On a Two-machine Flow-shop Scheduling Problem with a Single Server and Unit Processing Times

Shi Ling ${ }^{1}$ and Cheng Xue-guang ${ }^{2, *}$

Abstract

We consider the problem of two-machine flow-shop scheduling with a single server and unit processing times, and show that this problem is $N P$-hard in the strong sense.

Mathematics Subject Classification : 90B35
Keywords: two-machine, flow-shop, single server, complexity, NP -hardness

1 Introduction

In the two-machine flow-shop scheduling problem we study, the input instance consists of n jobs with a single server and unit processing times. In the two-machine flow-shop scheduling problem we study, the input instance consists of n jobs with a single server and unit processing times. Each job J_{j} requires

[^0]two operations $O_{1, j}$ and $O_{2, j}(j=1,2, \ldots, n)$, which are performed on machine M_{1} and M_{2}, respectively. The processing times of job J_{j} on machine M_{i}, i.e., the duration of operation $O_{i, j}$, is $p_{i, j}=1,(i=1,2)$. For each job, the second operation cannot be started before the first operation is completed. A setup times $s_{i, j}$ is needed before the first job is processed on machine M_{i}. Each setup operation must be performed by the server M_{S}, which can only perform one operation at a time. The objective is to compute a non-preemptive schedule of those jobs on two machines that minimize makespan. In the standard scheduling notation [5], the problem can be described as the $F 2, S 1\left|p_{i, j}=1\right| C_{\text {max }}$ problem.

It is well known, S.M. Johnson [4], the $F 2\left|\mid C_{\text {max }}\right.$ problem has a maximal polynomial solvable. P. Brucker [1] has shown that the $F 2, S 1\left|p_{i, j}=p\right| C_{\text {max }}$ problem is $N P$-hard in the ordinary sense. The $F 2, S 1\left|p_{i, j}=1\right| C_{\max }$ problem is still open problem [3]. In this paper, we will show that the $F 2, S 1\left|p_{i, j}=1\right| C_{\text {max }}$ problem is $N P$-hard in the strong sense.

2 Complexity of the $F 2, S 1\left|p_{i, j}=1\right| C_{\max }$ problem

Lemma 1 [3] Consider the $F 2, S 1\left|p_{i j}=1\right| C_{\max }$ problem with unit processing times $p_{i, j}=1$, where $i=1,2$ and $j=1,2, \ldots, n$. Then

$$
\begin{equation*}
C(\sigma, \tau)=\max _{1 \leq k \leq n}\left\{\sum_{j \leq \sigma^{-1}(k)}\left(s_{1, \sigma(j)}+p_{1, \sigma(j)}\right)+\sum_{j \geq \tau^{-1}(k)}\left(s_{2, \tau(j)}+p_{2, \tau(j)}\right)\right\} \tag{1}
\end{equation*}
$$

where $\sigma^{-1}(k)$ and $\tau^{-1}(k)$ denote the positions of job k in sequences σ and τ, respectively.
For a schedule S, let $I_{i}(S),(i=1,2)$ denote the total idle times on machine M_{i}, we have

$$
\begin{equation*}
C_{\max }(S)=\max \left\{\sum_{j=1}^{n}\left(s_{1, j}+p_{1, j}\right)+I_{1}(S), \sum_{j=1}^{n}\left(s_{2, j}+p_{2, j}\right)+I_{2}(S)\right\} \tag{2}
\end{equation*}
$$

Theorem 1 The $F 2, S 1\left|p_{i, j}=1\right| C_{\text {max }}$ problem is $N P$-hard in the strong sense.
Proof We prove the $N P$-hardness by a reduction from 3-Partition [2], which is known to be $N P$-hard in the strong sense. An instance of the 3 -Partition problem consists of $3 n+2$ natural numbers n, b, and $x_{1}, x_{2}, \ldots, x_{3 n}$ with $b / 4<x_{i}<b / 2$ for $1 \leq i \leq 3 n$ and $\sum_{i=1}^{3 n} x_{i}=n b$. Does there exist a partition of the set $\{1,2, \ldots, 3 n\}$ into n sets $X_{1}, X_{2}, \ldots, X_{n}$ of triples such that $\sum_{i \in X_{j}} x_{i}=b$ for $1 \leq j \leq n ?$ In this paper, suppose $b \leq 1$, because if $b>1$, from $\sum_{i \in X_{j}} x_{i}=b$ and let $x_{i} / b=y_{i}$, we have $\left(\sum_{i \in X_{j}} x_{i}\right) / b=\sum_{i \in X_{j}}\left(x_{i} / b\right)=\sum_{i \in X_{j}} y_{i}<1$.

Given any instance of 3 -Partition, we define the following instance of the $F 2, S 1\left|p_{i, j}=1\right| C_{\max }$ problem with two types of jobs:
(1) P-job: $s_{1, j}=x_{j}, p_{1, j}=1, s_{2, j}=0, p_{2, j}=1 \quad(j=1,2, \ldots, 3 n)$
(2) U-job: $s_{1, j}=0, p_{1, j}=1, s_{2, j}=1, p_{2, j}=1 \quad(j=1,2, \ldots, n)$

The threshold $y=4 n+2+(n+1) b$ and the corresponding decision problem is: Is there a schedule S with makespan $C(S)$ not greater than $y=4 n+2+(n+1) b$?

