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On the study of an SEIV epidemic model

concerning vaccination and vertical transmission

Dan Long1 and Zhongyi Xiang2,⋆

Abstract

In this work, we study an epidemic model with vaccination and

vertical transmission. We get the basic reproduction number R0 of the

system and carry out a bifurcation analysis and obtain the conditions

ensuring that the system exhibits backward bifurcation.

Mathematics Subject Classification : 34C05, 92D25

Keywords: epidemic model, vertical transmission, backward bifurcation

1 Introduction

At present, vaccination is a commonly used method for controlling disease[1,2],

but in fact, for many infectious disease, the immunity which is acquired either

by preventive vaccine or by infection will wane. In [3] and [4], Moghadas and

J. Hui have presented a study of models with non-permanent immunity re-

spectively. Mathematical models including vaccination aim at deciding on a
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vaccination strategy and at determining changes in qualitative behavior that

could result from such a control measure[5,6].

Many infectious diseases in nature transmit through both horizontal and ver-

tical modes. These contain such human diseases as rubella, herpes simplex,

hepatitis B, and AIDS, etc. Busenberg and Cooke [7] studied a variety of

diseases that transmit both horizontally and vertically, and gave a comprehen-

sive survey of the formulation and the mathematical analysis of compartmental

models that also incorporate vertical transmission. In this paper, we consider

a model not only with non-permanent immunity but also with vertical trans-

mission as following



















dS(t)
dt

= (1 − b)A − βSI(1 + αI) − µS + ωV − (1 − p)µI,
dV (t)

dt
= bA − µV − ωV + τI,

dE(t)
dt

= βSI(1 + αI) − µE − σE,
dI(t)
dt

= σE − τI − pµI,

(1)

where S(t), V (t), E(t) and I(t) denote the number of the susceptible individ-

uals, vaccinated individuals, exposed individuals but not yet infectious, and

infectious individuals , respectively. All of the parameters are positive and

have the following meaning: A is the recruitment rate of people (either by

birth or by immigration) into the population (assumed susceptible); b is the

fraction of recruited individuals who are vaccinated; β is the rate at which sus-

ceptible individuals become infected by those who are infectious; the natural

birth rate and death rate are assumed to be identical and denoted by µ; σ is

the rate at which exposed individuals become infectious; τ is the rate at which

infected individuals are treated; ω is the rate at which vaccine wanes; p is the

proportion of the offspring of infective parents that are susceptible individuals.

2 The basic reproduction number

It is easy to see that the region{(S, V,E, I)|S > 0, V > 0, E ≥ 0, I ≥ 0}
is positively invariant for the model (1). Summing up the four equations in

model (1), we have

d

dt
(S + V + E + I) = µ[

A

µ
− (S + V + E + I)].
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Then, lim
t→∞

sup(S+V +E+I) ≤ A
µ
.So we study the dynamic behavior of model

(1) on the region

Σ = {(S, V,E, I)|S > 0, V > 0, E ≥ 0, I ≥ 0, S + V + E + I ≤ A

µ
},

which is a positive invariant set for (1).

Corresponding to E = I = 0, model (1) always has a disease-free equilibrium,

P0(
A[µ(1−b)+ω]

µ(µ+ω)
, bA

µ+ω
, 0, 0).

Let x = (E, I, S, V )⊤. Then the model (1) can be written as dx
dt

= F(x)−V(x),

where

F(x) =











βSI(1 + αI)

0

0

0











,

V(x) =











µE + σE

τI + pµI − σE

−(1 − b)A + βSI(1 + αI) + µS − ωV + (1 − p)µI

µV + ωV − τI − bA











.

We have

F =

(

0 βA[µ(1−b)+ω]
µ(µ+ω)

0 0

)

,V =

(

µ + σ 0

−σ τ + pµ

)

,

so

V−1 =

(

1
µ+σ

0
σ

(µ+σ)(τ+pµ)
1

τ+pµ

)

.

