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Abstract

Automated, image based high-content screening has become a funda-
mental tool for scientists to make discovery in biological science. Mod-
ern robotic fluorescence microscopes are able to capture thousands of
images from massively parallel experiments such as RNA interference
(RNAi). As such, efficient methods are required for automatic cellular
phenotype identification capable of dealing with large image data sets.
In this paper we applied the Curvelet transform for image feature de-
scription and Random Subspace ensemble (RSE) for classification. The
Curvelet transform as a new multiscale directional transform allows an
almost optimal nonadaptive sparse representation of objects rich with
edges. The RSE contains a set of base classifiers trained using ran-
domly drawn subsets of curvelet features. The component classifiers
are then aggregated by the Majority Voting Rule. Experimental re-
sults on the phenotype recognition from three benchmark fluorescene
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microscopy image sets (RNAi, CHO and 2D Hela) show the effective-
ness of the proposed approach. The ensemble model produces better
performance compared to any of individual neural networks. It offers
the classification rate 86.5% on the RNAi dataset, which compares fa-
vorably with the published result 82%, and the results on the other two
sets of fluorescence microscopy images also confirm the effectiveness of
the proposed approach.

Mathematics Subject Classification : 92C55, 68U10

Keywords: Phenotype Recognition, RNAi Screening, Curvelet Transform,

Random subspace ensemble

1 Introduction

With appropriate staining techniques, complex cellular structures such as or-

ganelles within the eukaryotic cell can be studied by fluorescence microscopy

images of cells. By robotic systems, thousands of images from cell assays can

be acquired from the so-called High-Content Screening (HCS), which often

yields high-quality, biologically relevant information. Many biological proper-

ties of the cell can be further analyzed from the images, for example, the size

and shape of a cell, amount of fluorescent label, DNA content, cell cycle, and

cell morphology [1]. On the other hand, High-Throughput Screening or HTS

allows a researcher to quickly conduct millions of biochemical, genetic or phar-

macological tests using robotics, data processing and control software, liquid

handling devices, and sensitive detectors. The high-content, high-throughput

screening has greatly advanced biologists’ understanding of complex cellular

processes and genetic functions [2]. With the aid of computer vision and

machine learning, scientists are now able to carry out large-scale screening of

cellular phenotypes, at whole-cell or sub-cellular levels, which are important in

many applications, e.g., delineating cellular pathways, drug target validation

and even cancer diagnosis [3,4].

The high-content screening has also significantly facilitated genome-wide

genetic studies in mammalian cells. With the combination with RNA interfer-

ence (RNAi), sets of genes involved in specific mechanisms, for example cell

division, can be identified. By observing the downstream effect of perturbing
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gene expression, genes’ normal operations that function to produce proteins

needed by the cell can thus be assessed [5]. RNAi is a phenomenon of de-

grading the complementary mRNA by introduction of double-stranded RNA

(dsRNA) into a diverse range of organisms and cell types [6,7]. The discovery

of RNAi and the availability of whole genome sequences allow the systematic

knockdown of every gene or specific gene sets in a genome [8]. Libraries of

RNAis, covering a whole set of predicted genes inside the target organisms

genome can be used to identify relevant subsets, facilitating the annotation of

genes for which no clear role has been established beforehand. Image-based

screening of the entire genome for specific cellular functions thus becomes fea-

sible by the development of Drosophila RNAi technology to systematically

disrupt gene expression. Genome-wide screens, however, produce huge vol-

umes of image data which is beyond human’s capability of manual analysis,

and automating the analysis of the large number of images generated in such

screens is the bottleneck in realizing the full potential of cellular and molecular

imaging studies.

To advance the development of high content screening for genome analy-

sis, computer vision and pattern analysis techniques have to be resorted to

characterize the morphological phenotypes quantitatively in order to identify

genes and their dynamic relationships on a genome-wide scale [9-11]. Such a

bioimage informatics framework would consist of several components: cellu-

lar segmentation, cellular morphology and texture feature extraction, cellular

phenotype classification, and clustering analysis [1]. With appropriate cellular

segmentation results, phenotype recognition can be studied in a multi-class

classification framework, which involves two interweaved components: feature

representation and classification. Efficient and discriminative image represen-

tation is a fundamental issue in any bioimage recognition. Most of the proposed

approaches for image-based high-content screening employed feature set which

consist of different combinations of morphological, edge, texture, geometric,

moment and wavelet features [12-18]. In recent years, computer vision has

seen much progresses in various feature descriptions based on extracting and

pooling local structural information from images, many of which have become

“off-the-shelf” standard methods applicable to bioimages analysis.

