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Abstract

In this paper, we present ultraspherical spectral discontinuous Galerkin

method for solving the two-dimensional volterra integral equation (VIE)

of the second kind. The Gauss-Legendre quadrature rule is used to ap-

proximate the integral operator and the inner product based on the

ultraspherical weights is implemented in the weak formulation. Illus-

trative examples are provided to demonstrate the preciseness and effec-

tiveness of the proposed technique. Moreover, a comparison is made

with another numerical approach that is proposed recently for solving

two-dimensional VIEs.

Mathematics Subject Classification : 65R20

Keywords: two-dimensional integral equations, spectral discontinuous galerkin,

ultraspherical polynomials

1 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi

University of Mashhad, Mashhad, Iran, e-mail: Nadjafi@math.um.ac.ir
2 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi

University of Mashhad, Mashhad, Iran, e-mail: hopereza86@yahoo.com
3 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi

University of Mashhad, Mashhad, Iran,

e-mail: etohidi110@yahoo.com and emran.tohidi@gmail.com

Article Info: Revised : September 14, 2011. Published online : November 30, 2011



160 Numerical solution of two-dimensional Volterra integral equations ...

1 Introduction

Integral equations are a well-known mathematical tool for representing

physical problems. Historically, they have achieved great popularity among

the mathematicians and physicists in formulating boundary value problems of

gravitation, electrostatics, fluid dynamics and scatering. It is also well known

that initial-value and boundary-value problems for differential equations can

often be converted into integral equations and there are usually significant

advantages to be gained from making use of this conversion.

In this paper, we consider a general class of nonlinear two-dimensional

volterra integral equations (VIE) of the second kind as follows

u(x, t) = f(x, t) +

∫ t

−1

∫ x

−1
K(x, t, y, z, u(y, z))dydz, (x, t) ∈ D, (1)

where u(x, t) is an unknown real valued function, while f(x, t) (source function)

and K(x, t, y, z, u) (kernel function) are the given analytical functions defined

on D = [−1, 1]× [−1, 1] and

E = {(x, t, y, z, u) : −1 ≤ y ≤ x ≤ 1, −1 ≤ z ≤ t ≤ 1, −∞ ≤ u ≤ ∞},

respectively.

Trivially, any two-dimensional VIE of the second kind can be transformed

into (1) by a set of simple linear transformations. For this purpose, suppose

that the following equation is given:

û(x̂, t̂) = g(x̂, t̂) +

∫ t̂

0

∫ x̂

0

R(x̂, t̂, ŷ, ẑ, û(ŷ, ẑ))dŷdẑ,

(2)

with (x̂, t̂) ∈ D̂ = [0, X]× [0, T ]

Now, we use the change of variables t̂ = T
2
(1 + t) and x̂ = X

2
(1 + x) (as done

in [11]) to rewrite the VIE (2) as follows

u(x, t) = f(x, t) +

∫ T
2
(1+t)

0

∫ X
2
(1+x)

0

R(
X

2
(1 + x),

T

2
(1 + t), ŷ, ẑ, û(ŷ, ẑ))dŷdẑ, (3)

where t ∈ [−1, 1], x ∈ [−1, 1], u(x, t) = û(X
2

(1 + x), T
2
(1 + t)) and f(x, t) =

g(X
2

(1+x), T
2
(1+t)). Moreover, to transform the integral intervals [0, T

2
(1+t)]

and [0, X
2

(1 + x)] into the intervals [−1, t] and [−1, x], respectively, we use
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again the two linear transformations ŷ = X
2

(1 + y) and ẑ = T
2
(1 + z), where

y ∈ [−1, x] and z ∈ [−1, t]. Then Eq. (3) will be changed into the Eq. (1),

while

K(x, t, y, z, u(y, z)) =
T

2
.
X

2
R(
X

2
(1 +x),

T

2
(1 + t),

X

2
(1 + y),

T

2
(1 + z), u(y, z)).

