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On the study of an SEIV epidemic model
concerning vaccination and vertical transmission

Dan Long' and Zhongyi Xiang?*

Abstract

In this work, we study an epidemic model with vaccination and
vertical transmission. We get the basic reproduction number Ry of the
system and carry out a bifurcation analysis and obtain the conditions

ensuring that the system exhibits backward bifurcation.

Mathematics Subject Classification : 34C05, 92D25
Keywords: epidemic model, vertical transmission, backward bifurcation

1 Introduction

At present, vaccination is a commonly used method for controlling disease[1,2],
but in fact, for many infectious disease, the immunity which is acquired either
by preventive vaccine or by infection will wane. In [3] and [4], Moghadas and
J. Hui have presented a study of models with non-permanent immunity re-

spectively. Mathematical models including vaccination aim at deciding on a
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vaccination strategy and at determining changes in qualitative behavior that
could result from such a control measure[5,6].

Many infectious diseases in nature transmit through both horizontal and ver-
tical modes. These contain such human diseases as rubella, herpes simplex,
hepatitis B, and AIDS, etc. Busenberg and Cooke [7] studied a variety of
diseases that transmit both horizontally and vertically, and gave a comprehen-
sive survey of the formulation and the mathematical analysis of compartmental
models that also incorporate vertical transmission. In this paper, we consider
a model not only with non-permanent immunity but also with vertical trans-

mission as following

B — (1 —b)A — BSI(1 + al) — pS +wV — (1 — p)ul,

d‘git) =b0A —uV —wV 4+ 11,
LY — BSI(1+ al) — pE — oF,
dI(t)

ar :O'E—T[—p/,LI,

(1)

where S(t),V(t), E(t) and I(t) denote the number of the susceptible individ-
uals, vaccinated individuals, exposed individuals but not yet infectious, and
infectious individuals , respectively. All of the parameters are positive and
have the following meaning: A is the recruitment rate of people (either by
birth or by immigration) into the population (assumed susceptible); b is the
fraction of recruited individuals who are vaccinated; (3 is the rate at which sus-
ceptible individuals become infected by those who are infectious; the natural
birth rate and death rate are assumed to be identical and denoted by u; o is
the rate at which exposed individuals become infectious; 7 is the rate at which
infected individuals are treated; w is the rate at which vaccine wanes; p is the

proportion of the offspring of infective parents that are susceptible individuals.

2 The basic reproduction number

It is easy to see that the region{(S,V,E,I)|S > 0,V > 0,E > 0,1 > 0}
is positively invariant for the model (1). Summing up the four equations in

model (1), we have

d A
a(s—f—‘/‘l—E—Fl):M[ﬁ—(s—f—V‘f—E—FI)].
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Then, tlim sup(S+V+E+1I) < ﬁ.So we study the dynamic behavior of model
(1) on the region

A
2:{(S,V,E,I)\S>0,V>0,E2O,IZO,S+V+E+I§E},

which is a positive invariant set for (1).

Corresponding to £ = I = 0, model (1) always has a disease-free equilibrium,

Alp(-b)tw] _bA
Po(= e 745, 0, 0)-

Let = (E,1,5,V)". Then the model (1) can be written as 4 = F(z)—V(z),

where

BSI(1+ al)
0
Fla) = ,
(@) .
0
wk + ok
V() 7l +pul — ok
€T =
—(1=0)A+8SI1+al)+pS—wV+ (1 —pul
uwV +wV — 71 —bA
We have

BA[u(1—b)+w]
F _ 0 M(u+w) ’V — ,LL _'_ g 0 ’
0 0 —0 T+ pu

1
—— 0
-1 _ +o
v _< z )
(uto)(T4+pu)  THpp

In paper[8], the basic reproduction number is defined as the spectral radius of

SO

the next generation matrix FV~!(p(FV~1)). So, according to Theorem 2 in

8], the basic reproduction number of model (1),denoted Ry, is

BoAlp(l —b) + ]

o= oBY ) = v o p o)+ )
Define
p _ 2V/ouBMI(M —wor) + po(1 = p)(p + w)] = BIM —wor + po(1— p)(s + )
1= i )

_ BM —wopT + poB(l — p)(p+ w)

R
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where M = (p 4 0) (1 + w) (7 + pp).
Remark 2.1. It is easy to see that:
()R < 1

(ii)Ry < 1, if and only if, Ry < Ry.

