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Abstract

A combination of Dynamical System Method(DSM) and a regular-

ization method has been considered for obtaining a stable approximate

solution for ill-posed Hammerstein type operator equations. By choos-

ing the regularization parameter according to an adaptive scheme con-

sidered by Pereverzev and Schock (2005) an order optimal error estimate

has been obtained. Moreover the method that we consider converges ex-

ponentially compared to the linear convergence obtained by George and

Nair (2008).
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1 Introduction

In this paper we consider the problem of obtaining an approximate solution for

the nonlinear ill-posed Hammerstein type operator ( [4], [5], [6],[9]) equation

KF (x) = y. (1)

where F : D(F ) ⊂ X 7→ Z is nonlinear and K : Z 7→ Y is a bounded linear

operator where we take X,Y, Z to be Hilbert spaces.

In [9], George and Nair, studied a modified form of Newton Lavrentiev

Regularization method for obtaining approximations for a solution x̂ ∈ D(F )

of (1), which satisfies

‖F (x̂) − F (x0)‖ = min{‖F (x) − F (x0)‖ : KF (x) = y, x ∈ D(F )}

where x0 is an initial guess.

In this paper we consider the special case where X = Z. We assume

throughout that the solution x̂ of (1) satisfies

‖x̂ − x0‖ = min{‖x − x0‖ : KF (x) = y, x ∈ D(F )}

and that yδ ∈ Y are the available noisy data with

‖y − yδ‖ ≤ δ.

The method considered in [9] gives linear convergence and the method

considered in [6] gives quadratic convergence.

Recall that a sequence (xn) in X with lim xn = x∗ is said to be convergent

of order p > 1, if there exist positive reals β, γ, such that for all n ∈ N

‖xn − x∗‖ ≤ βe−γpn

.

If the sequence (xn) has the property, that

‖xn − x∗‖ ≤ βqn, 0 < q < 1

then (xn) is said to be linearly convergent. For an extensive discussion of

convergence rate see Kelley [12].

In this paper we consider a combination of a modified form of DSM and

a regularization method for obtaining a stable approximate solution for (1).
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Moreover the method that we considered in this paper converges exponentially

compared to the linear convergence obtained in [9].

Organization of this paper is as follows. In section 2, we introduce the DSM

method. In section 3 we provide an error estimate and in section 4 we derive

error bounds under general source conditions by choosing the regularization

parameter by an a priori manner as well as by an adaptive scheme proposed

by Pereverzev and Schock in [14]. In section 5 we provide an application and

finally the paper ends with conclusion in section 6.

2 Dynamical System Method

Observe that the solution x of (1) can be obtained by first solving

Kz = y (2)

for z and then solving the nonlinear equation

F (x) = z. (3)

For solving (2), we consider the regularized solution of (2) with yδ in place of

y as

zδ
α = (K∗K + αI)−1K∗yδ, α > 0, δ > 0. (4)

Note that (4) is the Tikhonov regularization of (2).

For solving (3), in [6], George and Kunhanandan considered xδ
n,α, defined

iteratively by

xδ
n+1,α = xδ

n,α − F ′(xδ
n,α)−1(F (xδ

n,α) − zδ
α), n ∈ N (5)

with xδ
0,α = x0.

Note that the iteration (5) is the Newton’s method for the nonlinear prob-

lem

F (x) − zδ
α = 0. (6)

The difficult and expensive part of the solution is inverting F ′(.) at each iterate

xδ
n,α. In [15] ( cf. section 2.4.6, page 59), Ramm considered a method called
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Dynamical System Method (DSM), which avoids, inverting of the operator

F ′(.). In this paper we consider a method which is a combination of a modified

form of DSM and the Tikhonov regularization. The DSM consists of finding (cf.