In this article, our effort is made toward the recognition of phenotypes for

high-content RNAi screening by using a benchmark fluorescence microscopy
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images [12]. We will first show that the Curvelet Transform (CT) [19] as the

latest research achievements on multiresolution analysis for image, is extremely

efficient in feature representation for cellular images in RNAi screening. Mul-

tiresolution ideas have been extensively applied in various areas, and image

analysis in particular. The most popular multiresolution analysis tool is the

Wavelet Transform. By wavelet analysis, an image can be decomposed at dif-

ferent scales and orientations using a wavelet basis vector. The successes of

wavelets has enkindled scientists’ interests in further research of multiresolu-

tion and harmonic analysis, with a number of new multiresolution, multidi-

mensional tools, such as contourlet and curvelet, developed in the past few

years [19-21]. Curvelet transform can accurately capture edge information by

taking the form of basis elements which exhibit very high directional sensitivity

and are highly anisotropic. It has been shown that curvelet is well suited for

representing images and the efficiency has been demonstrated in many tasks

such as edge detection and denoising [22]. Recently, promising results have

also been reported for face recognition and image retrieval [23-26].

Our main contribution for high-content RNAi screening is the proposal of

an efficient phenotype classification method based on the curvelet features. In

the past, many machine learning methods such as artificial neural networks

and Support Vector Machine (SVM) have been utilized for the classification

of subcellular protein location patterns in conjunction with various feature

representation methods from fluorescence microscope images [14,13,15,16,18].

Multi-class phenotype images, however, are often featured with large intra-

class variations and small inter-class similarities, which poses serious problems

for simultaneous multi-class separation using the standard classification algo-

rithms. And other rate-limiting factors challenging classifier design for multi-

class phenotype images include the “small sample size” problem, which means

that the number of available training samples per class is usually much smaller

than the dimensionality of the feature space. In order to facilitate the task

of classifier design, the dimensionality of the feature space is often reduced

by means of a projection technique such as Principal Component Analysis

(PCA) or Fisher’s Linear Discriminant Analysis (LDA). The successes of such

projection methods, however, are limited due to their inherent disadvantages.

To design accurate and robust classification systems for different applica-

tions, many advanced learning paradigms have been proposed in recent years.
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Among them, the classification ensemble learning techniques have attracted

much attention due to their demonstrated powerful capacities to improve upon

the classification accuracy of a base learning algorithm. An ensemble of clas-

sifiers can integrate multiple component classifiers such as decision tree or

multiple layer perceptrons for a same task using a same base learning algo-

rithm [27,28,31]. To satisfy the diversity pre-requisite for the success of an

ensemble system, namely, individual classifiers in an ensemble system making

different errors on different instances, a common approach is to use different

training datasets to train component classifiers. Such datasets are often ob-

tained through re-sampling techniques, such as bootstrapping. To classify a

new case, each member of the ensemble classifies the case independently of the

others and then the resulting votes are aggregated to derive a single final clas-

sification. The representatives of ensemble learning include Bagging [29] and

AdaBoost [30]. Diversity of classifiers in bagging is obtained by using boot-

strapped replicas of the training data. That is, different training data subsets

are randomly drawn with replacement from the entire training dataset. In

AdaBoost, bootstrap training samples are drawn from a distribution that is

iteratively updated such that subsequent classifiers focus on increasingly dif-

ficult instances. A version of bagging, called Random Forest [34], where the

base classifier is a modified decision tree, has been proved to be efficient in

many applications.

One popular classifiers ensemble method is the Random Subspace Ensemble

(RSE), which was proposed in [35] based on a simple rule: constructing a

different feature subset for each classifier in the ensemble. The main idea is

to enhance the diversity among the component classifiers while keeping their

accuracies at the same time. By using random feature subsets, RSE achieves

some advantages for constructing and aggregating classifiers, especially in the

case of that the number of available training objects is much smaller than the

feature dimensionality. RSE is able to solve this small sample size problem.