During the last two decades significant progress has been made in numerical

treatment of one-dimensional version of equation (1) (see [11, 4, 5] and ref-

erences therein). However the analysis of computational methods for several-

dimensional integral equations has started more recently, modification of the

existing methods and development of new techniques should yet be explored

to obtain accurate solutions successfully.

Among the finite difference methods (FDMs), one can point out to the

method that explained in [3]. In this paper, the authors has been proposed

a class of explicit Runge-Kutta type methods which have the convergence of

order 3 for solving equation (1). Also, for solving the above-mentioned equa-

tion, bivariate cubic spline functions of full continuity was suggested by Singh

[10]. In addition, Brunner and Kauthen [6] developed collocation and iterated

collocation techniques for two-dimensional linear VIEs. Moreover, Gouqiang

and Hayami [8] introduced the extrapolation idea of iterated collocation solu-

tion for two-dimensional nonlinear VIEs. The iterated Galerkin approach was

also applied in [9] for solving the linear form of (1).

Recently, Babolian et al. [1] have considered the use of a basis of Haar func-

tions for the numerical solution of a special class of nonlinear two-dimensional

VIEs and FIEs (fredholm integral equations). Also, in [2] Banifatemi et al.

have introduced two-dimensional Legendre wavelets method for the numerical

treatment of nonlinear mixed two-dimensional VFIEs.

Yet so far, to the authors knowledge, spectral discontinuous-Galerkin meth-

ods for the nonlinear two-dimensional VIEs (1) have had few results. In this pa-

per, we investigate the ultraspherical spectral discontinuous-Galerkin method

for solving Eq. (1). The method consists of expanding the solution in terms of

two-dimensional ultraspherical polynomials (as considered test functions) with

unknown coefficients. The properties of ultraspherical polynomials and spec-

tral Galerkin method are then utilized to evaluate the unknown coefficients

and find an approximate solution to Eq. (1). Note that, in our proposed

method, we finally solve a nonlinear system of equations in terms of unknown
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coefficients. The most important reason of spectral Galerkin consideration is

that the spectral (Galerkin or collocation) methods provide highly accurate

approximations to the solution of operator equations in function spaces, pro-

vided that these solutions are sufficiently smooth [7]. Throughout this paper,

we assume that the following conditions are satisfied:

(i) Eq. (1) has an unique solution u(x, t) ∈ Cr(D) for a given r ∈ N ;

(ii) Functions K(x, t, y, z, u(y, z)) and f(x, t) are smooth enough.

The outline of this paper is as follows. Section 2 introduces some elementary

properties of the ultraspherical polynomials. In Section 3, we propose the

ultraspherical spectral Galerkin method for solving two-dimensional VIE (1)

in theoretical aspect. In Section 4, using the latter section, we apply the

above-mentioned method for solving Eq. (1) numerically. Section 5 presents

several illustrative examples which confirms the performance and efficiency of

the proposed method. Note that in this section, at the first three examples,

we make a comparison between our solutions and another method [1] that

presented recently. Finally, Section 6 includes some concluding remarks.

2 Preliminaries

2.1 Properties of ultraspherical polynomials

Jacobi polynomials for which α = β are called ultraspherical polynomials

and are denoted simply by P
(α)
k (x) [7]. They are related to the legendre

polynomials via

Lk(x) = P
(0)
k (x) (4)

and to the first kind chebyshev polynomials via

Tk(x) =
22k(k!)2

(2k)!
P

(− 1
2
)

k (x). (5)

Let w(x) = (1 − x2)α be a weight function in the usual sense, for α > −1.

As defined in [7] the set of ultraspherical polynomials {P (α)
n (x)}∞n=0 forms a
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complete L2
w(−1, 1)-orthogonal system, where L2

w(−1, 1) is a weighted space

defined by

L2
w(−1, 1) = {v : v is measurable and ‖v‖w <∞}

equipped with the following norm

‖v‖w = (

∫ 1

−1
|v(x)|2w(x)dx)

1
2

and the inner product is

(u, v)w =

∫ 1

−1
u(x)v(x)w(x)dx, ∀u, v ∈ L2

w(−1, 1).