[15],[13]) a nonlinear locally Lipschitz operator Φ(u, t), such that the Cauchy

problem:

u′(t) = Φ(u, t), u(0) = u0 (7)

has the following three properties:

∃u(t)∀t ≥ 0, ∃u(∞), F (u(∞)) = 0,

i.e., (7) is globally uniquely solvable, its unique solution has a limit at infinity

u(∞), and this limit solves (6). We assume that(6) is well posed, so (6) has a

solution say xδ
α, such that xδ

α ∈ BR(x0).

Throughout this paper we will be using the following assumptions.

Assumption 2.1. F ′(x0)
−1 exist and is a bounded operator with ‖F ′(x0)

−1‖ =:

β.

Assumption 2.2. There exists a constant k0 > 0 such that for every x, u ∈
BR(x0) and v ∈ X, there exists an element Φ(x, u, v) ∈ X such that

[F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x − u‖.

The following Lemma based on the above assumption is used in proving

our main result.

Lemma 2.3. Let R > 0 and x, u ∈ BR(x0). Then

F ′(x0)(u − x) − (F (u) − F (x)) = F ′(x0)

∫ 1

0

Φ(x + t(u − x), x0, x − u)dt.

Proof. We know by fundamental theorem of integration, that F (u)−F (x) =
∫ 1

0
F ′(x + t(u − x))(u − x)dt. Hence by Assumption 2.2

F ′(x0)(u − x) − (F (u) − F (x)) =

∫ 1

0

[F ′(x + t(u − x)) − F ′(x0)](x − u)dt

= F ′(x0)

∫ 1

0

Φ(x + t(u − x), x0, x − u)dt.

The next assumption on source condition is based on a source function ϕ

and a property of the source function ϕ. We will be using this assumption to

obtain an error estimate for ‖F (x̂) − zδ
α‖.
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Assumption 2.4. There exists a continuous, strictly monotonically increasing

function ϕ : (0, a] → (0,∞) with a ≥ ‖K∗K‖ satisfying;

• lim

λ→0
ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ + α
≤ ϕ(α), ∀λ ∈ (0, a].

• there exists v ∈ X such that

F (x̂) = ϕ(K∗K)v

We assume that F ∈ C2
loc i.e., ∀x ∈ BR(x0),

‖F (j)(x)‖ ≤ Mj, j = 1, 2. (8)

Hereafter we assume that β < 1
2

and

R <
2(1 − 2β)

βM2 + 2k0

. (9)

In this paper we consider the following Cauchy’s problem

x′(t) = −(F ′(x0) + ε(t)I)−1(F (x) − zδ
α), x(0) = x0 (10)

where x0 is an initial approximation for xδ
α and

ε : [0,∞) → [0, K] (11)

is monotonic increasing function with ε(0) = 0 and

0 < K ≤ min{1 − k0R

2β
, 1}. (12)

Remark 2.5. Note that (9) implies R < 1
k0

and (12) implies βε(t) < 1.

In order to have a local solution for the Cauchy problem (10), we make use

of the following theorem.

Theorem 2.6. ([13], Theorem 2.1) Let X be a real Banach space, U be an

open subset of X, and x0 ∈ U. Let Φ : U × R
+ → X be of class C1 that is

bounded on bounded sets. Then the following hold.
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• There exists a maximal interval J containing 0 such that the initial value

problem

x′(t) = Φ(x(t), t), x(0) = x0,

has a unique solution x(t) ∈ U for all t ∈ J.

• If J has the right end point, say τ, and xτ := lim
t→τ

x(t) exists, then xτ is

on the boundary of U.

The following Proposition establishes the existence and uniqueness of the

solution of the Cauchy problem (10).

Proposition 2.7. Let ε(t) be as in (11), F maps bounded sets onto bounded

sets. Then there exists a maximal interval J ⊆ [0,∞) such that (10) has a

unique solution x(t) for all t ∈ J.

Proof. Let

Φ = −(F ′(x0) + ε(t)I)−1(F (x) − zδ
α), x ∈ BR(x0), t ∈ R

+.