In paper[8], the basic reproduction number is defined as the spectral radius of

the next generation matrix FV−1(ρ(FV−1)). So, according to Theorem 2 in

[8], the basic reproduction number of model (1),denoted R0, is

R0 = ρ(FV−1) =
βσA[µ(1 − b) + ω]

µ(µ + ω)(µ + σ)(τ + pµ)
.

Define

R1 =
2
√

αµβM [(M − ωστ) + µσ(1 − p)(µ + ω)] − β[M − ωστ + µσ(1 − p)(µ + ω)]

αµM
,

R2 =
βM − ωσβτ + µσβ(1 − p)(µ + ω)

αµM
,
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where M = (µ + σ)(µ + ω)(τ + pµ).

Remark 2.1. It is easy to see that:

(i)R1 ≤ 1;

(ii)R2 ≤ 1, if and only if, R2 ≤ R1.

3 Local stability of equilibria and bifurcation

analysis

Theorem 3.1. The disease-free equilibrium P0 is locally asymptotically stable

for R0 < 1 and unstable for R0 > 1.

Proof. The linearized problem corresponding to (1) is dX
dt

= JX, where

X = (x1, x2, x3, x4)
T , (x1, x2, x3, x4) ∈ R4

+,

and

J =











−βI(1 + αI) − µ ω 0 −βS(1 + 2αI) − (1 − p)µ

0 −µ − ω 0 τ

βI(1 + αI) 0 −µ − σ βS(1 + 2αI)

0 0 σ τ − pµ











.

The Jacobian matrix of (1) at P0 is

J(P0) =













−µ ω 0 −βA[µ(1−b)+ω]
µ(µ+ω)

− (1 − p)µ

o −µ − ω 0 τ

0 0 −µ − σ
βA[µ(1−b)+ω]

µ(µ+ω)

0 0 σ −τ − pµ













with eigenvalues λ1 = −µ, λ2 = −µ − ω, and the roots of the quadratic

f(λ) = λ2 + (µ + σ + τ + pµ)λ + (µ + σ)(τ + pµ) − βσA[µ(1 − b) + ω]

µ(µ + ω)
.

Because all the model parameter values are assumed positive, so it follows that

λ1 < 0, λ2 < 0. Obviously, if R0 < 1 then the roots of f(λ) have negative real

parts, therefore, P0 is locally asymptotical stable when R0 < 1; if R0 > 1 ,then

the roots of f(λ) are real and one is positive, so that P0 is unstable.

Theorem 3.2. (a) Let R2 < 1. Then system (1) admits no real equilibria

when R0 < R1, two endemic equilibria for R1 < R0 < 1 ,and a unique endemic
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equilibrium P ∗ for R0 ≥ 1.

(b) Let R2 > 1. Then system (1) admits no real equilibria when R0 < R1, no

endemic equilibria for R1 < R0 < 1 ,and a unique endemic equilibrium P ∗ for

R0 ≥ 1.

Proof. The endemic equilibria of system (1) ,denoted P ∗(S∗, V ∗, E∗, I∗), can

be deduces by the system,


















(1 − b)A − βS∗I∗(1 + αI∗) − µS∗ + ωV ∗ − (1 − p)µI∗ = 0,

bA − µV ∗ − ωV ∗ + τI∗ = 0,

βS∗I∗(1 + αI∗) − µE∗ − σE∗ = 0,

σE∗ − τI∗ − pµI∗ = 0,

(2)

From (2), we can get S∗ = (σ+µ)(τ+pµ)
αβ(1+αI∗)

, E∗ = (τ+pµ)I∗

σ
, V ∗ = bA+τI∗

µ+ω
, and I∗ is

positive which satisfies the equation a1I
∗2 + a2I

∗ + a3 = 0, where

a1 = αβ(ωστ − M) − µσαβ(1 − p)(µ + ω),

a2 = M(µαR0 − β) + ωσβτ − µσβ(1 − p)(µ + ω),

a3 = µM(R0 − 1).