2.2 Tensor-product expansion

The most natural way to build a two-dimensional expansion, with ex-

ploiting all the one-dimensional features, is to take tensor products of one-

dimensional expansions. Note that the resulting functions are defined on the

cartesian product of intervals [7].

Now given the ultraspherical polynomials {P (α)
n (x)}∞n=0 as a basis functions

on interval [−1, 1]. A two-dimensional ultraspherical expansion is produced by

the tensor product choice

φij(x, t) = P
(α)
i (x)P

(α)
j (t), i, j = 0, 1, . . . , N

Orthogonality of one-dimensional family with respect to the weight function

w(x) = (1 − x2)α implies orthogonality of the family {φij(x, t)}∞i,j=0 with

respect to the weight function W (x, t) = (1 − x2)α(1 − t2)α. We denote by

L2
W (D), the space of the measurable functions on D = [−1, 1]× [−1, 1], that

are square integrable, i.e.,

L2
W (D) = {φ : φ is measurable and ‖ φ ‖W<∞, }

where

‖ φ ‖W= (

∫
D

|φ(x, t)|2W (x, t)dD)
1
2 ,

and the inner product is

(ϕ, ψ)W =

∫
D

ϕ(x, t)ψ(x, t)W (x, t)dD ∀ϕ, ψ ∈ L2
W (D).

Then the tensor product of the ultraspherical polynomials form an orthogonal

basis for L2
W (D), [7].
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3 Ultraspherical spectral galerkin method

In this section we formulate ultraspherical spectral galerkin method for Eq.

(1). Introducing the Uryson integral operator defined by

(Ku)(x, t) =

∫ t

−1

∫ x

−1
K(x, t, y, z, u(y, z))dydz.

The Eq. (1) will be changed into the following operator form

u = f +Ku. (6)

Then, our goal is to find u = u(x, t) such that

u(x, t) = f(x, t) + (Ku)(x, t), ∀ (x, t) ∈ D, (7)

and the weak form is to find u ∈ L2
W (D) such that

(u, v)W = (f, v)W + (Ku, v)W , ∀ v ∈ L2
W (D). (8)

Let PN = PN(D) be the space of all algebraic polynomials of degree up to

the N in terms of variables x and t. Our ultraspherical spectral galerkin

approximation of (8) is now defined as finding uN ∈ PN such that

(uN , v)W = (f, v)W + (KuN , v)W , ∀ v ∈ PN . (9)

If PN denotes the orthogonal projection operator from L2
W (D) upon PN ,

then (9) can be equivalently rewritten : to find uN ∈ PN such that

uN = PNf + PNKu
N .

4 Implementation of the ultraspherical

discontinuous-galerkin method

Consider the two-dimensional ultraspherical polynomials

φij(x, t) = P
(α)
i (x)P

(α)
j (t), i, j = 0, 1, . . . , N
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as the basis functions of PN . Then the approximate solution can be denoted

by

u(x, t) ≈ uN(x, t) =
N∑
i=0

N∑
j=0

aijP
(α)
i (x)P

(α)
j (t). (10)

By substituting (10) in (9) and taking

v(x, t) = φrs(x, t) = P (α)
r (x)P (α)

s (t), r, s = 0, 1, . . . , N,

one can get a system of simultaneous equations for the unknown parameters

{aij}Ni,j=0.

For the linear case of the Eq. (1)

u(x, t) = f(x, t) +

∫ t

−1

∫ x

−1
K(x, t, y, z)u(y, z)dydz, (x, t) ∈ D, (11)

using orthogonal properties of two-dimensional ultraspherical polynomials

φrs(x, t) = P (α)
r (x)P (α)

s (t)

on the interval [−1, 1] × [−1, 1], we obtain the system of linear equations as

follows

crsars =

∫ 1

−1

∫ 1

−1
W (x, t)f(x, t)φrs(x, t)dxdt+ (12)

+
N∑
i=0

N∑
j=0

aij

∫ 1

−1

∫ 1

−1
W (x, t)φrs(x, t){

∫ t

−1

∫ x

−1
K(x, t, y, z)φij(y, z)dydz}dxdt,

for r, s = 0, . . . , N, where crs = (‖P (α)
r ‖W‖P (α)

s ‖W )2.