Then Φ : BR(x0)×R
+ → X is of class C1. Because F is bounded on bounded

sets and since βε(t) < 1, we have

‖(F ′(x0) + ε(t)I)−1‖ ≤ ‖F ′(x0)
−1‖‖(I + ε(t)F ′(x0)

−1)−1‖

≤ β

1 − βε(t)
. (13)

That is (F ′(x0) + ε(t)I) has a bounded inverse for every t ∈ R
+. So Φ is

bounded on bounded sets. Hence the conclusion follows by applying Theorem

2.6.

Let x(t)−xδ
α := w and ‖w‖ := g. Then by Taylor Theorem (cf.[1], Theorem

1.1.20)

F (x(t)) − zδ
α = F (x(t)) − F (xδ

α) = F ′(xδ
α)(x(t) − xδ

α) + T (x(t), xδ
α)

where T (x(t), xδ
α) =

∫ 1

0
F ′′(λx(t) + (1 − λ)xδ

α)(x(t) − xδ
α)2(1 − λ)dλ.

Observe that

w′(t) = x′(t) = −(F ′(x0) + ε(t)I)−1[F ′(xδ
α)(x(t) − xδ

α) + T (x(t), xδ
α)]
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and hence

gg′ =
1

2

dg2

dt

=
1

2

d

dt
〈w,w〉

= 〈w,w′〉
= 〈w,−(F ′(x0) + ε(t)I)−1[F ′(xδ

α)(x(t) − xδ
α) + T (x(t), xδ

α)]〉
= 〈w,−w〉 + 〈w, Λw〉 + 〈w,−(F ′(x0) + ε(t)I)−1T (x(t), xδ

α)〉
≤ −‖w‖2 + ‖Λ‖‖w‖2 + ‖(F ′(x0) + ε(t)I)−1T (x(t), xδ

α)‖‖w‖
≤ −g2 + ‖Λ‖g2 + ‖(F ′(x0) + ε(t)I)−1T (x(t), xδ

α)‖g (14)

where Λ = I − (F ′(x0) + ε(t)I)−1F ′(xδ
α). Note that

‖Λ‖ ≤ sup

‖v‖ ≤ 1
‖(F ′(x0) + ε(t)I)−1[(F ′(x0) − F ′(xδ

α)) + ε(t)I)]v‖

≤ ‖(F ′(x0) + ε(t)I)−1(F ′(x0) − F ′(xδ
α))‖

+‖(F ′(x0) + ε(t)I)−1ε(t)I)v‖
≤ ‖(F ′(x0) + ε(t)I)−1(F ′(x0) − F ′(xδ

α))‖
+‖(F ′(x0) + ε(t)I)−1ε(t)Iv‖

≤ ‖(F ′(x0) + ε(t)I)−1F ′(x0)Φ(xδ
α, x0, v)‖

+‖(F ′(x0) + ε(t)I)−1ε(t)v‖

≤ k0R + βε(t)

1 − βε(t)
, (15)

the last step follows from Assumption 2.2, (13) and the inequality ‖(I +

ε(t)F ′(x0)
−1)−1‖ ≤ 1

1−βε(t)
. Again by (13) and (8)

‖(F ′(x0) + ε(t)I)−1T (x(t), xδ
α)‖ ≤ β

1 − βε(t)
‖T (x(t), xδ

α)‖

≤ β

1 − βε(t)

M2‖x(t) − xδ
α‖2

2

≤ β

1 − βε(t)

M2g
2

2
. (16)

Therefore by (14), (15) and (16) we have

gg′ ≤ −g2 + (
k0R + βε(t)

1 − βε(t)
)g2 +

β

1 − βε(t)

M2

2
g3
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and hence

g′ ≤ −γg + c0g
2 (17)

where γ := 1 − (k0R+βε(t)
1−βε(t)

) > 0 and c0 := β

1−βε(t)
M2

2
. So by (17)

g(t) ≤ re−γt (18)

where r = g(0)

1− c0g(0)
γ

. Note that g(0) = ‖x0 − xδ
α‖ ≤ R and hence condition (9)

implies c0g(0)
γ

< 1.