From another point of view, the RSE can avoid the dilemma of the curse

of dimensionality. The dimensionality of each subspace is smaller than the

original feature space dimensionality, and the number of training objects does

not change. Therefore, the size of relative training samples increases. When

data have redundant features, one may obtain better classifiers in random

subspaces than in the original feature space. The combined decision of such
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classifiers may be superior to a single classifier constructed on the original

training set in the complete feature space. It has been demonstrated that it

performs much better than several other ensemble methods such as bagging

and boosting on many benchmark classification data sets [36]. Applications of

Random Subspace Ensemble to medical and molecular image classification can

be found in [37,38] and some improvements and variations have been discussed

in [39,40]. With the RNAi, CHO and Hela fluorescence microscopy image

datasets [12], the improved classification performance will be demonstrated

experimentally.

The remainder of this paper is organized as follows. Section 2 firstly intro-

duces RNAi, CHO and 2D Hela fluorescence microscopy image data which will

be used and then details the Curvelet Transform for feature representation as

well as the Random Subspace Ensemble algorithm. The experimental studies

are presented in Section 3, and Section 4 offers the conclusions.

2 Fluorescence microscopy image data

Three benchmark fluorescence microscopy image datasets in [12] were used

in our study, which are RNAi, CHO and 2D-Hela. The RNAi dataset is a

set of fluorescence microscopy images of fly cells (D. melanogaster) subjected

to a set of gene-knockdowns using RNAi. The cells are stained with DAPI

to visualize their nuclei. Each class contains 20 1024 × 1024 images of the

phenotypes resulting from knockdown of a particular gene. Ten genes were

selected, and their gene IDs are used as class names. The genes are CG1258,

CG3733, CG3938, CG7922, CG8114, CG8222, CG 9484, CG10873, CG12284,

CG17161. According to [12], the images were acquired automatically using a

Delta-Vision light microscope with a 609 objective. Each image is produced

by deconvolution, followed by maximum intensity projection (MIP) of a stack

of 11 images at different focal planes. Samples of the images are illustrated in

Figure 1.

2D HeLa dataset, a collection of HeLa cell immunofluorescence images

containing 10 distinct subcellular location patterns. The subcellular location

patterns in these collections include endoplasmic reticulum (ER), the Golgi

complex, lysosomes, mitochondria, nucleoli, actin microfilaments, endosomes,

microtubules, and nuclear DNA. The 2D HeLa image dataset is composed of
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Figure 1: RNAi image set of fluorescence microscopy images of fly cells (D.

melanogaster)

862 single-cell images, each with size 382× 512.

CHO is a dataset of fluorescence microscope images of CHO (Chinese Ham-

ster Ovary) cells. The images were taken using 5 different labels. The la-

bels are: anti-giantin, Hoechst 33258 (DNA), anti-lamp2, anti-nop4, and anti-

tubulin. The CHO dataset is composed of 340 images, each with size 512×382.

3 Curvelet Transform for Image Feature De-

scription

Curvelet transform [19-21] is one of the latest developments of non-adaptive

transforms today. Compared to wavelet, curvelet provides a more sparse rep-

resentation of the image, with improved directional elements and better ability

to represent edges and other singularities along curves. Compared to meth-

ods based on orthonormal transforms or direct time domain processing, sparse

representation usually offers better performance with its capacity for efficient

signal modelling. So far, successful applications of curvelet have been found

in the fields of edge detection and image denoising [22], image retrieval [23,26]

and face recognition [24]. The potential of curvelet transform to solve bioimage

classification recognition problems, however, has not yet been explored.

While wavelets generalize the Fourier transform by using a basis that rep-

resents both location and spatial frequency, the curvelet transform provides

the flexibility that the degree of localisation in orientation varies with scale.

In curvelet, fine-scale basis functions are long ridges; the shape of the basis
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functions at scale j is 2−j by 2−j/2 so the fine-scale bases are skinny ridges with

a precisely determined orientation. The curvelet coefficients can be expressed

by

c(j, l, k) := 〈f, ϕj,l,k〉 =

∫
R2

f(x)ϕj,l,k(x)dx (1)

where ϕj,l,k denotes curvelet function, and j, l and k are the variable of scale,

orientation, and position respectively.

