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Abstract

This paper is concerned with a common fixed point problem of a non-

expansive semigroup in Hilbert spaces. The strong convergence theorem

for a nonexpansive semigroup is obtained by a novel general iterative

scheme based on the viscosity approximation method and applicability

of the results is shown to extend the results of many authors existing in

the current literature.
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1 Introduction

Thoughout this paper, we always assume that C be a nonempty closed convex

subset of a real Hilbert space H with inner product and norm denoted by 〈·, ·〉

and ‖ · ‖ respectively. Recall that PC is the metric projection of H onto C;

that is, for each x ∈ H there exists the unique point in PCx ∈ C such that

‖x − PCx‖ = min
y∈C

‖x − y‖.
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A mapping T : C → C is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C,

and the mapping f : C → C is called a contraction if there exists a constant

α ∈ (0, 1) such that

‖f(x) − f(y)‖ ≤ α‖x − y‖, ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. We denote by F (T )

the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. If C ⊂ H

is bounded, closed and convex and T is a nonexpansive mapping of C into

itself, then F (T ) is nonempty (see [1]). A family S = {T (s) : 0 ≤ s < ∞} of

mappings of C into itself is called a nonexpansive semigroup on C if it satisfies

the following conditions:

(i) T (0)x = x for all x ∈ C;

(ii) T (s + t) = T (s) ◦ T (t) for all s, t ≥ 0;

(iii) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0;

(iv) for all x ∈ C, s 7→ T (s)x is continuous.

We denote by F (S) the set of all common fixed points of S, that is,

F (S) = {x ∈ C : T (s)x = x, 0 ≤ s < ∞}. It is known that if C ⊂ H

is bounded, closed and convex, then F (S) is nonempty, closed and convex (see

[2]). Construction of fixed points of nonexpansive mappings (and of common

fixed points of nonexpansive semigroups) is an important subject in the theory

of nonexpansive mappings and finds application in number of applied areas,

in particular, in the minimization problem (see, e.g. [3, 4, 5, 6, 7] and the

references therein).

A typical problem is to minimize a quadratic function over the set of fixed

points of a nonexpansive mapping in a real Hilbert space H:

min
x∈Ω

{

1

2
〈Ax, x〉 − 〈x, b〉

}

,

where A is a bounded linear operator on H, Ω is the fixed point set of a

nonexpansive mapping S on H and b is a given point in H. Recall that A
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be a strongly positive bounded linear operator on H if there exists a constant

γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H.

Shimizu and Takahashi [8] introduced an iterative scheme for finding a

common fixed points of a nonexpansive semigroup as the following theorem.

Theorem ST. Let C be a nonempty closed convex subset of a Hilbert space H.

Let S = {T (s) : s ≥ 0} be a nonexpansive semigroup on C such that F (S) 6= ∅.

Suppose that x1 = u ∈ C and {xn} is the sequence defined by

xn+1 = αnu + (1 − αn)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1) and {sn} ⊂ (0,∞) satisfying the conditions

limn−→∞ αn = 0,
∑∞

n=1 αn = ∞ and limn−→∞ sn = ∞. Then {xn} converges

strongly to PF (S)u.

Marino and Xu [9] introduced the following an iterative scheme for finding

a fixed point of nonexpansive mapping based on the viscosity approximation

method introduced by Moudafi [10]:

xn+1 = αnγf(xn) + (I − αnA)Sxn, ∀n ∈ N, (1)

where x1 ∈ H, A is a strongly positive bounded linear operator on H, f is

a contraction on H and S is a nonexpansive on H. They proved that under

some appropriate conditions imposed on the parameters, if F (S) 6= ∅, then

the sequence {xn} generated by (1) converges strongly to the unique solution

z = PF (S)(I − A + γf)z of the variational inequality

〈(A − γf)z, x − z〉 ≥ 0, ∀x ∈ F (S),

which is the optimality condition for the minimization problem

min
x∈F (S)

{

1

2
〈Ax, x〉 − h(x)

}

,

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Futhermore, Plubtieng and Wangkeeree [11] introduced an iterative scheme

for finding a common fixed point of a nonexpansive semigroup as follows:

xn+1 = αnγf(xn) + (I − αnA)
1

sn

∫ sn

0

T (s)xn ds, (2)
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for all n ∈ N, where x1 ∈ H and f is a contraction on H. They proved that

under some appropriate conditions imposed on the parameters, if F (S) 6= ∅,

then the sequence {xn} generated by (2) converges strongly to the unique

solution z = PF (S)(I − A + γf)z of the variational inequality

〈(A − γf)z, x − z〉 ≥ 0, ∀x ∈ F (S).

