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Abstract 

The analysis presented here is to study the effect of thermal gradient on the 

vibration of visco-elastic square plate (having clamped boundary condition on all 

the four edges) of variable thickness whose thickness varies linearly in both 

directions. Two dimensional thermal effects on frequency of free vibrations of a 

visco-elastic square plate is considered. It is also considered that the temperature 

varies parabolically in two directions and thickness of square plate varies linearly 

in two directions. An approximate but quite convenient frequency equation is 

derived for a square plate (clamped at all the edges) by using Rayleigh-Ritz 

technique with a two-term deflection function. Both the modes of the frequency 

are calculated by the latest computational technique, MATLAB, for the various 
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values of taper parameters and temperature gradient. All the results are presented 

in the graphs. 
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1  Introduction  

The study of vibration of plates has acquired great importance in the field of 

research, engineering and space technology. The visco-elastic behaviors of some 

materials invigorated scientists for modern designs and analysis techniques and 

their application to many practical problems. As technology develops new 

discoveries have intensified the need for solution of various problems of 

vibrations of plates with elastic or visco-elastic medium. Since new materials and 

alloys are in great use in the construction of technically designed structures 

therefore the application of visco-elasticity is the need of the hour. Tapered plates 

are generally used to model the structures. Plates with thickness variability are of 

great importance in a wide variety of engineering applications. 

A study of the literature on vibration problems shows that the visco-elastic plates 

with thickness variation in two directions has received rather less attention than 

that of in one direction. Recently, Gupta and Lalit Kumar [3] studied Thermal 

effects on the vibration of non-homogeneous visco-elastic rectangular plate of 

linearly varying thickness. Leissa [5] gave different models on the vibration of 

plates. Gupta and Anupam Khanna [1] discussed thermal effect on vibrations of 

parallelogram plate of linearly varying thickness. The effect of thermal gradient on 

the frequencies of an orthotropic plate of linearly varying thickness has been 

discussed by Tomar and Gupta [7]. Vibration of rectangular plates by the Ritz 

method was given by Young [8]. Tomar and Gupta [6] discussed the effect of 
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thermal gradient on frequencies of an orthotropic rectangular plate whose 

thickness varies in two directions. An analysis is presented on the vibration of 

clamped visco-elastic rectangular plate with parabolic thickness variations by 

Gupta and Anupam Khanna [2]. A. Khanna, A. Kumar and M. Bhatia [4] recently 

presented an analysis on two dimensional thermal effect with two dimensional 

varying thickness of visco- elastic square plate . 

The aim of present investigation is to study the parabolically two dimensional 

thermal effect on the vibration of visco-elastic square plate whose thickness varies 

linearly in both directions. It is assumed that the plate is clamped on all the four 

edges and its temperature varies linearly in both the directions. Due to temperature 

variation, we assume that non homogeneity occurs in Modulus of Elasticity (E).   

For various numerical values of thermal gradient and taper constants; frequency 

for the first two modes of vibration are calculated with the help of MATLAB. All 

the numerical calculations will be carried out using the material constants of alloy 

'Duralium'. All results are shown in Graphs.  

  

2  Equation of Motion and Analysis 

Differential equation of motion for visco-elastic square plate of variable thickness 

in Cartesian coordinate is given by equation (2.1) respectively: 
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          (2.1) 

which is a differential equation of transverse motion for non-homogeneous plate 

of variable thickness.  

Here, 1D  is the flexural rigidity of plate i.e.  

                         
3 2

1 /12(1 )D Eh v                       (2.2)      

and corresponding two-term deflection function is taken as 
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2
1 2[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]W x a y a x a y a A A x a y a x a y a        (2.3) 

Assuming that the square plate of engineering material has a steady two 

dimensional parabolic temperature distribution i.e. 

                        2 2 2 2
0 (1 / )(1 / )x a y a                   (2.4) 

where,   denotes the temperature excess above the reference temperature at any 

point on the plate and 0  denotes the temperature at any point on the boundary of 

plate and “ a ” is the length of a side of square plate. 

The temperature dependence of the modulus of elasticity for most of engineering 

materials can be expressed as 

                           0 1E E                      (2.5) 

where, E0 is the value of the Young's modulus at reference temperature i.e.  

0   and  is the slope of the variation of E with  . The modulus variation 

(2.5) become     

                 0[1 (1 / )(1 / )]E E a x a y a                       (2.6) 

where, 0a  , (0 1)a   thermal gradient. 