In the last few years, several discrete curvelet and curvelet-like transforms

have been proposed. The influential approach is based on the Fast Fourier

Transform (FFT) [21]. In the frequency domain, the curvelet transform can

be implemented with ϕ by means of the window function U . Defining a pair

of windows W (r) (a radial window) and V (t) (an angular window) as below:

∞∑
j=−∞

W 2(2jr) = 1, r ∈ (3/4, 3/2) (2)

∞∑
j=−∞

V 2(t− 1) = 1, t ∈ (−1/2, 1/2) (3)

where variables W as a frequency domain variable, and r and θ as polar co-

ordinates in the frequency domain, then for each j ≥ j0 , Uj is defined in the

Fourier domain by

Uj(r, θ) = 23j/4w(2−jr)v(
2[j/2]θ

2π
) (4)

where [j/2] denotes the integer part of j/2.

The above brief introduction of the frequency plane partitioning into radial

and angular divisions can be explained by Figure 2, where the shaded area is

one of the polar wedges represented by Uj, which is supported by the radial

and angular windows W and V . The radial divisions (concentric circles) are

responsible for decomposition of the image in multiple scales (used for band-

passing the image) and angular divisions corresponding to different angles or

orientation. Therefore when we consider each wedge like the shaded one, one

needs to define the scale and angle to analyze the bandpassed image at scale

j and angle θ.

The technical details of the curvelet transform implementation is much

involved and beyond the scope of current paper. The fastest curvelet transform

currently available is vurvelets via wrapping [21,22], which will be used for our
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Figure 2: Curvelet transform: Fourier frequency domain partitioning (left)

and spatial domain representation of a wedge (right)

work. If f([t1, t2]), 0 ≤ t1, t2 ≤ n is taken to be a Cartesian array and f̂ [n1, n2]

to denote its 2D Discrete Fourier Transform, then the architecture of curvelets

via wrapping is as follows [20]:

1. 2D FFT (Fast Fourier Transform) is applied to obtain Fourier samples

f̂ [n1, n2], −n/2 ≤ n1, n2 < n/2.

2. For each scale j and angle l , the product Ũj,t[n1, n2]f̂ [n1, n2] is formed,

where Ũj,t[n1, n2] is the discrete localizing window.

3. Wrap the product around the origin to obtain f̃ [n1, n2] = W (Ũj,lf̂)[n1, n2]

where the range for n1 and n2 is now 0 ≤ n1 < L1,j, and 0 ≤ n2 < L2,j;

L1,j ∼ 2j and L2,j ∼ 2j/2 are constants.

4. Apply inverse 2D FFT to each f̃j,l thus creating the discrete curvelet

coefficients

From the curvelet coefficients, some statistics can be calculated from each of

these curvelet sub-bands as image descriptor. Similar to the Gabor filtering,

the mean µ and standard deviation δ are the convenient features [26]. If n

curvelets are used for the transform, 2n features G = [Gµ, Gδ] are obtained,

where Gµ = [µ1, µ2, · · · , µn], Gδ = [δ1, δ2, · · · , δn]. The 2n dimension feature

vector can be used to represent each image in the dataset.
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Figure 3: Curvelet transform of an RNAi miscroscopy image. The top image is

the original one. The first image in second row is the approximate coefficients

and others are detailed coefficients at eight angles from three scales. All the

images are rescaled to same dimension for demonstration purpose.

4 Random Subspace Ensemble of Neural Net-

work Classifiers

The idea of classifiers ensemble is to individually train a set of classifiers and

appropriately combine their component decisions [27,28]. The variance and

bias of classification can be reduced simultaneously because the collective re-

sults will be less dependent on peculiarities of a single training set while a

combination of multiple classifiers may learn a more expressive concept class

than a single classifier. Classifier ensembles generally offer improved perfor-

mance. There are many ways to form a classifier ensemble. A mainstream

methodology is to train the ensemble members on different subsets of the

training data, which can be implemented by re-sampling (bagging) [29] and

re-weighing (boosting) [30] the available training data. Bagging (an abbre-

viation of “bootstrap aggregation”) uses the bootstrap, a popular statistical

re-sampling technique, to generate multiple training sets and component clas-

sifiers for an ensemble. Boosting generates a series of component classifiers

whose training sets are determined by the performance of former ones. Train-

ing instances that are wrongly classified by former classifiers will play more

important roles in the training of later classifiers.

Despite different classifier solutions can be applied in ensemble learning,

in this paper we will consider only the neural classifiers as the base learners
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with the following reasons. First of all, it has been proven that a simple

three-layer back propagation neural network (BPNN) can approximate any

continuous function if there are sufficient number of middle-layer units [32].

Secondly, the generalization performance of neural networks is not very stable

in the sense that different settings such as different network architectures and

initial conditions may all influence the learning outcome. The existing of such

differences between base classifiers is pre-requisite for the success of a classifier

ensemble [28].