The above discussion leads to the following Theorem.

Theorem 2.8. If (8) and the Assumptions of Proposition 2.7 hold. Then (10)

has a unique global solution x(t) and x(t) converges to xδ
α. Further

‖x(t) − xδ
α‖ ≤ re−γt

where r is as in (18).

Theorem 2.9. Suppose (8) and (9) hold. If, in addition, ‖x̂ − x0‖ ≤ R then

‖x̂ − xδ
α‖ ≤ β

1 − κ0R
‖F (x̂) − zδ

α‖.

Proof. Observe that

x̂ − xδ
α = x̂ − xδ

α − F ′(x0)
−1(zδ

α − F (xδ
α))

= F ′(x0)
−1[F ′(x0)(x̂ − xδ

α) − (zδ
α − F (xδ

α))]

= F ′(x0)
−1[F ′(x0)(x̂ − xδ

α) − (F (x̂) − F (xδ
α) + zδ

α − F (x̂))]

≤ ‖F ′(x0)
−1[F ′(x0)(x̂ − xδ

α) − (F (x̂) − F (xδ
α))]‖

+‖F ′(x0)
−1(zδ

α − F (x̂))‖.

So by Lemma 2.3 and Assumption 2.2 we have

‖x̂ − xδ
α‖ ≤ k0R‖x̂ − xδ

α‖ + β‖F (x̂) − zδ
α)‖

and hence the result follows.
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3 Error Analysis

The following Theorem is a consequence of Theorem 2.8 and Theorem 2.9.

Theorem 3.1. Suppose (8), (9) and the Assumptions in Theorem 2.8 hold.

If, in addition, ‖x̂ − x0‖ ≤ R then

‖x̂ − x(t)‖ ≤ β

1 − κ0R
‖F (x̂) − zδ

α‖ + re−γt.

In view of the estimate in the Theorem 3.1, the next task is to find an

estimate ‖F (x̂) − zδ
α‖. For this, let us introduce the notation;

zα := (K∗K + αI)−1K∗y.

We observe that

‖F (x̂) − zδ
α‖ ≤ ‖F (x̂) − zα‖ + ‖zα − zδ

α‖

≤ ‖F (x̂) − zα‖ +
δ√
α

, (19)

and

F (x̂) − zα = F (x̂) − (K∗K + αI)−1K∗KF (x̂)

= [I − (K∗K + αI)−1K∗K]F (x̂)

= α(K∗K + αI)−1F (x̂).

So by Assumption 2.4.

‖F (x̂) − zα‖ ≤ ‖α(K∗K + αI)−1ϕ(K∗K)v‖

≤ sup

0 < λ ≤ ‖K‖2

αϕ(λ)

λ + α
‖v‖ ≤ ϕ(α)‖v‖.

Therefore by (19) we have

‖F (x̂) − zδ
α‖ ≤ ‖v‖ϕ(α) +

δ√
α

. (20)

So, we have the following theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1 and (20),

‖x̂ − x(t)‖ ≤ Cβ

1 − k0R
(ϕ(α) +

δ√
α

) + re−γt,

where C = max{‖v‖, 1}.
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4 Error Bounds Under Source Conditions

Note that the estimate ϕ(α) + δ√
α

in Theorem 3.2 attains minimum for the

choice α := αδ which satisfies ϕ(αδ) = δ√
αδ

. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤
‖K‖2. Then we have δ =

√
αδϕ(αδ) = ψ(ϕ(αδ)), and

αδ = ϕ−1(ψ−1(δ)). (21)

So the relation (20) leads to

‖F (x̂) − zδ
α‖ ≤ 2ψ−1(δ).

Theorem 3.2 and the above observation leads to the following.

Theorem 4.1. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2. and the assumptions

of Theorem 3.1 are satisfied. For δ > 0, let αδ = ϕ−1(ψ−1(δ)). If

T := min{t : e−γt <
δ√
αδ

},

then

‖x̂ − x(T )‖ = O(ψ−1(δ)).