In the same way, Plubtieng and Punpaeng [12] introduced an iterative

scheme:

xn+1 = αnf(xn) + βnxn + (1 − βn − αn)
1

sn

∫ sn

0

T (s)xn ds, (3)

for all n ∈ N, where x1 ∈ C, f is a contraction on C and S = {T (s) :

0 ≤ s < ∞} is a nonexpansive semigroup on C. They proved that under

some appropriate conditions imposed on the parameters, if F (S) 6= ∅, then

the sequence {xn} generated by (3) converges strongly to the unique solution

z = PF (S)f(z) of the variational inequality

〈(I − f)z, x − z〉 ≥ 0, ∀x ∈ F (S).

Very recently, Wangkeeree [13] introduced an iterative scheme:

xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds, (4)

for all n ∈ N, where x1 ∈ H and f is a contraction on H. We note that

their iteration is well defined if we let C = H, and the appropriateness of the

control condition αn of their iteration should be {αn} ⊂ (0, 1) (see Thoerem

3.1 in [13]). He proved that under some appropriate conditions imposed on the

parameters, if F (S) 6= ∅, then the sequence {xn} generated by (4) converges

strongly to the unique solution z = PF (S)(I − A + γf)z.

In this paper, we introduce a novel general iterative scheme by the vis-

cosity approximation method to find a common fixed point of a nonexpansive

semigroup in Hilbert space as follows:

xn+1 = αnγf(xn) + βnBxn + ((1 − ǫn)I − βnB − αnA)
1

sn

∫ sn

0

T (s)xn ds, (5)

for all n ∈ N, where x1 ∈ H, A and B are two mappings of the strongly

positive linear bounded self-adjoint operator mappings, and f : H → H be a

contraction mapping.

As special cases of the iterative scheme (5), we have the following.
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(i) If S = {T (s) : 0 ≤ s < ∞} = T , then (5) is reduced to iterative scheme:

xn+1 = αnγf(xn) + βnBxn + ((1 − ǫn)I − βnB − αnA)Txn. (6)

(ii) If ǫn = 0 for all n ∈ N, then (5) is reduced to iterative scheme:

xn+1 = αnγf(xn) + βnBxn + (I − βnB − αnA)
1

sn

∫ sn

0

T (s)xn ds. (7)

(iii) If B ≡ I, then (5) is reduced to iterative scheme:

xn+1 = αnγf(xn)+βnxn +((1− ǫn−βn)I −αnA)
1

sn

∫ sn

0

T (s)xn ds. (8)

(iv) If βn = 0 for all n ∈ N, then (8) is reduced to iterative scheme:

xn+1 = αnγf(xn) + ((1 − ǫn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds. (9)

(v) If ǫn = 0 for all n ∈ N, then (8) is reduced to iterative scheme of Wang-

keeree [13]:

xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds. (10)

(vi) If ǫn = 0 for all n ∈ N, then (9) is reduced to iterative scheme of Plubtieng

and Wangkeeree [11]:

xn+1 = αnγf(xn) + (I − αnA)
1

sn

∫ sn

0

T (s)xn ds. (11)

(vii) If γ = 1 and A ≡ I, then (10) is reduced to iterative scheme of Plubtieng

and Punpaeng [12]:

xn+1 = αnf(xn) + βnxn + (1 − βn − αn)
1

sn

∫ sn

0

T (s)xn ds. (12)

(viii) If S = {T (s) : 0 ≤ s < ∞} = T , then (11) is reduced to iterative scheme

of Marino and Xu [9]:

xn+1 = αnγf(xn) + (I − αnA)Txn. (13)
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(ix) If βn = 0 for all n ∈ N and for u ∈ C chosen arbitrarily, define the

mapping f : C → C by f(x) = u for all x ∈ C then (12) is reduced to

iterative scheme of Shimizu and Takahashi [8]:

xn+1 = αnu + (1 − αn)
1

sn

∫ sn

0

T (s)xn ds. (14)

We suggest and analyze the iterative scheme (5) above under some appro-

priate conditions imposed on the parameters, the strong convergence theorem

for a common fixed point of a nonexpansive semigroup is obtained and appli-

cability of the results is shown to extend the results of many authors existing

in the current literature.