The multilayer perceptron (MLP) trained with the back propagation algo-

rithm has been successfully applied to many classification problems in bioin-

formatics, for example, subcellular protein location patterns [13-15]. With a

set of source nodes forming the input layer, one or more hidden layers of com-

putation nodes, and a layer of output nodes, an MLP constructs input–output

mappings and the characteristics of such input–output relationship are deter-

mined by the weights assigned to the connections between the nodes in the two

adjacent layers. Changing the weight will change the input-to-output behavior

of the network. An MLP learning or training is often implemented by gradi-

ent descent using the back-propagation algorithm [32] to optimize a derivable

criterion, such as the Mean Squared Error, using the available training data.

The performance improvement can be expected from an MLP ensemble by

taking advantages of the disagreement among a set of MLP classifiers. An

important issue in constructing the MLP ensemble is to create the diversity of

the ensemble. In this paper we focus on MLP ensembles based on the Random

Subspace, a successful ensemble generation technique [36]. Similar to random

forest, the random subspace builds base classifiers independently with decision

trees, each classifier is a decision tree, which are trained in a random reduced

feature space [35]. The main idea of Randsom Subspace is: for a d-dimensional

training set, choose a fixed n(n < d), randomly select n features according to

the uniform distribution. Thus, the data of the original d-dimensional training

set is transformed to the selected n-dimensional subspace. The resulting fea-

ture subset is then used to train a suitable base classifier. Repeat this process

for m times, then m base classifiers are trained on different randomly cho-

sen feature subsets, the resulting set of classifiers are then combined by using

majority voting. The main idea of Random Subspace is to simultaneously

encourage diversity and individual accuracy within the ensemble: random fea-
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ture sets selection results in diversity among the base classifiers and using the

corresponding data set to train each base classifier prompt the accuracy. The

details of Random Subspace Ensemble can be described as follows.

Consider a training set X = {X1, X2, . . . , Xn}, each training sample Xi

is described by a p-dimensional vector, Xi = {xi1, xi2, . . . , xip}(i = 1, . . . , n).

We randomly select p∗ < p features from the original p-dimensional feature

vector to obtain a new p∗-dimensional feature vector. Now the orginal training

sample set X is modified as Xr = {Xr
1 , X

r
2 , . . . , X

r
n} , each training sample in

Xr is described by a p∗ feature vector, Xr
i = {xr

i1, x
r
i1, . . . , x

r
ip∗}(i = 1, . . . , n),

where each feature component xr
ij(j = 1, . . . , p∗) is randomly selected according

to the uniform distribution. Then we construct R classifiers in the random

subspace Xr and aggregate these classifiers in the final majority voting rule.

This procedure can be formally described as follows:

1. Repeat for r = 1, 2, . . . , R.

(a) Select the p∗-dimensional random subspace Xr from the original p-

dimensional feature space X. Denote each p∗-dimensional feature

vector by x.

(b) Construct a classifier Cr(x) (with a decision boundary Cr(x) = 0)

in Xr.

(c) Compute combining weights cr = 1
2
log

(
1−errr

errr

)
, where errr = 1

n

∑n
i=1 wr

i ξ
r
i

and ξr
i = 0, if Xi is classified correctly. Otherwise, ξr

i = 1.

2. Combine classifiers Cr(x), r = 1, . . . , R, by the weighted majority vote

with weights cr to a final decision rule β(x) = argmaxy∈{−1,1}
∑

r δsgn(Cr(x)),y,

where δi,j = 1, if i = j. Otherwise, δi,j = 0. y ∈ {−1, 1} is a decision

(class label) of the classifier.

5 Experiments

For the curvelet feature extraction process, fast discrete curvelet transform

via wedge wrapping was applied to each of the images in the database us-

ing the CurveLab Toolbox (http://www.curvelet.org/), following the four

steps described in Section 3: application of a 2-dimensional FFT of the image,

formation of a product of scale and angle windows, wrapping this product
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around the origin, and application of a 2-dimensional inverse FFT. The dis-

crete curvelet transform can be calculated to various resolutions or scales and

angles. Two parameters are involved in the digital implementation of the

curvelet transform: number of resolutions and number of angles at the coars-

est level. For our images of 1024× 1024, five scales were chosen which include

the coarsest wavelet level. At the 2nd coarsest level 16 angles were used. With

5 levels analysis, 82(= 1 + 16 + 32 + 32 + 1) subbands of curvelet coefficients

are computed. Therefore, a 164 dimension feature vector is generated for each

image in the database.