Now, we use suitable quadrature rules to approximate the integrals in (12).

For this purpose at first we set

y =
x+ 1

2
θ +

x− 1

2
= yθx, z =

t+ 1

2
ψ +

t− 1

2
= zψt , (13)

where θ ∈ [−1, 1] and ψ ∈ [−1, 1]. It is clear that∫ t

−1

∫ x

−1
K(x, t, y, z)φij(y, z)dydz =

∫ 1

−1

∫ 1

−1
K̃(x, t, yθx, z

ψ
t )φij(y

θ
x, z

ψ
t )dθdψ,

(14)
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with K̃(x, t, yθx, z
ψ
t ) = x+1

2
t+1
2
K(x, t, yθx, z

ψ
t ). Using (N + 1) points Gauss-

Legendre quadrature rule to approximate (14), yields∫ 1

−1

∫ 1

−1
K̃(x, t, yθx, z

ψ
t )φij(y

θ
x, z

ψ
t )dθdψ ≈

N∑
m=0

N∑
n=0

K̃(x, t, yθmx , zψn
t )φij(y

θm
x , zψn

t )vnvm

= K̃ij(x, t),

where {θm}Nm=0 and {ψn}Nn=0 are the set of (N + 1) Gauss-Legendre points

and {vm}Nm=0 are the set of corresponding weights.

For the remainder integrals in (12) we use (N+1) points Gauss-ultraspherical

quadrature rule as follows∫ 1

−1

∫ 1

−1
W (x, t)φrs(x, t)K̃ij(x, t)dxdt ≈

N∑
m=0

N∑
n=0

φrs(xm, tn)K̃ij(xm, tn)WmWn = Krs
ij

and∫ 1

−1

∫ 1

−1
W (x, t)f(x, t)φrs(x, t)dxdt ≈

N∑
m=0

N∑
n=0

f(xm, tn)φrs(xm, tn)WmWn = f rs,

where {xm}Nm=0 and {tn}Nn=0 are the set of (N + 1) Gauss-ultraspherical

points and {Wm}Nm=0 are corresponding weights. Therefore, the system of

linear equations (12) can be rewritten as follows

crsars = f rs +
N∑
i=0

N∑
j=0

Krs
ij aij, r, s = 0, 1, . . . , N. (15)

For the nonlinear case of Eq. (1), similar to that of (15), we obtain

crsars = f rs+

∫ 1

−1

∫ 1

−1
W (x, t)φrs(x, t){

∫ t

−1

∫ x

−1
K(x, t, y, z, uN(y, z))dydz}dxdt.

(16)

Again, using relations in (13), it is clear that∫ t

−1

∫ x

−1
K(x, t, y, z, uN(y, z))dydz =

∫ 1

−1

∫ 1

−1
K̃(x, t, yθx, z

ψ
t , u

N(yθx, z
ψ
t ))dθdψ,

(17)

with

K̃(x, t, yθx, z
ψ
t , u

N(yθx, z
ψ
t )) =

x+ 1

2

t+ 1

2
K(x, t, yθx, z

ψ
t , u

N(yθx, z
ψ
t )).
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We note that a similar (N + 1) points Gauss-Legendre rule can be applied to

approximating the integral involved in the right hand side of Equation (17) as

follows∫ 1

−1

∫ 1

−1
K̃(x, t, yθx, z

ψ
t , u

N(yθx, z
ψ
t ))dθdψ ≈

N∑
m=0

N∑
n=0

K̃(x, t, yθmx , zψn
t )uN(yθmx , zψn

t )vnvm

= K̃(x, t)

and we have∫ 1

−1

∫ 1

−1
W (x, t)φrs(x, t)K̃(x, t)dxdt ≈

N∑
m=0

N∑
n=0

φrs(xm, tn)K̃(xm, tn)WmWn = Krs

Actually, we solve the system of nonlinear equations as follows

crsars = f rs +Krs, r, s = 0, . . . , N.

