m-\hat{l}, n} t_{m-\hat{l}+1, n} \cdots t_{m-1, n} \tag{2.4}
\end{align*}
$$

from (2.4), we get

$$
\limsup _{m, n \rightarrow \infty} \frac{1}{r_{m, n}}+\limsup _{m, n \rightarrow \infty} \frac{1}{t_{m, n}}=\frac{1}{a}+\frac{1}{b} \leq 1-\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) a^{\hat{k}} b^{\hat{l}},
$$

or

$$
\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \leq\left(1-\frac{1}{a}-\frac{1}{b}\right) \frac{1}{a^{\hat{k}} b^{\hat{l}}} \leq \frac{(a-1)(b-1)}{a^{\hat{k}+1} b^{\hat{i}+1}}=f(a, b) .
$$

Now it is easy to see that

$$
\max _{a \geq \geq 1, b \geq 1} f(a, b)=\frac{\hat{k}}{(\hat{k}+1)^{\hat{k}+1}} \frac{\hat{l}}{(\hat{l}+1)^{\hat{l}+1}},
$$

hence we obtain

$$
\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \leq \frac{\hat{k}}{(\hat{k}+1)^{\hat{k}+1}} \frac{\hat{l}}{(\hat{l}+1)^{\hat{l}+1}},
$$

which is a contradiction to (2.1).this completes the proof.

According to theorem 1, if $c=0, \mu=1$, we obtain the following result:
Corollary 1. For all large m, n, there exists ξ such that

$$
\begin{equation*}
P_{m, n} \geq \xi>\frac{k^{k}}{(k+1)^{k+1}} \frac{l^{l}}{(l+1)^{l+1}} . \tag{2.5}
\end{equation*}
$$

Then every solution of equation oscillates.

Remark 1. From Corollary 1, compare (2.5) with (1.3), obviously

$$
\frac{k^{k}}{(k+1)^{k+1}} \frac{l^{l}}{(l+1)^{l+1}}<\frac{(k+l)^{k+l}}{(k+l+1)^{k+l+1}} .
$$

Theorem 2. Assume that

$$
\begin{equation*}
\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) 2^{\xi_{i}} \frac{\left(\xi_{i}+1\right)^{\xi_{i}+1}}{\left(\xi_{i}\right)^{\xi_{i}}}>1, \tag{2.6}
\end{equation*}
$$

where $\xi_{i}=\min \left(k_{i}, l_{i}\right), i=1,2, \cdots \mu$, then every solution of equation (1.1) oscillates. Proof. Suppose to the contrary that $\left\{A_{m, n}\right\}$ is an eventually positive solution of equation (1.1). Set $s_{m, n}=\frac{z_{m, n}}{z_{m+1, n+1}}$. It is easy to see that $s_{m, n} \geq 1$, for all large m and $n, s_{m, n}$ is bounded. Let $\liminf _{m, n \rightarrow \infty} s_{m, n}=\beta \geq 1$, then from (1.1) and by Lemma 1, we have

$$
\Delta_{1,2}\left(Z_{m, n}\right)+\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) Z_{m-\xi_{i}, n-\xi_{i}} \leq 0
$$

That is

$$
\begin{align*}
& \frac{2}{\mathrm{~s}_{m, n}} \leq \frac{\mathrm{Z}_{m+1, n}}{Z_{m, n}}+\frac{Z_{m, n+1}}{Z_{m, n}} \leq 1-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \frac{Z_{m-\xi_{i}, n-\xi_{i}}}{Z_{m, n}}, \\
& \frac{2}{\mathrm{~s}_{m, n}} \leq 1-\sum_{i=1}^{\mu}(1+c) P_{i}(m, n) s_{m-\xi_{i}, n-\xi_{i}} s_{m-\xi_{i}+1, n-\xi_{i}+1} \cdots s_{m-1, n-1} . \tag{2.7}
\end{align*}
$$