We first evaluated several different and commonly used supervised learning

methods to the multi-class classification problem, including k-nearest neigh-

bors (kNN), multi-layer perceptron neural networks, SVM and random sub-

sapce ensemble. kNN classifier is prototype-based, with an appropriate dis-

tance function for comparing pairs of data samples. It classifies a sample

by first finding the k closest samples in the training set, and then predicting

the class by majority voting. We simply chosen k = 1 in the comparisons.

Multiple layer perceptron (MLP) is now a standard multi-class classification

method [32], which, in our comparisons, is configured as a structure with one

hidden layer with a few hidden units. The activation functions for hidden and

output nodes are logistic sigmoid function and linear function, respectively.

We experimented with MLP with 20 units in the hidden layer and 10 linear

units representing the class labels. The network is trained using the Conjugate

Gradient learning algorithm for 500 epochs.

Support Vector Machines (SVM) [33] is a developed learning system orig-

inated from the statistical learning theory. Designing SVM classifiers in-

cludes selecting the proper kernel function and choosing the appropriate kernel

parameters and C value. The popular library for support vector machines

LIBSVM(www.csie.ntu.edu.tw/~cjlin/libsvm)) was used in the experi-

ment. We use the radial based function kernel for the SVM classifier. The

parameter γ that defines the spread of the radial function was set to be 5.0

and parameter C that defines the trade-off between the classifier accuracy and

the margin (the generation) to be 3.0.

A random forest(RF) classifier [34] consists of many decision trees and

outputs the class that is the mode of the classes output by individual trees.

The RF algorithm combines “bagging” idea to construct a collection of decision
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Figure 4: Barplots comparing the classification accuracies from the four clas-

sifiers.

Figure 5: Boxplots comparing the classification accuracies from the four clas-

sifiers.

trees with controlled variations. In the comparison experiments, the number of

trees for random forest classifier was chosen as 300 and the number of variables

to be randomly selected from the available set of variables was selected as 20.

As there are only about 20 images in each of the 10 classes of all the image

data sets, we designed holdout experiments in the following setting. In each
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experiment, we randomly picked up 2 samples from each class as a testing

and validation, respectively, while leaving the remaining data as training. The

classification accuracies are calculated as the averaged accuracies from 100

runs, such that each run used a random splitting of the data.

Figure 4 presents a comparison of the results achieved from each of the

above single models on the three microscopy image datasets (RNAi, 2D Hela

and CHO). It appears that for each image dataset, the best result was obtained

by using MLP. For RNAi, the best result from MLP is 84.7%, which is better

than the published result 82% [12]. The accuracies from other three classifiers

are 69.9% (kNN), 69.7% (random forest), and 72.9% (SVM). For 2D Hela and

CHO, the best results obtained by MLP are 83.6% and 92.1%, respectively,

which are also very competitive. The results for these two datasets obtained

by Shamir et al. are 84% for 2D-Hela and 93% for CHO [12]. The results

obtained by MLP contrast to the generally accepted perception that SVM

classifier is better than neural network in classification. The most reasonable

explanation for the better performance of MLP from our experiment is that

MLP as a memory-based classifier is more resistant to insufficient data amount

comparing the margin or distance-based SVM.

Figure 5 presents the box plot of classification results obtained by these

four single classifiers on RNAi data set, it can be seen that the MLP classifier

has the smallest variance range in classification result, the lowest classification

rate of MLP is about 55%, which is much higher than the lowest classification

rates of other three classifiers.

In the next experimental part of this study, we seek to prove that using

random subspace ensemble of MLP can achieve better classification results

than the single MLP classifiers used in the previous experiment. And we also

try to answer the question that how many MLP should be aggregated in the

ensemble to achieve a better result. The experiment was also carried out on

the three fluorescence microscopy image data sets introduced in Section 2.