3 Local stability of equilibria and bifurcation
analysis

Theorem 3.1. The disease-free equilibrium Fj is locally asymptotically stable
for Ry < 1 and unstable for Ry > 1.

. . . . dX
Proof. The linearized problem corresponding to (1) is % = JX, where

X - ($1,$2,$3,$4)T7 ($1,$2,x3,$4) € Ri?

and
—BI(1+al) —p w 0 —6S(1+2al)— (1 —p)u
g 0 —U—w 0 T
- BI(1+ o) 0 —p—o BS(1+ 2al)
0 0 o T — Dl

The Jacobian matrix of (1) at Fp is

- w 0 Al (1 p)u
0 —lu—uw 0 T
J(Ry) = BAR(1—b)+w]
00 pmo M
0 0 o —T — pl
with eigenvalues A\y = —pu, \oa = —p — w, and the roots of the quadratic
PoAlu(l —b) +w]
f) =X+ (p+o+7+pu)A+ (u+o)(T+pp) — .
() =X+ ( ) X o

Because all the model parameter values are assumed positive, so it follows that
A1 < 0,y < 0. Obviously, if Ry < 1 then the roots of f(\) have negative real
parts, therefore, Py is locally asymptotical stable when Ry < 1; if Ry > 1 ,then
the roots of f(\) are real and one is positive, so that P, is unstable.

Theorem 3.2. (a) Let Ry < 1. Then system (1) admits no real equilibria

when Ry < Ry, two endemic equilibria for Ry < Ry < 1 ,and a unique endemic
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equilibrium P* for Ry > 1.

(b) Let Ry > 1. Then system (1) admits no real equilibria when Ry < Ry, no
endemic equilibria for R; < Ry < 1 ,and a unique endemic equilibrium P* for
Ry > 1.

Proof. The endemic equilibria of system (1) ,denoted P*(S*, V* E* I*), can
be deduces by the system,

(1—-0)A—=p8S*"I*(1+ al*) — pS* 4+ wV* — (1 — p)ul* =0,
bA — pV* —wV*+71* =0,

BS* I*(1+ al*) — uk* —oE* =0,

oE* — 11" —pul* =0,

(2)

(o+w)(T+pp) v (THpw)I* v s bALTI* .
ab(iiary L= o Vi =200, and I" is

positive which satisfies the equation a;I*% + asl* + a3 = 0, where

From (2), we can get S* =

a1 = af(wor — M) — poaf(1 — p) (i +w),
az = M(paRy — ) + woBr — poB(1 — p)(p + w),
as = pM(Ry — 1).
It is easy to see that a; < 0;a3 > 0< Ry > Rs;a3 > 0< Ry > 1.
By the Descartes’ rules of sings, we can see that when az > 0 there is a unique
endemic equilibrium ; when a3 < 0,as > 0,a3 — 4ajaz > 0 there are two
endemic equilibria, and there are no endemic equilibria otherwise.
Furthermore, we find that there is a bifurcation point when Ry = R; i.e.,

az < 0,ay > 0,a% — 4ajaz = 0. In fact,
a3 — 4araz = [paM Ry + 3(M + po(1 — p)(p+ w) — wa¢)]2
— 4poBM[M + po(1 — p)(p + w) — wor].

Thus, a% — 4ajaz > 0 whenever Ry > R;. From the above mentioned, (a) and
(b) can easily follow.