It is assumed that thickness also varies linearly in two directions as shown below: 

                   0 1 2(1 / )(1 / )h h x a y a                       (2.7) 

where, 1  and 2  are taper parameters in x  and y  directions respectively 

and 0h h  at  0x y  . Now, put the value of E  and h  from equation (2.6) 

and (2.7) in the equation (2.2), one obtain 

 2 2 2 2 3 3 3 2
1 0 0 1 2[ [1 (1 / )(1 / )] (1 / ) (1 / ) ] /12(1 )D E a x a y a h x a y a v         (2.8) 

Rayleigh-Ritz technique is applied to solve the frequency equation. In this method, 

one requires maximum strain energy must be equal to the maximum kinetic 

energy. So it is necessary for the problem under consideration that 

                       
* *( ) 0V T                              (2.9) 

for arbitrary variations of W satisfying relevant geometrical boundary conditions.  
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Since the plate is assumed as clamped at all the four edges, so the boundary 

conditions are  

                       
,

,

0, 0,

0, 0,
x

y

W W x a

W W y a

   
                       (2.10) 

Now assuming the non-dimensional variables as 

            /X x a ,  /Y y a ,  /W W a ,  /h h a           (2.11) 

The kinetic energy *T  and strain energy *V  are [5] 

  
   

  
1 1* 2 5 2

0 1 20 0
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and 
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   (2.13) 

where, 3 3 2
0 0 / 24(1 ).Q E h a v   

Using equations (2.12) and (2.13) in equation (2.9), one get 

                        ** 2 **( ) 0V T                         (2.14) 

where,       

1 1** 2 2 3 3 2 2
1 20 0

2

[1 (1 )(1 )](1 ) (1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY
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   (2.15)             

and 

 
            

1 1** 2
1 20 0

[(1 )(1 ) ]T X Y W dYdX                 
(2.16) 

Here, 2 2 2 2
0 012 (1 ) /v a E h    is a frequency parameter. 

Equation (2.16) consists two unknown constants i.e. 1A  and 2A  arising due to 

the substitution of W. These two constants are to be determined as follows 

                      ** 2 **( ) / nV T A   ,  1, 2n        (2.17) 

On simplifying (2.17), one gets 

                      1 1 2 2 0bn A bn A  ,  1, 2n                  (2.18) 
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where, 1bn , 2bn ( 1,2n  ) involve parametric constant and the frequency 

parameter. 

For a non-trivial solution, the determinant of the coefficient of equation (2.18) 

must be zero. So one gets, the frequency equation as 

                             

11 12

21 22

0
b b

b b


  
                    (2.19) 

with the help of equation (2.19), one can obtains a quadratic equation in 2  from 

which the two values of 2  can found. These two values represent the two modes 

of vibration of frequency i.e. 1 (Mode1) and 2 (Mode2) for different values of 

taper constant and thermal gradient for a clamped plate. 

 

 

3  Results and Discussion 

All calculations are carried out with the help of latest Matrix Laboratory computer 

software i.e. MATLAB. Computation has been done for frequency of visco-elastic 

square plate for different values of taper constants 1  and 2 , thermal gradients 

a , at different points for first two modes of vibrations have been calculated 

numerically.  

In Figure 1: It is clearly seen that value of frequency decreases as value of thermal 

gradient increases from 0.0 to 1.0 for 1 2 0.0    both modes of vibrations. 

In Figure 2:  Also it is obvious to understand the decrement in frequency for 

1 2 0.6   . But it is also noticed that value of frequency is increased with the 

increment in 1  and 2 . 

In Figure 3: It is evident that frequency decreases continuously as thermal gradient 

increases, 1 0.4  , 2 0.2   respectively with the two modes of vibration. 

 

 



A. Khanna, A.K. Sharma, H. Singh and V.K. Magotra                            45 

 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 1: Frequency vs. thermal gradient at 1 2 0.0    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Frequency vs. thermal gradient at 1 2 0.6    

 

 

In Figure 4:  Increasing value of frequency for both of the modes of vibration is 

shown for increasing value of taper constant 2  from 0.0 to 1.0. 
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Figure 3:  Frequency vs. thermal gradient at 1 0.4  , 2 0.2   

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 4: Frequency vs. Taper constant at 1 0.2  , 0.2a   

 
 
 

4  Conclusion 

Results of present paper are compared with paper [8]. It is interesting to note that 

value of frequency has greater value in this paper as compared to [8]. So, main 

aim for our research is to develop a theoretical mathematical model for scientists 
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and design engineers so that they can make a use of it with a practical approach, 

for the welfare of the human beings as well as for the advancement of technology. 
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