The settings for the experiment are as follows: in each run of the exper-

iment, we randomly picked up 80% samples from each class as the training

samples, and left 10% samples for testing and 10% for validation, respectively,

such that each run used a random splitting of the data. The classification ac-

curacies are calculated as the averaged accuracies from 100 runs. The numbers

of MLP tested in the experiment are from 10 to 80. To ensure the diversity
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Table 1: Improvement of classification accuracy by using Random Subspace

Ensemble
Classifier RNAi 2D Hela CHO

MLP 84.70% 83.20% 91.20%

MLP-RSE (ensemble size=20) 85.6% 85.91% 93.2%

among the MLPs in an ensemble, we varied the number of hidden units in the

component networks by randomly choosing it from a range of 30 ∼ 50. The

classification results obtained by the ensemble has 20 components can be seen

in Table 1.

From Table 1, one can see that for all the three image data sets, the rand-

som subspace MLP ensemble does bring the improvement on the classification

accuracy, for the RNAi data set, the ensemble brings an increase approaching

1% on classification, from 84.7% upgraded to 85.6%. The classification accu-

racy for the other two data sets also be improved as well, for 2D-hela, it has

been enhanced from 83.6% to 85.91%; for CHO, the classification accuracy has

been upgraded to 93.2%.

To answer the question whether more component neural networks included

in an ensemble could further enhance the classification performance, we go

on the experiment by varying the sizes of the ensembles from 10 components

networks to 80 networks in each of the ensemble. The experiment procedure

is same as above with results of the averaged classification accuracies shown

in Figure 6. It seems that bigger ensemble size does bring better classification

performance for all of three image data sets. But such improvement becomes

marginal after the size exceed a limit and the bigger ensemble sizes bring heavy

computational burden on the training phase. As can be seen from Fig. 6, at

the ensemble size 70, for all of the three image data sets, we reach better

classification accuracies than other ensemble sizes. The classification results

of these three data sets are enhanced comparing to the results in Shamir et al.

[12].

In Table 2, Table 3 and Table 4, we only listed the top-10 classification

results from single MLPs for comparsion, an apparent conlcusion is that the

average classification results of 100 runs obtained by random subspace MLP

ensemble are superior than any result obtained by one single linear perceptron,

and the ensemble offers relatively smaller standard deviations.
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Figure 6: Classification accuracies on different ensemble sizes

Table 2: Performance from Random Subspace Ensemble of RNAi

Indices Accuracy (mean) Standard Deviation

1 86.20% 0.1270

2 86.00% 0.1247

3 85.90% 0.1280

4 85.90% 0.1215

5 85.90% 0.1248

6 85.90% 0.1319

7 85.80% 0.1232

8 85.80% 0.1241

9 85.70% 0.1148

10 85.60% 0.1274

Ensemble 86.50% 0.1282

In the following, we evaluated three different types of MLP ensembles for

the RNAi, 2D-Hela and CHO image classification. The ensemble methods

we compared are Random Subspace, Rotaion Forest and Dynamic Classifier

Selection. Rotation forest ensemble and dynamic classifier selection are two

ensemble method proposed recently, details of these two methods can be seen

in [31] and [41]. The experiment settings for these three ensemble methods are
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Table 3: Performance from Random Subspace Ensemble of CHO

Indices Accuracy (mean) Standard Deviation

1 93.65% 0.0607

2 93.53% 0.0588

3 93.35% 0.0577

4 93.35% 0.0583

5 93.35% 0.0595

6 93.35% 0.0595

7 93.29% 0.0620

8 93.18% 0.0559

9 93.12% 0.0580

10 93.12% 0.0643

Ensemble 94.24% 0.0542

Table 4: Performance from Random Subspace Ensemble of 2D-Hela

Indices Accuracy (mean) Standard Deviation

1 85.12% 0.0503

2 84.86% 0.0492

3 84.79% 0.0570

4 84.72% 0.0547

5 84.70% 0.0486

6 84.63% 0.0541

7 84.63% 0.0547

8 84.60% 0.0527

9 84.58% 0.0489

10 84.58% 0.0543

Ensemble 85.96% 0.0498

similar, the experiment procedure is same as above with results of the averaged

classification accuracies. Figure 7 shows the comparison result of these three

ensemble methods on ensemble size is 70, since in this size, we obtained the

best classification accuracy.

Although in Figure 7, we only listed the results of ensemble size 70, in our

experiment we found that for all the ensemble sizes we tested, random sub-

space ensemble always surpasses rotation forest. In the cases that the ensemble
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Figure 7: Comparison of different ensemble methods with ensemble size 70

sizes are less than 40, dynamic classifier selection can obtain better result than

random subspace, but when the ensemble size keeps growing, random subspace

ensemble gave the best classification result among these three methods. The

other traditional ensemble methods such as Bagging and Boosting were not

included in this comparison since it has been proven that in linear classifier sit-

uations, random subspace always give better result then Bagging and Boosting

[36].