2 Preliminary Notes

We collect the following definition and lemmas which be used in the proof for

the main results in the next section.

Definition 2.1. (see [14]) A space X is said to safisfy Opial’s condition if

for each sequence {xn} in X which converges weakly to point x ∈ X, we have

lim inf
n−→∞

‖xn − x‖ < lim inf
n−→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

Remark 2.2. It is well known that Hilbert spaces satisfy Opial’s condition.

Lemma 2.3. Let C be a nonempty closed convex subset of a Hilbert space

H. Then the following inequality holds:

〈x − PCx, PCx − y〉 ≥ 0, ∀x ∈ H, y ∈ C.

Lemma 2.4. (see [9]) Let H be a Hilbert space, f : H → H be a contraction

with coefficient 0 < α < 1, and A : H → H be a strongly positive linear bounded

operator with coefficient γ > 0. Then,

(1) if 0 < γ < γ/α, then

〈x − y, (A − γf)x − (A − γf)y〉 ≥ (γ − γα)‖x − y‖2 , ∀x, y ∈ H;

(2) if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ.
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Lemma 2.5. (see [8]) Assume {an} is a sequence of nonnegative real num-

bers such that

an+1 ≤ (1 − ηn)an + δn, n ≥ 1,

where {ηn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1) limn−→∞ ηn = 0 and
∑∞

n=1 ηn = ∞;

(2) lim supn−→∞(δn/ηn) ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn−→∞ an = 0.

Lemma 2.6. (see [8]) Let C be a nonempty bounded closed convex subset

of a Hilbert space H and let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive

semigroup on C. For x ∈ C and t > 0. Then for any 0 ≤ h < ∞, we have

lim
t−→∞

sup
x∈C

∥

∥

∥

1

t

∫ t

0

T (s)x ds − T (h)
(1

t

∫ t

0

T (s)x ds
)∥

∥

∥
= 0.

3 Main Results

Theorem 3.1. Let H be a real Hilbert space. Let A,B : H → H be two

mappings of the strongly positive linear bounded self-adjoint operator mappings

with coefficients δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively,

and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let

S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on H. Assume that

F (S) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} be generated

iteratively by

xn+1 = αnγf(xn)+βnBxn +((1− ǫn)I −βnB−αnA)
1

sn

∫ sn

0

T (s)xn ds, (15)

for all n ∈ N, where {αn} ⊂ (0, 1), {βn}, {ǫn} ⊂ [0, 1) such that ǫn ≤ αn and

{sn} ⊂ (0,∞) satisfying the following conditions:

(C1) limn−→∞ αn = limn−→∞ βn = limn−→∞(ǫn/αn) = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).
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Proof. From ‖B‖ = β ∈ (0, 1], {βn} ⊂ [0, 1), ǫn ≤ αn for all n ∈ N, (C1), we

have αn −→ 0, ǫn −→ 0 and βn −→ 0 as n −→ ∞. Thus, we may assume

without loss of generality that αn < (1 − ǫn − βn‖B‖)‖A‖−1 for all n ∈ N.

Since A and B are two mappings of the linear bounded self-adjoint operators,

we have

‖A‖ = sup{| 〈Ax, x〉 | : x ∈ H, ‖x‖ = 1}

and

‖B‖ = sup{| 〈Bx, x〉 | : x ∈ H, ‖x‖ = 1}.

Observe that

〈((1 − ǫn)I − βnB − αnA)x, x〉 = (1 − ǫn) 〈x, x〉 − βn 〈Bx, x〉 − αn 〈Ax, x〉

≥ 1 − ǫn − βn‖B‖ − αn‖A‖

> 0.