It is easy to see that a1 < 0; a2 > 0 ⇔ R0 > R2; a3 > 0 ⇔ R0 > 1.

By the Descartes’ rules of sings, we can see that when a3 > 0 there is a unique

endemic equilibrium ; when a3 < 0, a2 > 0, a2
2 − 4a1a3 > 0 there are two

endemic equilibria, and there are no endemic equilibria otherwise.

Furthermore, we find that there is a bifurcation point when R0 = R1 i.e.,

a3 < 0, a2 > 0, a2
2 − 4a1a3 = 0. In fact,

a2
2 − 4a1a3 =

[

µαMR0 + β
(

M + µσ(1 − p)(µ + ω) − ωστ
)]2

− 4µαβM
[

M + µσ(1 − p)(µ + ω) − ωστ
]

.

Thus, a2
2 − 4a1a3 ≥ 0 whenever R0 ≥ R1. From the above mentioned, (a) and

(b) can easily follow.

Let S = x1, V = x2, E = x3, I = x4, the system (1) becomes



















dx1

dt
= (1 − b)A − βx1x4(1 + αx4) − µx1 + ωx2 − (1 − p)µx4 := f1,

dx2

dt
= bA − µx2 − ωx2 + τx4 := f2,

dx3

dt
= βx1x4(1 + αx4) − µx3 − σx3 := f3,

dx4

dt
= σx3 − τx4 − pµx4 := f4.

(3)

We will use the results in [9] to show that system (3) may exhibit a backward

bifurcation when R0 = 1(β = β
′

= µ(µ+ω)(µ+σ)(τ+pµ)
σA[µ(1−b)+ω]

). The eigenvalues of the
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matrix,

J(P0, β
′

) =













−µ ω 0 −β
′

A[µ(1−b)+ω]
µ(µ+ω)

− (1 − p)µ

0 −µ − ω 0 τ

0 0 −µ − σ
β′A[µ(1−b)+ω]

µ(µ+ω)

0 0 σ −τ − pµ













,

are given by λ1 = −µ, λ2 = −µ−ω, λ3 = −(µ+σ+τ +pµ), λ4 = 0. So λ4 = 0

is a simple zero eigenvalue of the matrix J(P0, β
′

) and the other eigenvalues

are real and negative.

We denote a right eigenvector corresponding the zero eigenvalue λ4 = 0 by

w = (w1, w2, w3, w4)
T . It can be deduced by J(P0, β

′

)(w1, w2, w3, w4)
T = 0,

thus, we have























−µw1 + ωw2 −
[

β
′

A[µ(1−b)+ω]
µ(µ+ω)

+ (1 − p)µ
]

w4 = 0,

(−µ − ω)w2 + τw4 = 0,

(−µ − σ)w3 + β
′

A[µ(1−b)+ω]
µ(µ+ω)

w4 = 0,

σw3 + (−τ − pµ)w4 = 0.

It implies w1 = ωτσ−M−σµ(1−p)(µ+ω)
µ(τ+pµ)(µ+ω)

, w2 = τσ
(τ+pµ)(µ+ω)

, w3 = 1,w4 = σ
τ+pµ

.

Then, the right eigenvector is

w =
(

ωτσ−M−σµ(1−p)(µ+ω)
µ(τ+pµ)(µ+ω)

, τσ
(τ+pµ)(µ+ω)

, 1, σ
τ+pµ

)⊤
. (4)

In the same way, we can get the left eigenvector, denoted v = (v1, v2, v3, v4),

satisfying v · w = 1 is

v =
(

0, 0, τ+pµ

µ+pµ+σ+τ
,

(τ+pµ)(µ+σ)
σ(µ+pµ+σ+τ)

)

. (5)

Evaluating the partial derivatives at P0, we can get

∂2f1

∂x1∂x4

=
∂2f1

∂x4∂x1

= −β,
∂2f1

∂x2
4

=
−2αβA[µ(1 − b) + ω]

µ(µ + ω)
,

∂2f3

∂x1∂x4

=
∂2f3

∂x4∂x1

= β,
∂2f3

∂x2
4

=
2αβA[µ(1 − b) + ω]

µ(µ + ω)
,

∂2f1

∂x4∂β
=

∂2f1

∂β∂x4

=
−A[µ(1 − b) + ω]

µ(µ + ω)
,

∂2f3

∂x4∂β
=

∂2f3

∂β∂x4

=
A[µ(1 − b) + ω]

µ(µ + ω)
,
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all other second-order partial derivatives are equal to zero.