Let S = x1,V = 29, E = x3,1 = x4, the system (1) becomes

& = (1 - b)A = Briza(l + amy) — pay + wro — (1 — p)uxy = fi,

dd%:bA_lux2—w£L'2+Tx4 = fa, (3)
G = Brixa(l + awy) — pwy — oxy = fi,
dey _

i OT3 — TTy — PUTy = [y.

We will use the results in [9] to show that system (3) may exhibit a backward

bifurcation when Ry = 1(3 = 3 = “(“;“:[L(ﬁt‘z;sfip“)). The eigenvalues of the
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matrix,
- w 0  —ZAELA (1 p)
/ 0 —p—w 0 T
J(Py,3) = ,
’ — = B Ap(1-b)+w] ’
0 0 p=0o w(ptw)
0 0 o —T — Dl

are given by \y = —p, o = —pi—w, \3 = —(u+o0+7+pu), Ay =0. So Ay =0
is a simple zero eigenvalue of the matrix J(P,, 3') and the other eigenvalues
are real and negative.

We denote a right eigenvector corresponding the zero eigenvalue Ay = 0 by
w = (wy, wy, w3, wy)T. It can be deduced by J(Py, 5 )(wy,ws, w3, wy)” = 0,
thus, we have

B Alp(-b) +u]
m(ptw) T
(—p — w)we + 7wy = 0,
"Alp(1-b)+w
(i — Yy + Ay
ows + (—7 — pp)wy = 0.

—pwy + wwy — | (1 —p)p]ws =0,

wro—M—op(1—p)(u+w) 10

It dmplics w1 = =5 NG 0 W2 T Trwgaer W T v =
Then, the right eigenvector is
_ (wrto—M—ou(l—p)(u+w) TO c \T
W= ( w(T+pp) (ptw) ? (t+pp) (ptw)? 1, T+pu) ) (4)

In the same way, we can get the left eigenvector, denoted v = (vy, va, v3, vy4),

satisfying v-w =1 is

_ Tpu  (T4pp)(uto)
V= (O, 0, ptppto+r? a(u+pn+a+7))' <5)

Evaluating the partial derivatives at Fy, we can get

0% fi B 0 f1 _ 5 0% f1 _ —2aBA[p(1 = b) + w]
Ox10xy  Oxydxy 0 0x3 p(p+ w)
0 fs B 0% f3 B 0 fs _ 2afA[p(l =b) + W]
0x,0xy  Oxy0ry 7 027 pu(p + w)

*f _ Ph Al -b)+w] Pfs  Pfs Alp(l—0) +u]
0,08  0P0xy p(p+ w) "0x,08  0B0xy  pulp+w)
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all other second-order partial derivatives are equal to zero.

Then, we evaluate the coefficient a and b,

! 02 f, ,
a = > iy z——(Fo, )
ki j=1 v
*fi 20 f1
= 2 B, P,
UﬂUﬂU4axlax4( ,B) + vw? i 2 — (P, )
0?f. 82f
+ 2U3w1W4W;M(P075 ) + vsw; B2 ;(Poaﬁ ),

92 f, o2 92
b= Z Uszamiaﬁ(Poaﬁ ) = 20wy . (Po, ) + 2”3104?(})0,5 )-

Taking into account of (4) and (5), we have

Y 200wt — M —op(l —p)(p+w) + caA(pu(l —b) + w)]
(7 + pp) (e +w)(p + pp+ 0 +17) ’

and 20 A[u(1 —b) + W]

(e w)(ptppto+T)

Obviously, the coefficient b is positive, so according to the results in [9], the

sign of the coefficient a decides the local dynamics around the disease-free
equilibrium for 3 = 3.

Remark 3.5. Let o' = M‘“’fﬁﬁfﬁi{fﬂ,ﬁ“*“’), we can get a > 0 when o > a’. In
this case, the direction of the bifurcation of system (1) at Ry is backward. In

fact, when Ry = 1, the condition o > o is equivalent to the condition Ry < 1.
So we have the following theorem.

Theorem 3.6.When Ry, = 1, system (1) exhibits a backward bifurcation for
Ry < 1; and exhibits a forward bifurcation for Ry > 1.