Therefore, we obtain (1 − ǫn)I − βnB − αnA is positive. Thus, by the strong

positively of A and B, we get

‖(1 − ǫn)I − βnB − αnA‖

= sup{〈((1 − ǫn)I − βnB − αnA)x, x〉 : x ∈ H, ‖x‖ = 1}

= sup{(1 − ǫn) 〈x, x〉 − βn 〈Bx, x〉 − αn 〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

≤ 1 − ǫn − βnβ − αnδ

≤ 1 − βnβ − αnδ. (16)

Define the sequence of mappings {Pn : H → H} as follows:

Pnx = αnγf(x) + βnBx + ((1− ǫn)I − βnB − αnA)
1

sn

∫ sn

0

T (s)x ds, ∀x ∈ H,

for all n ∈ N. Firstly, we prove that Pn has a unique fixed point in H. Note

that for all x, y ∈ H, by (16), the contraction of f , the nonexpansiveness of

T (s), and the linearity of A and B, we have

‖Pnx − Pny‖ ≤ αnγ‖f(x) − f(y)‖ + βn‖B‖‖x − y‖

+ ‖(1 − ǫn)I − βnB − αnA‖
1

sn

∫ sn

0

‖T (s)x − T (s)y‖ ds

≤ αnγδ‖x − y‖ + βnβ‖x − y‖ + (1 − βnβ − αnδ)‖x − y‖

= (1 − (δ − γδ)αn)‖x − y‖.
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Hence, Pn is a contraction with coefficient 1 − (δ − γδ)αn ∈ (0, 1). Therefore,

by Banach contraction principle guarantees that Pn has a unique fixed point

in H, and so the iteration (15) is well defined.

Next, we prove that {xn} is bounded. Pick p ∈ F (S) =
⋂

s≥0 F (T (s)) and

setting yn = 1
sn

∫ sn

0
T (s)xn ds. By the nonexpansiveness of T (s), we have

‖yn − p‖ =
∥

∥

∥

1

sn

∫ sn

0

T (s)xn ds −
1

sn

∫ sn

0

T (s)p ds
∥

∥

≤
1

sn

∫ sn

0

‖T (s)xn − T (s)p‖ ds

≤ ‖xn − p‖. (17)

By (16), (17), the contraction of f , and the linearity of A and B, we have

‖xn+1 − p‖ = ‖αnγf(xn) + βnBxn + ((1 − ǫn)I − βnB − αnA)yn − p‖

= ‖αn(γf(xn) − Ap) + βnB(xn − p)

+ ((1 − ǫn)I − βnB − αnA)(yn − p) − ǫnp‖

≤ αn‖γf(xn) − Ap‖ + βn‖B‖‖xn − p‖

+ ‖(1 − ǫn)I − βnB − αnA‖‖yn − p‖ + ǫn‖p‖

≤ αnγ‖f(xn) − f(p)‖ + αn‖γf(p) − Ap‖ + βnβ‖xn − p‖

+ (1 − βnβ − αnδ)‖xn − p‖ + αn‖p‖

≤
(

1 − (δ − γδ)αn

)

‖xn − p‖ + αn

(

‖γf(p) − Ap‖ + ‖p‖
)

≤ max

{

‖xn − p‖,
‖γf(p) − Ap‖ + ‖p‖

δ − γδ

}

.

It follows from induction that

‖xn+1 − p‖ ≤ max

{

‖x1 − p‖,
‖γf(p) − Ap‖ + ‖p‖

δ − γδ

}

,

for all n ∈ N. Hence, {xn} is bounded, and so are {yn} and {f(xn)}.

Put z1 = PF (S)x1 and set

D = {z ∈ H : ‖z − z1‖ ≤ ‖x1 − z1‖ +
‖γf(z1) − Az1‖ + ‖z1‖

δ − γδ
}.