Remark. Note that our proposed method can be applied also to the

following general form of the mixed Volterra-Fredholm integral equation by a

similar procedure

u(x, t) = f(x, t) +

∫ t

−1

∫ 1

−1
K(x, t, y, z, u(y, z))dydz,

with (x, t) ∈ D = [−1, 1]× [−1, 1].

5 Illustrative Examples

In this section, several numerical examples are considered to demonstrate

the efficiency and accuracy of the proposed method. We note that the two

special class of ultrapherical polynomials are the Legendre and Chebyshev

polynomials (that explained in section 2 briefly), and hence, we consider

both of these for solving the above-mentioned examples. In all examples

we set parameters T = 1, X = 1 and in the case of Legendre polynomi-

als consider {θm}Nm=0 as the Legendre-Gauss points with the corresponding

weights vm =
2

(1− θ2m)[L′N+1(θm)]2
, m = 0, 1, . . . , N, where LN+1(x) is the
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(N + 1)th Legendre polynomial. Also, in the case of Chebyshev polynomi-

als consider {xm}Nm=0 as the Chebyshev-Gauss points with the corresponding

weights wm = π
N+1

, m = 0, 1, . . . , N.

All calculations are designed in MAPLE 14 and run on a Pentium 4 PC

Laptop with 2.5 GHz of CPU and 2 GB of RAM.

Table 1: Numerical Results for Example 5.1 by Chebyshev Polynomials
(x, t)=

( 1
2l
, 1
2l

) N=1 N=2 N=3 N=4
(m=32) haar

wavelet method [1]

l=1 1.6× 10−2 2.9× 10−5 7.8× 10−5 6.2× 10−8 1.4× 10−2

l=2 3.2× 10−3 1.2× 10−3 1.8× 10−5 1.8× 10−6 7.9× 10−3

l=3 3.5× 10−4 3.3× 10−4 1.6× 10−5 1.6× 10−6 4.1× 10−3

l=4 6.5× 10−4 1.6× 10−5 3.5× 10−6 7.5× 10−7 2.2× 10−3

l=5 3.8× 10−4 7.4× 10−5 5.9× 10−7 9.4× 10−8 1.2× 10−3

l=6 1.4× 10−4 5.8× 10−5 1.0× 10−6 7.2× 10−8 9.3× 10−9

Table 2: Numerical Results for Example 5.1 by Legendre Polynomials

(x, t) = ( 1
2l
, 1
2l

) N=1 N=2 N=3 N=4

l=1 1.0× 10−2 2.0× 10−5 5.3× 10−5 3.6× 10−8

l=2 1.0× 10−3 8.1× 10−4 1.9× 10−5 6.6× 10−7

l=3 1.3× 10−3 6.7× 10−5 1.1× 10−5 1.5× 10−6

l=4 1.0× 10−3 1.7× 10−4 1.0× 10−6 3.4× 10−7

l=5 5.4× 10−4 1.6× 10−4 3.3× 10−6 2.3× 10−7

l=6 1.9× 10−4 1.1× 10−4 2.5× 10−6 2.7× 10−7

Example 5.1. [1] Consider the following two-dimensional VIE

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

(xy2 + cos(z))u2(y, z)dydz, 0 ≤ x, t ≤ 1,

where

f(x, t) = xsin(t)(1− x2sin2(t)

9
) +

x6

10
(
sin(2t)

2
− t).