Then, we evaluate the coefficient a and b,

a =
4

∑

k,i,j=1

vkwiwj

∂2fk

∂xi∂xj

(P0, β
′

)

= 2v1w1w4
∂2f1

∂x1∂x4

(P0, β
′

) + v1w
2
4

∂2f1

∂x2
4

(P0, β
′

)

+ 2v3w1w4
∂2f3

∂x1∂x4

(P0, β
′

) + v3w
2
4

∂2f3

∂x2
4

(P0, β
′

),

b =
4

∑

k,i,=1

vkwi

∂2fk

∂xi∂β
(P0, β

′

) = 2v1w4
∂2f3

∂x4∂β
(P0, β

′

) + 2v3w4
∂2f3

∂x4∂β
(P0, β

′

).

Taking into account of (4) and (5), we have

a =
2σβ[ωτσ − M − σµ(1 − p)(µ + ω) + σαA(µ(1 − b) + ω)]

µ(τ + pµ)(µ + ω)(µ + pµ + σ + τ)
,

and

b =
2σA[µ(1 − b) + ω]

µ(µ + ω)(µ + pµ + σ + τ)
.

Obviously, the coefficient b is positive, so according to the results in [9], the

sign of the coefficient a decides the local dynamics around the disease-free

equilibrium for β = β
′

.

Remark 3.5. Let α
′

= M−ωστ+σµ(1−p)(µ+ω)
σA[µ(1−b)+ω]

, we can get a > 0 when α > α
′

. In

this case, the direction of the bifurcation of system (1) at R0 is backward. In

fact, when R0 = 1, the condition α > α
′

is equivalent to the condition R2 < 1.

So we have the following theorem.

Theorem 3.6.When R0 = 1, system (1) exhibits a backward bifurcation for

R2 < 1; and exhibits a forward bifurcation for R2 > 1.

Theorem 3.7.When R0 > 1, the endemic equilibrium P ∗ of the system (1) is

locally asymptotically stable if b3 > 0 and b1b2 − b3 > 0, where b1, b2 and b3

are presented in the following proof.

Proof. The Jacobian matrix of (1) at P ∗ is

J(P ∗) =











−βI∗(1 + αI∗) − µ ω 0 −βS∗(1 + 2αI∗) − (1 − p)µ

0 −µ − ω 0 τ

βI∗(1 + αI∗) 0 −µ − σ βS∗(1 + 2αI∗)

0 0 σ τ − pµ











.
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The characteristic equation of the matrix J(P ∗) is (λ+µ)(λ3+b1λ
2+b2λ+b3) =

0, where

b1 = τ + pµ + 2µ + ω + σ + βI∗(1 + αI∗),

b2 = (µ + ω)(µ + σ) + (τ + pµ)(2µ + ω + σ) + βI∗(1 + αI∗)(µ + pµ + ω + σ + τ)

−σβS∗(1 + 2αI∗),

b3 = (µ + ω)(µ + σ)(τ + pµ) + βI∗(1 + αI∗)[(µ + ω)(pµ + τ + σ) + στ ]

−(µ + ω)σβS∗(1 + 2αI∗).