Then D is a nonempty bounded closed convex subset of H which is T (s)-

invariant for each s ∈ [0,∞) and {xn}, {yn} ⊂ D. Without loss of generality,
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we may assume that S = {T (s) : 0 ≤ s < ∞} is a nonexpansive semigroup on

D. By (C2) and Lemma 2.6, we get

lim
n−→∞

‖yn − T (h)yn‖ = 0, (18)

for every h ∈ [0,∞). For all x, y ∈ H, by Lemma 2.4(2), the nonexpansiveness

of PF (S), the contraction of f and the linearity of A, we have

‖PF (S)(I − A + γf)x − PF (S)(I − A + γf)y‖

≤ ‖(I − A + γf)x − (I − A + γf)y‖

≤ γ‖f(x) − f(y)‖ + ‖I − A‖‖x − y‖

≤ γδ‖x − y‖ + (1 − δ)‖x − y‖

= (1 − (δ − γδ))‖x − y‖.

Therefore, PF (S)(I−A+γf) is a contraction with coefficient 1−(δ−γδ) ∈ (0, 1),

by Banach contraction principle guarantees that PF (S)(I−A+γf) has a unique

fixed point, say w ∈ H, that is, w = PF (S)(I − A + γf)w. Hence, by Lemma

2.3, we obtain

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S). (19)

Next, we claim that

lim sup
n−→∞

〈γf(w) − Aw, yn − w〉 ≤ 0.

To show this inequality, we choose a subsequence {yni
} of {yn} such that

lim sup
n−→∞

〈γf(w) − Aw, yn − w〉 = lim
i−→∞

〈γf(w) − Aw, yni
− w〉 . (20)

Since {yni
} ⊂ D is bounded, there exists a subsequence {ynij

} of {yni
} which

converges weakly to w. Without loss of generality, we can assume that yni
⇀ w

as i −→ ∞.

Next, we prove that w ∈ F (S) =
⋂

s≥0 F (T (s)). Suppose that w /∈ F (S),

that is, T (h)w 6= w for some h ∈ [0,∞). Since ‖yni
− T (h)yni

‖ −→ 0 as

i −→ ∞ by (18), therefore, by the nonexpansiveness of T (h) and the Opial’s

condition, we have

lim inf
i−→∞

‖yni
− w‖ < lim inf

i−→∞
‖yni

− T (h)w‖

≤ lim inf
i−→∞

(

‖yni
− T (h)yni

‖ + ‖T (h)yni
− T (h)w‖

)

≤ lim inf
i−→∞

‖yni
− w‖.
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This is a contradiction. So, we obtain w ∈ F (S). Therefore, from (19) and

(20), we obtain

lim sup
n−→∞

〈γf(w) − Aw, yn − w〉 = lim
i−→∞

〈γf(w) − Aw, yni
− w〉

= 〈(γf − A)w,w − w〉 ≤ 0. (21)

Next, we prove that xn −→ w as n −→ ∞. Since w ∈ F (S), the same as

in (17), we have

‖yn − w‖ ≤ ‖xn − w‖. (22)

Therefore, by (16), (22), the contraction of f , and the linearity of A and B,

we have

‖xn+1 − w‖2 = ‖αnγf(xn) + βnBxn + ((1 − ǫn)I − βnB − αnA)yn − w‖2

= ‖αn(γf(xn) − Aw) + βnB(xn − w)

+
(

(1 − ǫn)I − βnB − αnA
)

(yn − w) − ǫnw‖2

≤
(

‖αn(γf(xn) − Aw) + βnB(xn − w)

+
(

(1 − ǫn)I − βnB − αnA
)

(yn − w)‖ + ǫn‖w‖
)2

= ‖αn(γf(xn) − Aw) + βnB(xn − w)

+ ((1 − ǫn)I − βnB − αnA)(yn − w)‖2 + M (1)
n

= ‖βnB(xn − w) + ((1 − ǫn)I − βnB − αnA)(yn − w)‖2

+ 2αn 〈((1 − ǫn)I − βnB − αnA)(yn − w), γf(xn) − Aw〉

+ M (1)
n + M (2)

n

≤
(

βn‖B‖‖xn − w‖ + ‖(1 − ǫn)I − βnB − αnA‖‖yn − w‖
)2

+ 2αnγ 〈yn − w, f(xn) − f(w)〉 + M (1)
n + M (2)

n + M (3)
n

≤
(

βnβ‖xn − w‖ + (1 − βnβ − αnδ)‖xn − w‖
)2

+ 2αnγδ‖xn − w‖2 + M (1)
n + M (2)

n + M (3)
n

=
(

1 − 2(δ − γδ)αn

)