Theorem 3.7.When R > 1, the endemic equilibrium P* of the system (1) is
locally asymptotically stable if b3 > 0 and b;by — b3 > 0, where by, by and bs
are presented in the following proof.

Proof. The Jacobian matrix of (1) at P* is

—0I*(1+al*) —p w 0 —BS*(1+2al*) — (1 —p)u
J(P*) = 0 —p—w 0 T
BI*(1 + al*) 0 —p—0c BS*(1+ 2al*)

0 0 o T — Pl
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The characteristic equation of the matrix J(P*) is (A+u) (A3 +b; A2 +boA+b3) =

0, where

by =7+pu+2p+w+o+ B (1+al"),
by = (p+w)(p+0o)+ (T+pu)2u+w+0o)+ B+ al*) (u+pp+w+o+7)
—oBS*(1 + 2al%),
by = (n+w)(p+o)(r +pp) + I (1 + al")[(p + w)(pp + 7+ 0) + 07]
—(p+ w)eBS*(1 + 2al*).
So
biby — b3 = 2u+w+ o+ BIr*(1+ ol + {2pp + 20+ w + 0 + BI*(1 + oI*)][2u+
w+ o+ I (1 + al*)] — oBS*(1 +2al*)}7 + [pp + 21 + w + 0 + BI*(1 + al*)]
(1 +w)(p+0) + pu2u+w +0) + g+ pp+w + o — 03S*(1 + 2al*)]
—pp(p+w)(p+0) = BI"(1+ al*)(p+ w)(pp + o) + (1 + w)o 5™ (1 4 2a1”)
Obviously, b; > 0. Based on Hurwitz criterion, when Ry > 1, the endemic
equilibrium P* of the system (1) is locally asymptotically stable if b3 > 0 and
b1by — b3 > 0.
Theorem 3.8. The system (1) undergos Hopf bifurcation around the positive
equilibrium when Ry > 1 and the parameter 7 crosses a critical value.
Proof. If Hopf bifurcation takes place, then there exists 7* satisfied (i)g(7*) =
by (7%)ba(7%) — bs(7*) = 0, (i4) = Re(A(7)) |r=-+# 0. The condition biby — bz = 0
is given by ¢;72 + co7 + ¢35 = 0, where
o =2u+w+ o+ Il + al*),
co=[2pp+2u+w+o+ (1 +al)2p+w+o+ BI(1+ al*)] — oS (14 2al*),
cs=[pp+2u+w+o+ 1+ al)||(p+w)(p+o)+ppp+w+o)+p+pu+w
o — oS (1 +2al")] = pu(p + w)(u + o) = BI*(1 + al*) (1 + w)(pp + o)
+(p+w)oBS*(1 + 2al*).
If 7 =71*, we can get

N DIAZ £ bod + by = AP 4 bR+ Do\ 4 bibo = (A2 4+ by)(A+by) =0, (6)

which has three roots A\, (7) = iv/ba, Ao = —iy/ba, A3 = —by. For all 7, the roots
are in general of the form A\ (7) = & (7) +i&a(7), A2(7) = & (7) — i&a(7), A3 =
—b;.

Substituting A (7) = & (7) 4 i&2(7) into (6) and calculation the derivative, we

have

B(r)& (1) = C(1)& + E(1) = 0,0(1)& (1) + B(1)&, + F(r) = 0,
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where

)
) 3
7) = by (T)E () + by(7 )51( ) :,3(7—)_[),1(7—)53(7—)7
F(7) = 26 (7)&(7)by (1) + by(T)&a ().

Since C(7%)F(1*) + B(7*)E(1*) # 0, sog- Re()\l( ) p— ——% lr—re 0.
By the same way, we can get that - Re( 2(7)) |r=r+# 0. And

d d

ERG()\S(T)) == d—Re( 1(7)) |r=r# 0.

Thus, the transversal condition holds. This implies that a Hopf bifurcation

takes place when 7 = 7*.
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