So

b1b2 − b3 = [2µ + ω + σ + βI∗(1 + αI∗)]τ 2 + {[2pµ + 2µ + ω + σ + βI∗(1 + αI∗)][2µ+

ω + σ + βI∗(1 + αI∗)] − σβS∗(1 + 2αI∗)}τ + [pµ + 2µ + ω + σ + βI∗(1 + αI∗)]

[(µ + ω)(µ + σ) + pµ(2µ + ω + σ) + µ + pµ + ω + σ − σβS∗(1 + 2αI∗)]

−pµ(µ + ω)(µ + σ) − βI∗(1 + αI∗)(µ + ω)(pµ + σ) + (µ + ω)σβS∗(1 + 2αI∗)

Obviously, b1 > 0. Based on Hurwitz criterion, when R0 > 1, the endemic

equilibrium P ∗ of the system (1) is locally asymptotically stable if b3 > 0 and

b1b2 − b3 > 0.

Theorem 3.8. The system (1) undergos Hopf bifurcation around the positive

equilibrium when R0 > 1 and the parameter τ crosses a critical value.

Proof. If Hopf bifurcation takes place, then there exists τ ∗ satisfied (i)g(τ ∗) ≡
b1(τ

∗)b2(τ
∗)− b3(τ

∗) = 0, (ii) d
dτ

Re(λ(τ)) |τ=τ∗ 6= 0. The condition b1b2 − b3 = 0

is given by c1τ
2 + c2τ + c3 = 0, where

c1 = 2µ + ω + σ + βI∗(1 + αI∗),

c2 = [2pµ + 2µ + ω + σ + βI∗(1 + αI∗)][2µ + ω + σ + βI∗(1 + αI∗)] − σβS∗(1 + 2αI∗),

c3 = [pµ + 2µ + ω + σ + βI∗(1 + αI∗)][(µ + ω)(µ + σ) + pµ(2µ + ω + σ) + µ + pµ + ω

+σ − σβS∗(1 + 2αI∗)] − pµ(µ + ω)(µ + σ) − βI∗(1 + αI∗)(µ + ω)(pµ + σ)

+(µ + ω)σβS∗(1 + 2αI∗).

If τ = τ ∗, we can get

λ3 + b1λ
2 + b2λ + b3 = λ3 + b1λ

2 + b2λ + b1b2 = (λ2 + b2)(λ + b1) = 0, (6)

which has three roots λ1(τ) = i
√

b2, λ2 = −i
√

b2, λ3 = −b1. For all τ , the roots

are in general of the form λ1(τ) = ξ1(τ) + iξ2(τ), λ2(τ) = ξ1(τ) − iξ2(τ), λ3 =

−b1.

Substituting λ1(τ) = ξ1(τ) + iξ2(τ) into (6) and calculation the derivative, we

have

B(τ)ξ
′

1(τ) − C(τ)ξ
′

2 + E(τ) = 0, C(τ)ξ
′

1(τ) + B(τ)ξ
′

2 + F (τ) = 0,
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where
B(τ) = 3ξ2

1(τ) + 2b1(τ)ξ1(τ) + b2(τ) − 3ξ2
2(τ),

C(τ) = 6ξ1(τ)ξ2(τ) + 2b1(τ)ξ2(τ),

E(τ) = b
′

1(τ)ξ2
1(τ) + b

′

2(τ)ξ1(τ) + b
′

3(τ) − b
′

1(τ)ξ2
2(τ),

F (τ) = 2ξ1(τ)ξ2(τ)b
′

1(τ) + b
′

2(τ)ξ2(τ).

Since C(τ ∗)F (τ ∗) + B(τ ∗)E(τ ∗) 6= 0, so d
dτ

Re(λ1(τ)) |τ=τ∗= −CF+BE
B2+C2 |τ=τ∗ 6= 0.

By the same way, we can get that d
dτ

Re(λ2(τ)) |τ=τ∗ 6= 0. And

d

dτ
Re(λ3(τ)) |τ=τ∗=

d

dτ
Re(−b1(τ)) |τ=τ∗ 6= 0.

Thus, the transversal condition holds. This implies that a Hopf bifurcation

takes place when τ = τ ∗.
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