The exact solution is u(x, t) = xsin(t). Tables 1 and 2 illustrate the nu-

merical results for this example. For solving this example, we apply both of

the Chebyshev and Legendre Ultraspherical polynomials. In Tables 1 and 2
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at the grids ( 1
2l
, 1
2l

), (l = 1, . . . , 6) we show the absolute value of errors for

N = 1, 2, 3, 4. In Table 1 (at the last column) we set the best results that ob-

tained in [1]. It can be seen that the errors decay rapidly, which is confirmed

by spectral accuracy. Also in Figure 1 the numerical solution

4∑
i=0

4∑
j=0

aijP
(α)
i (x)P

(α)
j (t)

and the exact solution

u(x, t) = xsin(t)

are depicted.

Table 3: Numerical Results for Example 5.2 by Chebyshev Polynomials
(x, t)=

( 1
2l
, 1
2l

) N=1 N=2 N=3 N=4
(m=32) haar

wavelet method [1]

l=1 5.0× 10−10 3.9× 10−10 1.5× 10−10 1.1× 10−10 3.1× 10−2

l=2 1.4× 10−10 3.3× 10−10 9.6× 10−10 1.7× 10−10 3.1× 10−2

l=3 4.2× 10−10 8.9× 10−10 5.6× 10−10 8.3× 10−10 3.1× 10−2

l=4 5.4× 10−10 1.1× 10−9 2.4× 10−10 5.2× 10−10 3.1× 10−2

l=5 6.1× 10−10 1.1× 10−9 7.8× 10−11 2.5× 10−10 3.1× 10−2

l=6 6.4× 10−10 1.1× 10−9 4.2× 10−12 1.1× 10−10 2.2× 10−9

Example 5.2. [1] In this example we are interested to apply our proposed

method for numerically solving the following two-dimensional VIE

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

(x+ t− z − y)u2(y, z)dydz, 0 ≤ x, t ≤ 1,
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Table 4: Numerical Results for Example 5.2 by Legendre Polynomials

(x, t) = ( 1
2l
, 1
2l

) N=1 N=2 N=3 N=4

l=1 1.0× 10−9 1.1× 10−10 4.0× 10−10 9.2× 10−10

l=2 6.9× 10−10 3.4× 10−10 9.7× 10−10 8.0× 10−10

l=3 5.2× 10−10 7.5× 10−10 7.3× 10−10 7.0× 10−10

l=4 4.3× 10−10 9.7× 10−10 4.0× 10−10 5.3× 10−10

l=5 3.9× 10−10 1.1× 10−9 2.0× 10−10 8.0× 10−10

l=6 3.7× 10−10 1.1× 10−9 9.5× 10−11 1.2× 10−9

where

f(x, t) = x+ t− 1

12
xt(x3 + 4x2t+ 4xt2 + t3).

The exact solution is

u(x, t) = x+ t.

Similar to Example 5.1 , in Tables 3 and 4 the errors are given and the numer-

ical solution and exact solutions are drawn in Figure 2.

Again we can see the spectral accuracy for not very large values of N.

Tables 3 and 4 show that an agreement of ten decimal figures at the above-

mentioned nodes is obtained. Note that the number of terms in Haar Wavelet

method [1] is one less than our approach, and hence m = N + 1.

Example 5.3. [1] We now turn to another nonlinear example. Consider

the following two-dimensional VIE

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

u2(y, z)dydz, (x, t) ∈ [0, 1)× [0, 1),
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Table 5: Numerical Results for Example 5.3 by Chebyshev Polynomials

(x, t)=

( 1
2l
, 1
2l

) N=1 N=2 N=3 N=4
(m=32) haar

wavelet method [1]