4.1 An adaptive choice of the parameter

The error estimate in the above Theorem has optimal order with respect to

δ. Unfortunately, an a priori parameter choice (21) cannot be used in prac-

tice since the smoothness properties of the unknown solution x̂ reflected in

the function ϕ are generally unknown. There exist many parameter choice

strategies in the literature, for example see [2], [10], [11], [7], [8], [16] and [17].

In [14], Pereverzev and Schock considered an adaptive selection of the pa-

rameter which does not involve even the regularization method in an explicit

manner. In this method the regularization parameter αi are selected from some

finite set {αi : 0 < α0 < α1 < · · · < αN} and the corresponding regularized

solution, say zδ
αi

are studied on-line. Later George and Nair [9] and George

and Kunhanandan [6], considered the adaptive method for selecting the reg-

ularization parameter for approximately solving Hammerstein-type operator

equations. In this paper also we consider the adaptive method for selecting

the regularization parameter α.
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Let i ∈ {0, 1, 2, · · · , N} and αi = µ2iα0 where µ > 1. Let

l := max{i : ϕ(αi) ≤
δ√
αi

} (22)

and

k := max{i : ‖zδ
αi
− zδ

αj
‖ ≤ 4δ

√
αj

, j = 0, 1, 2, · · · , i}. (23)

We need the following Theorem from [6].

Theorem 4.2. ([6], Theorem 4.3)Let l be as in (22), k be as in (23) and zδ
αk

be as in (4) with α = αk. Then l ≤ k and

‖F (x̂) − zδ
αk
‖ ≤ (2 +

4µ

µ − 1
)µψ−1(δ).

Theorem 4.3. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2. and the assumptions

of Theorem 3.1 and (23) are satisfied. Let

T := min{t : e−γt <
δ√
αk

},

and x(T ) be the solution of the Cauchy’s problem (10) with zδ
αk

in place of zδ
α.

Then

‖x̂ − x(T )‖ = O(ψ−1(δ)).

5 Applications

In this section we consider a specific example of Hammerstein type operator

equation, which satisfies the assumptions of this paper. Consider the nonlinear

operator equation

∫

Ω

k(s, t)fλ(t, x(t))dt = y(s) (24)

with Ω ∈ R is a bounded domain, k : Ω × Ω → R is a measurable kernel

and fλ : Ω × R → R is defined as fλ(s, x) = b(s)g(x(s)) + λc(s), where

0 6= c ∈ Lp, 0 < b ∈ L
p

p−q for some q ∈ (2, p) (cf. [3]) and g is a differentiable

function such that g′(x0(t)) > κ > 0,∀t ∈ Ω.
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Note that (24) is of the form KF (x) = y where K : L2(Ω) → L2(Ω) is

given by

K(x(s)) =

∫

Ω

k(s, t)x(t)dt

and F : H1(Ω) → L2(Ω) is given by

F (x(s)) = fλ(s, x(s)).

Observe that

F ′(x)h(s) = fλx(s, x(s))h(s) = b(s)g′(x(s))h(s),

so for x, y ∈ BR(x0) and h ∈ H1(Ω),

[F ′(x) − F ′(z)]h(s) = b(s)[g′(x(s)) − g′(z(s))]h(s)

= b(s)g′(z(s))[
g′(x(s))

g′(z(s))
− 1]h(s)

= F ′(z)Φ(x, z, h)

where Φ(x, z, h) = [g′(x(s))
g′(z(s))

− 1]h(s). Thus F satisfies the Assumption 2.2. Fur-

ther note that, since g′(x0(t)) > κ > 0,∀t ∈ Ω, F ′(x0)
−1 exists and is a

bounded operator.

6 Conclusion

We presented a method, which is a combination of Dynamical System Method

studied extensively by Ramm and his collaborators and Tikhonov regulariza-

tion method for obtaining a stable approximate solution for nonlinear ill-posed

Hammerstein type operator equations. This method avoids the inversion of

F ′(.) at every iterate in the Newton’s type method.
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