Taking supremun limit on both sides of (2.7),we have

$$
\frac{2}{\beta} \leq 1-\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \beta^{\xi_{i}}
$$

which implies $\beta>2$ and

$$
\begin{equation*}
\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \frac{\beta^{\xi_{i}+1}}{\beta-2} \leq 1 \tag{2.8}
\end{equation*}
$$

Noticed that

$$
\min _{\beta>2}\left(\frac{\beta^{\xi_{i}+1}}{\beta-2}\right)=2^{\xi_{i}} \frac{\left(\xi_{i}+1\right)^{\xi_{i}+1}}{\xi_{i}^{\xi_{i}}} .
$$

Hence we have

$$
\liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) 2^{\xi_{i}} \frac{\left(\xi_{i}+1\right)^{\xi_{i}+1}}{\xi_{i}^{\xi_{i}}} \leq 1,
$$

which contradicts (2.6). This completes the proof.

Corollary 2. Assume that

$$
\begin{equation*}
\mu\left(\prod_{i=1}^{\mu} \liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n)\right)^{\frac{1}{\mu}}>\frac{\bar{\xi}^{\bar{\xi}}}{2^{\bar{\xi}}(\bar{\xi}+1)^{\bar{\xi}+1}}, \tag{2.9}
\end{equation*}
$$

where $\bar{\xi}=\frac{1}{\mu}\left(\sum_{i=1}^{\mu} \xi_{i}\right), \quad \xi_{i}=\min \left(k_{i}, l_{i}\right), \quad i=1,2, \ldots, \mu$. Then every solution of (1.1) oscillates.

Proof . In fact, from (2.8) we have

$$
1 \geq \liminf _{m, n \rightarrow \infty} \sum_{i=1}^{\mu}(1+c) P_{i}(m, n) \frac{\beta^{\xi_{i}+1}}{\beta-2} \geq \mu\left(\prod_{i=1}^{\mu} \liminf _{m, n \rightarrow \infty}(1+c) P_{i}(m, n)\right)^{\frac{1}{\mu}} .
$$

Hence

$$
1 \geq \mu\left(\prod_{i=1}^{\mu} \liminf _{m, n \rightarrow \infty}(1+c) P_{i}(m, n)\right)^{\frac{1}{\mu}} 2^{\bar{\xi}} \frac{(\bar{\xi}+1)^{\bar{\xi}+1}}{\bar{\xi}^{\bar{\xi}}}
$$

That is

$$
\mu\left(\prod_{i=1}^{\mu} \operatorname{liminn}_{m, n \rightarrow \infty}(1+c) P_{i}(m, n)\right)^{\frac{1}{\mu}} \leq \frac{\bar{\xi}^{\bar{\xi}}}{2^{\bar{\xi}}(\bar{\xi}+1)^{\bar{\xi}+1}} .
$$

which contradicts (2.9).The proof is completed.

References

[1] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[2] R. Courant, K. Friedrichs and H. Lewy, On the partial difference equations of mathematical physics, Birkhäuser, Boston, 1967.
[3] X.P. Li, Partial difference equations used in the study of molecular orbits, Acta Chimica Sinica, 40, (1982), 688-698.
[4] J.C. Strikwerda, Finite Difference Schemes and Partial Difference Equations, Wadsworth, Belmont, CA, 1989.
[5] B.G. Zhang and S.T. Liu, Oscillation of a class of delay partial difference equation, Journal of difference Equation and its Application, 1, (1995), 215-226.
[6] B.G. Zhang and S.T. Liu, On the oscillation of two partial difference equations, Journal of Mathematical Analysis and Applications, 206, (1997), 480-492.
[7] B.G. Zhang and S.T. Liu, Oscillation of partial difference equations, Panamerican Math J ., 5, (1995), 61-70.

[^0]: ${ }^{1}$ College of Science, Hunan Institute of Engineering, 88 East Fuxing Road, Xiangtan 411104, Hunan, China, e-mail : gh29202@163.com

 Article Info: Revised : July 25, 2011. Published online : November 30, 2011.