The confusion matrices that summarize the details of the above random

subspace ensemble on RNAi image data set is given in Table 5. For the total

number of 10 testing samples (one for each category) in each experiment, the

10-by-10 matrix records the number of correct and incorrect predictions made

by the classifier ensemble compared with the actual classifications in the test

data. The matrices are averaged from the results of 100 runs. It is apparent

that among the 10 classes, CG10873, CG7922, CG1258 and CG3733 types are

the easiest to be correctly classified while the CG9484 is the difficult category.

The confusion matrices for 2D Hela and CHO data sets are given in Table 6

and Table 7, respectively.
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Table 5: Averaged confusion matrix for RNAi.
% 1 2 3 4 5 6 7 8 9 10

1 (CG10873) 0.96 0.02 0 0.02 0 0 0 0 0 0
2 (CG1258) 0.01 0.87 0 0.02 0.03 0 0.07 0 0 0
3 (CG3733) 0 0.01 0.96 0 0 0 0 0.01 0 0.02
4 (CG7922) 0.07 0 0 0.8 0 0 0 0.13 0 0
5 (CG8222) 0 0.03 0 0 0.89 0 0 0 0 0.08
6 (CG12284) 0 0 0 0 0 0.88 0.04 0 0.08 0
7 (CG17161) 0 0.05 0 0 0 0 0.91 0 0.04 0
8 (CG3938) 0.01 0 0 0.12 0.03 0 0 0.84 0 0
9 (CG8114) 0 0.03 0 0.02 0 0.02 0 0 0.93 0
10 (CG9484) 0 0 0.01 0.04 0.13 0.19 0 0.02 0 0.61

Table 6: Averaged confusion matrix for 2D-Hela.
% 1 2 3 4 5 6 7 8 9 10

1 (Actin) 0.97 0 0 0 0 0 0 0.02 0.01 0
2 (Dna) 0 0.74 0.03 0 0 0.19 0.01 0.03 0 0
3 (Endosome) 0 0.06 0.9 0.02 0 0 0 0.01 0 0.01
4 (Er) 0 0 0 0.85 0.15 0 0 0 0 0
5 (Golgia) 0 0 0 0.16 0.78 0.04 0 0 0.02 0
6 (Golgpp) 0 0.06 0 0 0.04 0.86 0 0.03 0.01 0
7 (Lysosome) 0.02 0.05 0.05 0 0 0.03 0.8 0.04 0 0.01
8 (Microtubules) 0 0.08 0.07 0.04 0 0.03 0.02 0.76 0 0
9 (Mitochondria) 0 0 0 0.02 0 0 0 0 0.98 0
10 (Nucleolus) 0 0 0.03 0.02 0 0 0 0 0 0.95

Table 7: Averaged confusion matrix for CHO.
% 1 2 3 4 5

1 (Giantin) 0.91 0 0.09 0 0
2 (Hoechst) 0.02 0.98 0 0 0
3 (Lamp2) 0.01 0 0.99 0 0
4 (Nop4) 0 0 0 0.97 0.03
5 (Tubulin) 0.02 0.01 0.03 0.08 0.86

6 Conclusion

Classifiers ensemble is an effective method for machine learning and can im-

prove the classification performance of a standalone classifier. A combination
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aggregates the results of many classifiers, overcoming the possible local weak-

ness of the individual classifier, thus producing a more robust recognition. In

this paper, we aimed at solving the challenging multi-class phenotype classi-

fication problem from microscopy images for RNAi screening. Two contribu-

tions are presented. Firstly, we proposed to apply the curvelet transform to

efficiently describe microscopy images, which exhibit very high directional sen-

sitivity and are highly anisotropic. Secondly, we have examined a novel method

to incorporate random subspace based multi-layer perceptron ensemble. The

designed paradigm seems to be well-suited to the characteristics of microscopy

image data. It has been empirically confirmed that considerable improvement

in the classification can be produced by using the random subspace neural

network ensembles. Experiments on the benchmarking RNAi datasets showed

that the random subspace MLP ensemble method achieved significantly higher

classification accuracies (∼ 86.5%), compared to the published result 82%.

And the classification results of other two groups of microscopy image data

sets using random subspace MLP also support the effectiveness of the pro-

posed method.
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