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Oscillation of Neutral Delay Partial  

Difference Equation                         
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   Abstract 

In this paper, some sufficient conditions for oscillation of the neutral delay partial 

equation : 
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are established. Our results as a special case when 0c  , 1  , involve and 

improve some well-known oscillation results. 
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1  Introduction  

It is well known that the partial difference equations appear in considerations of 

random walk problems, molecular structure and chemical reactions problems 
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[1-3].Oscillation and nonoscillation of solutions of delay partial difference 

equations is receiving much attention [4-7]. 

In this paper, we consider the neutral delay partial difference equation                       
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where  0, 0,1, 2,m n N    and , , , ( 1, 2, , )i ik l i    are nonnegative 

integers, the coefficients    22
0( , ) 0,1,2,iP m n N   is a sequences of 

nonnegative real numbers, and 0 1c  . We defined  

1,2 , 1, , 1 ,( )m n m n m n m nZ Z Z Z     , 
, , ,m n m n m nZ A cA    . 

A solution  nmA ,
 of  (1.1) is said to be eventually positive if 

, 0m nA   for all 

large m  and n . It is said to be oscillatory if it is neither eventually positive nor 

eventually negative. 

As a special case of Eq. (1.1), B.G.Zhang et al.[5] considered partial difference  

equation                                                   
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Then every solution of equation (1.2) oscillates. 

 

2  Main Results 

In this section, we give some oscillation for Eq.(1.1). In order to prove our main 

results, we need the following auxiliary results. 
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Lemma 1. Suppose that  nmA ,
 is an eventually positive solution of equation 

(1.1), then : 

(i) 0,21  ）（， nmZ , and 
nmZ ,

 is monotone decreasing in m , n , that is 

nmnm ZZ ,,1 
,

nmnm ZZ ,1, 
;  

(ii) 0, nmZ . 

Proof. Since  nmA ,
 is an eventually positive solution of (1.1), then there exists 

enough ,M N , when m M , n N , such that 

, , ,0, 0, 0
i im n m n m k n lA A A       , 1, 2, ,i    . 

From (1.1), we obtain  
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That is 

，0,1,,1   nmnmnm ZZZ nmnm ZZ ,,1 
,

nmnm ZZ ,1, 
. 

Next, we show that 
,m nZ  is eventually positive in ,m n . If 

, 0m nZ  , then there 

exists 0d , for all large 
11 , NM , when 

1m M , 
1n N , such that dZ nm ,

. 

,,,,,, dZcAAAA nmnmnmnmnm    , ,m n m nA d A       . 

Therefore, 

, ( 1) , ( 1) ( 2) , ( 2) ,2 ( 1)m h n h m h n h m h n h m nA d A d A h d A                              

as    hnhmAh ,,  .Which contradiction to  nmA ,
 is an eventually 

positive solution. This completes the proof.                               
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Theorem 1. Assume that                                          
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where 
1 2

ˆ min( , , , )k k k k   , 
1 2

ˆ min( , , , ),l l l l    then every solution of 

equation (1.1) oscillates. 

Proof. Suppose to the contrary that the equation (1.1) has a nonoscillatory 

solution  nmA ,
.Without loss of generality, we may assume that  nmA ,

 is an 

eventually  positive solution of equation (1.1), then from (1.1), we have 
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By Lemma 1, we have  
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dividing the both sides of (2.2) by 
nmZ ,
, we have                                 
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which is a contradiction to (2.1).this completes the proof.                    

 

 According to theorem 1, if 1,0  c , we obtain the following result: 

Corollary 1.  For all large m , n , there exists   such that                            
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Then every solution of equation oscillates. 

 

Remark 1. From Corollary 1, compare (2.5) with (1.3), obviously 
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Theorem 2. Assume that                                              
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where  ,2,1),,min(  ilk iii
, then every solution of equation (1.1) oscillates. 

Proof. Suppose to the contrary that  nmA ,
 is an eventually positive solution of 

equation (1.1). Set 
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Taking supremun limit on both sides of (2.7),we have 
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Noticed that 
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which contradicts (2.6). This completes the proof.                         

 

Corollary 2. Assume that 
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Proof .  In fact, from (2.8) we have 
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which contradicts (2.9).The proof is completed.                           
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