l=1 2.9× 10−1 1.0× 10−10 6.0× 10−10 1.0× 10−9 3.2× 10−2

l=2 1.3× 10−1 6.0× 10−10 2.0× 10−10 5.0× 10−10 1.6× 10−2

l=3 3.1× 10−2 7.8× 10−10 4.7× 10−10 8.0× 10−10 8.5× 10−3

l=4 1.3× 10−1 8.6× 10−10 6.5× 10−10 3.0× 10−10 4.6× 10−3

l=5 1.9× 10−1 8.4× 10−10 5.5× 10−10 2.0× 10−10 2.6× 10−3

l=6 2.1× 10−1 7.1× 10−10 6.6× 10−10 2.0× 10−10 1.6× 10−4

Table 6: Numerical Results for Example 5.3 by Legendre Polynomials
(x, t) = ( 1

2l
, 1
2l

) N=1 N=2 N=3 N=4

l=1 1.8× 10−1 1.0× 10−10 4.0× 10−10 9.9× 10−11

l=2 4.3× 10−2 2.0× 10−10 5.0× 10−10 5.0× 10−11

l=3 1.1× 10−1 2.2× 10−10 5.5× 10−10 3.4× 10−10

l=4 2.1× 10−1 3.2× 10−10 5.5× 10−10 5.7× 10−10

l=5 2.7× 10−1 6.6× 10−10 2.1× 10−10 5.3× 10−10

l=6 3.0× 10−1 6.9× 10−10 2.1× 10−10 9.3× 10−10

where

f(x, t) = x2 + t2 − 1

45
xt(9x4 + 10x2t2 + 9t4).

In this case, the exact solution is

u(x, t) = x2 + t2.

The results presented in Tables 5 and 6 show that the high rate of decay of

the errors in this example such that only a small number of nodes are needed



172 Numerical solution of two-dimensional Volterra integral equations ...

to obtain very accurate solutions. We plot the numerical and exact solutions

in Figure 3.

Table 7: Numerical Results for Example 5.4 by Chebyshev Polynomials

(x, t) = ( l
5
, l
5
) N=1 N=2 N=3

l=0 5.7× 10−5 8.5× 10−8 1.3× 10−9

l=1 3.4× 10−6 3.9× 10−8 2.5× 10−10

l=2 5.0× 10−5 4.3× 10−8 4.0× 10−10

l=3 1.0× 10−4 7.4× 10−8 2.0× 10−10

l=4 1.6× 10−4 3.1× 10−7 1.5× 10−9

l=5 2.1× 10−4 6.7× 10−7 7.0× 10−9

Table 8: Numerical Results for Example 5.4 by Legendre Polynomials
(x, t) = ( l

5 ,
l
5 ) N=1 N=2 N=3

l=0 5.5× 10−5 6.3× 10−8 4.2× 10−10

l=1 2.0× 10−5 7.5× 10−8 2.7× 10−10

l=2 9.4× 10−5 6.4× 10−8 2.0× 10−10

l=3 1.7× 10−4 9.5× 10−8 8.0× 10−10

l=4 2.4× 10−4 4.0× 10−7 1.0× 10−10

l=5 3.2× 10−4 8.6× 10−7 2.9× 10−9

Example 5.4. Finally, in this example we consider the following nonlinear

mixed two-dimensional integral equation

u(x, t) = f(x, t) +

∫ t

0

∫ 1

0

zeu(y,z)dydz, t ∈ [0, 1],

where

f(x, t) = xt− et + t+ 1.
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Here, the exact solution is

u(x, t) = xt.

From Tables 7 and 8 one can see that our suggested method obtain high accu-

rate solutions (as well as in three previous examples) in this mixed problem and

hence our method is applicable to nonlinear mixed two-dimensional integral

equations. Also, in Figure 4 the numerical and exact solutions are depicted.

6 Conclusions

The aim of the proposed method is determination of the numerical solu-

tion of two-dimensional VIES. The method is based upon the ultraspherical

polynomials and Galerkin method. The properties of ultraspherical polyno-

mials together with the Galerkin method are used here to reduce the solution

of the two-dimensional VIEs to the solution of algebraic equations. Illustra-

tive examples are included to demonstrate the validity and applicability of

the technique. Obtaining high accurate solutions with respect to another new

method shows the spectral accuracy of the proposed method. Moreover, only

a small number of ultraspherical polynomials are needed to obtain satisfactory

results. The given numerical examples support this claim.
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