Observe that all processing times are equal to b. To prove this theorem we construct instance of the $F 2, S 1\left|p_{i, j}=1\right| C_{\max }$ problem a schedule S_{0} satisfying $C_{\text {max }}\left(S_{0}\right) \leq y=4 n+2+(n+1) b$ exists if and only if 3 -Partition has a solution. Suppose that 3 -Partition has a solution, and $X_{j}(j=1,2, \ldots, n)$ are the required
subsets of set X. Notice each set X_{j} contains precisely elements, since

$$
b / 4<x_{j}<b / 2, \quad \text { and } \quad \sum_{j=1}^{3 m} x_{j}=n b \quad \text { for all } j=1,2, \ldots, n .
$$

Let σ denote a sequence of the elements of set X for which $X_{j}=\{\sigma(3 j-2), \sigma(3 j-1), \sigma(3 j)\}$, for $j=1,2, \ldots, n$.The desired schedule S_{0} exists and can be described as follows.
(a) No machine has intermediate idle time,
(b) Machine M_{1} process the P-jobs and U-jobs in order of the sequence σ,

$$
\sigma=\left(P_{\sigma(1,1)}, P_{\sigma(1,2)}, P_{\sigma(1,3)}, U_{1,1}, P_{\sigma(1,4)}, P_{\sigma(1,5)}, P_{\sigma(1,6)}, U_{1,2}, \ldots, P_{\sigma(1,3 n-2)}, P_{\sigma(1,3 n-1)}, P_{\sigma(1,3 n)}, U_{1, n}\right)
$$

(c) While machine M_{2} process the P-jobs and U-jobs in the order of sequence τ,

$$
\tau=\left(U_{2,1}, P_{\sigma(2,1)}, P_{\sigma(2,2)}, P_{\sigma(2,3)}, U_{2,2}, \ldots, U_{2, r}, P_{\sigma(2,3 n-2)}, P_{\sigma(2,3 n-1)}, P_{\sigma(2,3 n)}\right)
$$

as indicated in Figure 1.

Figure 1: Gantt chart for the $F 2, S 1\left|p_{i, j}=1\right| C_{\max }$ problem

Then we define sequences σ and τ shown in Figure 1. Obviously, these sequences σ and τ fulfills $C(\sigma, \tau) \leq y$. Conversely, assume that this flow-shop scheduling problem has a solution σ and τ with $C(\sigma, \tau) \leq y$. By setting $\sigma(j)=j(j=1,2,3)$ in (1), we get for all sequences σ and τ :

$$
C(\sigma, \tau) \geq\left(s_{1,1}+p_{1,1}+s_{1,2}+p_{1,2}+s_{1,3}+p_{1,3}\right)+\sum_{\lambda=1}^{n}\left(s_{2, \tau_{\lambda}}+p_{2, \tau_{\lambda}}\right)=4 n+2+(n+1) b=y .
$$

Thus, for these sequences σ and τ with $C(\sigma, \tau)=y$. We may conclude that: (3) machine M_{1} process jobs in the interval $[0,(n-1)+n(3+b)]$, without idle times. In the interval $[(3+b+1) j, j+(j+1)(3+b)],(j=1,2, \ldots, n-1)$, machine M_{1} process P-jobs, in the interval $[j-1+j(3+b), j(3+b+1)],(j=1,2, \ldots, n)$ machine M_{1} process U-jobs, (4) machine M_{2} process jobs in the interval $[3+b, 4 n+2+(n+1) b]$, without idle times. In the interval
$\left[9 j-10+j(3+b),(j-10+j(3+b)+b+1],(j=1,2, \ldots, n)\right.$ machine M_{2} process U-jobs, in the interval $[(j-1)+j(3+b+b+1),(j-1)+j(3+b)+b+1+3)]$ machine M_{2} process P-jobs. Now, we will prove that the

$$
\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=4 b . \text { If } \sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right) \geq 4 b,
$$

then U_{21}-job cannot start processing at time $4 b$, which contradicts (4). If $\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right) \leq 4 b$, then there is idle time before machine M_{1} process job $U_{1,1}$, which contradicts (3). Thus, we have

$$
\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=4 b .
$$

Since $p_{1,1}=p_{1,2}=p_{1,3}=b, s_{1, i}=x_{i}$, then

$$
\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=\left(s_{1,1}+p_{1,1}+s_{1,2}+p_{1,2}+s_{1,3}+p_{1,3}\right)=3 b+\sum_{i \in X_{1}} x_{i}=4 b, \sum_{i \in X_{1}} x_{i}=b .
$$

The set X_{1} give a solution to 3-Partition .
Analogously, we show that the remaining sets $X_{2}, X_{3}, \ldots, X_{n}$ separated by the jobs $1,2, \ldots, n$ contain 3 -element and fulfill $\sum_{i \in X_{j}} x_{i}=b$ for $j=1,2, \ldots, n$. Thus, $X_{1}, X_{2}, \ldots, X_{n}$ define a solution of 3 - Partition .

References

[1] P. Brucker, S. Knust, G.Q. Wang, et al., Complexity of results for flow-shop problems with a single server, European J. Oper. Res., 165, (2005), 398-407.
[2] P.C. Gilmore, R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the traveling salesman problem, Operations Research, 12, (1996), 655-679.
[3] http:www.mathematik.uni-osnabruckde/research/OR.class.
[4] S.M. Johnson. Optimal two-and-three-stage production schedules with set-up times included. Naval Res. Quart., 1, (1954), 61-68.
[5] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms and Complexity, in: S.C. Gtaves, A.H.G. Rinnooy Kan, P.H. Zipkin(Eds.), Handbooks in Operation Research and Management Science, v. 4, Logistics of Production and Inventory, North_Holland, Amsterrdem, 445-522, 1993.
[6] W.C.Yu, The two-machine flow shop problem with delays and the one machine total tardiness problem, Technische Universiteit Eindhoven, 1996.

[^0]: ${ }^{1}$ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China, e-mail: Shiling59@126.com
 2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

 * Corresponding author.

 Article Info: Revised : June 13, 2011. Published online : November 30, 2011.