‖xn − w‖2 + α2
nδ

2
‖xn − w‖2

+ M (1)
n + M (2)

n + M (3)
n

≤ (1 − ηn)‖xn − w‖2 + δn,
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where

M (1)
n := 2ǫn‖αn(γf(xn) − Aw) + βnB(xn − w)

+ ((1 − ǫn)I − βnB − αnA)(yn − w)‖‖w‖ + ǫ2
n‖w‖2,

M (2)
n := α2

n‖γf(xn) − Aw‖2 + 2αnβn 〈B(xn − w), γf(xn) − Aw〉 ,

M (3)
n := 2αn 〈yn − w, γf(w) − Aw〉

− 2αn 〈(ǫnI + βnB + αnA)(yn − w), γf(xn) − Aw〉 ,

ηn := (δ − γδ)αn ∈ (0, 1),

δn := α2
nδ

2
‖xn − w‖2 + M (1)

n + M (2)
n + M (3)

n .

By (C1), (C2), limn−→∞ ǫn = 0 and (21), we can found that limn−→∞ ηn = 0,
∑∞

n=1 ηn = ∞ and lim supn−→∞ (δn/ηn) ≤ 0. Therefore, by Lemma 2.5, we

obtain {xn} converges strongly to w. This completes the proof.

Remark 3.2. The iteration (15) is the difference with many others as the

following.

1. Two mappings A and B of the strongly positive linear bounded self-

adjoint operator mappings are used in the iteration of {xn}, which be

used only one mapping A by many others.

2. Three parameters αn, βn and ǫn are used in the iteration of {xn}, which

be used only two parameters αn and βn by many others.

4 Applications

Theorem 4.1. Let H be a real Hilbert space. Let A,B : H → H be two

mappings of the strongly positive linear bounded self-adjoint operator mappings

with coefficients δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively,

and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1).

Let T : H → H be a nonexpansive mapping. Assume that F (T ) 6= ∅ and

0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} be generated iteratively by

xn+1 = αnγf(xn) + βnBxn + ((1 − ǫn)I − βnB − αnA)Txn,

for all n ∈ N, where {αn} ⊂ (0, 1) and {βn}, {ǫn} ⊂ [0, 1) such that ǫn ≤ αn

satisfying the following conditions:
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(C1) limn−→∞ αn = limn−→∞ βn = limn−→∞(ǫn/αn) = 0;

(C2)
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (T ) where w = PF (T )(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (T ).

Proof. It is concluded from Theorem 3.1 immediately, by putting S = {T (s) :

0 ≤ s < ∞} = T .

Theorem 4.2. Let H be a real Hilbert space. Let A,B : H → H be two

mappings of the strongly positive linear bounded self-adjoint operator mappings

with coefficients δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively,

and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let

S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on H. Assume that

F (S) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} be generated

iteratively by

xn+1 = αnγf(xn) + βnBxn + (I − βnB − αnA)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {sn} ⊂ (0,∞) satisfying

the following conditions:

(C1) limn−→∞ αn = limn−→∞ βn = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 3.1 immediately, by putting ǫn = 0 for

all n ∈ N.

Theorem 4.3. Let H be a real Hilbert space. Let A : H → H be a strongly

positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1]

such that δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with
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coefficient δ ∈ (0, 1). Let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive

semigroup on H. Assume that F (S) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} be generated iteratively by

xn+1 = αnγf(xn) + βnxn + ((1 − ǫn − βn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1), {βn}, {ǫn} ⊂ [0, 1) such that ǫn ≤ αn and

{sn} ⊂ (0,∞) satisfying the following conditions:

(C1) limn−→∞ αn = limn−→∞ βn = limn−→∞(ǫn/αn) = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 3.1 immediately, by putting B ≡ I.

Theorem 4.4. Let H be a real Hilbert space. Let A : H → H be a strongly

positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1]

such that δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with

coefficient δ ∈ (0, 1). Let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive

semigroup on H. Assume that F (S) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} be generated iteratively by

xn+1 = αnγf(xn) + ((1 − ǫn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1), {ǫn} ⊂ [0, 1) such that ǫn ≤ αn and

{sn} ⊂ (0,∞) satisfying the following conditions:

(C1) limn−→∞ αn = limn−→∞(ǫn/αn) = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).



P. Tianchai 129

Proof. It is concluded from Theorem 4.3 immediately, by putting βn = 0 for

all n ∈ N.

Theorem 4.5. (Wangkeeree [13]) Let H be a real Hilbert space. Let A :

H → H be a strongly positive linear bounded self-adjoint operator mapping

with coefficient δ ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1, and let f : H → H be a

contraction mapping with coefficient δ ∈ (0, 1). Let S = {T (s) : 0 ≤ s < ∞}

be a nonexpansive semigroup on H. Assume that F (S) 6= ∅ and 0 < γ < δ/δ.

For x1 = u ∈ H, suppose that {xn} be generated iteratively by

xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {sn} ⊂ (0,∞) satisfying

the following conditions:

(C1) limn−→∞ αn = limn−→∞ βn = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 4.3 immediately, by putting ǫn = 0 for

all n ∈ N.

Theorem 4.6. (Plubtieng and Wangkeeree [11]) Let H be a real Hilbert

space. Let A : H → H be a strongly positive linear bounded self-adjoint

operator mapping with coefficient δ ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1, and

let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let

S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on H. Assume that

F (S) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} be generated

iteratively by

xn+1 = αnγf(xn) + (I − αnA)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1) and {sn} ⊂ (0,∞) satisfying the following

conditions:
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(C1) limn−→∞ αn = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 4.4 immediately, by putting ǫn = 0 for

all n ∈ N.

Theorem 4.7. (Plubtieng and Punpaeng [12]) Let C be a nonempty closed

convex of a real Hilbert space H. Let f : C → C be a contraction mapping

with coefficient δ ∈ (0, 1) and let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive

semigroup on C. Assume that F (S) 6= ∅. For x1 = u ∈ C, suppose that {xn}

be generated iteratively by

xn+1 = αnf(xn) + βnxn + (1 − βn − αn)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {sn} ⊂ (0,∞) satisfying

the following conditions:

(C1) limn−→∞ αn = limn−→∞ βn = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)f(w)

is a unique solution of the variational inequality

〈(I − f)w, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 4.5 immediately, by putting γ = δ = 1

and A ≡ I.

Theorem 4.8. (Marino and Xu [9]) Let H be a real Hilbert space. Let

A : H → H be a strongly positive linear bounded self-adjoint operator mapping

with coefficient δ ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1, and let f : H → H be a con-

traction mapping with coefficient δ ∈ (0, 1). Let T : H → H be a nonexpansive

mapping. Assume that F (T ) 6= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose

that {xn} be generated iteratively by

xn+1 = αnγf(xn) + (I − αnA)Txn,

for all n ∈ N, where {αn} ⊂ (0, 1) satisfying the following conditions:
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(C1) limn−→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (T ) where w = PF (T )(I −

A + γf)w is a unique solution of the variational inequality

〈(A − γf)w, y − w〉 ≥ 0, ∀y ∈ F (T ).

Proof. It is concluded from Theorem 4.6 immediately, by putting S = {T (s) :

0 ≤ s < ∞} = T .

Theorem 4.9. (Shimizu and Takahashi [8]) Let C be a nonempty closed

convex of a real Hilbert space H. Let S = {T (s) : 0 ≤ s < ∞} be a nonexpan-

sive semigroup on C. Assume that F (S) 6= ∅. For x1 = u ∈ C, suppose that

{xn} be generated iteratively by

xn+1 = αnu + (1 − αn)
1

sn

∫ sn

0

T (s)xn ds,

for all n ∈ N, where {αn} ⊂ (0, 1) and {sn} ⊂ (0,∞) satisfying the following

conditions:

(C1) limn−→∞ αn = 0;

(C2) limn−→∞ sn =
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to w ∈ F (S) where w = PF (S)u is

a unique solution of the variational inequality

〈w − u, y − w〉 ≥ 0, ∀y ∈ F (S).

Proof. It is concluded from Theorem 4.7 immediately, by putting βn = 0 for

all n ∈ N and define the mapping f : C → C by f(x) = u for all x ∈ C.
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