
Journal of Applied Mathematics & Bioinformatics, vol.1, no.1, 2011, 159-174  
ISSN: 1792-6602 (print), 1792-6939 (online) 
© International Scientific Press, 2011 
 

 
Microarray Data Mining with 

Fuzzy Self-Organising Maps  
 

Chun Ho Yi1 and Yahya Abu Hasan2 
 

 
Abstract 

The main problem of analyzing microarray datasets is that while it can measure 

genetic expression by the thousands, it has very little samples by comparison. For 

such data, a “big picture” method was employed here to cluster and visualize the 

data. Self-Organising Maps (SOM) organises a dataset based on distance measure 

and subsequently projects the clustered data onto a 2-dimensional plane for visual 

analysis. In this paper, we look at a modified SOM that hybridises with fuzzy 

c-means rules, and subsequently used to cluster and visualise leukemia and brain 

tumour microarray datasets. The resulting clustering and visualisation produced 

better visual projections, accuracy and significantly less mapping error than 

ordinary SOM. Interpretation of results in SOM is subjective due to its visual 

nature, and is dependent on the knowledge and expertise of the individual.  

 

Mathematics Subject Classification : 62P10, 92B05 

Keywords: Microarray datasets, Fuzzy-SOM, Clustering, Visualisation 

                                                 

1 Universiti Sains Malaysia, e-mail: chunhoyi@gmail.com 
2 Universiti Sains Malaysia, e-mail: ahyahya@cs.usm.my 
 
Article Info: Revised :  March 16, 2011. Published online :  May 31, 2011  
 



160                                   Microarray Data Mining with Fuzzy SOM  

1  Introduction  

Microarray technology has hastened oncological research by leaps and bounds 

with the ability to measure the expression of thousands of genes in a single slide 

or chip. While microarray experiments are costly and time consuming, this has 

opened up many possibilities in oncological research with its high output 

capabilities. The production of a single massive dataset containing thousands of 

genes for a single sample, however, has brought up many statistical issues. One 

sample with thousands of attributes is hardly “ideal” statistically. Typically, the 

type of data used for statistical analysis consists of a few attributes with many 

samples. While a microarray research involves many samples, it still does not 

match the number of genes. It is a known fact that most gene expression datasets 

contain fewer than 100 samples, while genetic attributes number in the thousands. 

It would be a major task for a microarray experiment to be conducted on 100 

samples, much less a few thousand samples. 

Self-organising maps (SOM) has the characteristic of organising the data on its 

own with every iteration of its algorithm, based on the concept of neighbouring 

association. SOM has the advantage of clustering and projecting a large dataset 

onto a simple 2-dimensional projection, allowing for a visual analysis as opposed 

to a numerical one. This also separates SOM with conventional neural network 

methods, as SOM is an unsupervised clustering tool which produces 

distance-based visualisations of data, rather than produces a specific numerical 

measurement or output.  

The analysis and interpretation of SOM projections is further aided by the use of 

component planes, which are an extension of SOM, where every attribute is 

visualised on its own projection [15]. Through this, one would be able to find 

patterns in the data and correlations between attributes. Conclusions and 

interpretations are drawn from individual knowledge and expertise based on the 

visualisations.  

The ability of SOM to visualise massive datasets onto 2-dimensional projections 
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allows for the simplification of massively-sized datasets such as microarray 

datasets. Its application in analysing microarray data is not new, with some 

examples in [15], [11], [9], [10], [4], and [3]. These works have explored the use 

of SOM in microarray data mining involving breast cancer, prostrate cancer, yeast 

and macrophages. In those works, SOM has proven to be efficient in visualising 

the massive datasets containing thousands of genes but with only few samples. 

Furthermore, in [15] the component planes visualisation was fully utilised in 

looking for biological significance of gene clusters as found in the SOM training. 

Similarly, variations of SOM have also been explored and used in the analysis of 

microarray data. Examples of SOM variations include hybridising with partitive 

k-means [14] and multidimensional scaling [6]. 

 Fuzzy rules are non-discrete rules that involve assigning membership of 

attributes to more than just one characteristic. Like its name, it allows for an 

attribute to be “fuzzy”, having some of each characteristic (at varying degrees), 

rather than being confined to a single one. In the case of microarray data analysis, 

traditional clustering methods would assign one gene to only one cluster. This can 

be very limiting, especially in the field of genetics. A single gene produces a 

single type of protein, but multiple proteins are involved in various bodily 

functions. Proteins are the primary components of enzymes, most hormones and 

many cellular components [2]. This concept of incorporating fuzzy rules into 

SOM has been explored as well, such as in [2], [13], and [5], but little is seen of its 

use on massive datasets. 

A fuzzy SOM (FSOM) algorithm was proposed in [5], which was then used for 

learning activity patterns. We implemented the FSOM algorithm and tested it on a 

microarray dataset. The result was a very homogenous SOM that produced a 

meaningless visualization, making any interpretation impossible. In this work, a 

modified FSOM (MFSOM) is proposed and tested on a large scale microarray 

dataset. Fuzzy c-means clustering require some parameters prior to processing, 

such as the number of centres and “fuzziness factor” (or fuzzy variable). Other 
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fuzzy SOM algorithms would fix these parameters (such as in [2] and [1]). The 

FSOM algorithm did not require such parameters, but have omitted the 

neighborhood function from the SOM algorithm. The MFSOM algorithm 

proposed here requires few parameters as well and retains the characteristics of 

SOM while incorporating fuzzy rules, namely membership functions, into SOM. 

There are 2 different microarray datasets that are used in this paper, and they are a 

brain tumor dataset and a breast cancer dataset. The publicly available brain tumor 

dataset was trimmed to a very small number of genes and processed with MFSOM 

as a test to see how well the proposed algorithm fared on a smaller microarray 

dataset. Subsequently, the proposed algorithm was tested on a much large scale 

dataset, which is the breast cancer dataset. This dataset was obtained from the 

supplementary of [7], and will be used to evaluate the MFSOM algorithm by 

comparing its results with the results as found in [7].   

 

 
2  Self-Organising Maps (SOM) 

2.1 Standard SOM 

 
SOM is one of the most commonly used artificial neural network with respect to 

the unsupervised learning. It was shown to be an excellent tool in exploratory 

phase of data mining. It provides an easily-implemented algorithm for dimension 

reduction and visualization. The data vectors are projected onto positions on a 

two-dimensional grid. The grid consists of a set of regular ordered nodes, each 

associated with a prototype vector that is of the same dimension as the data points. 

Since SOM is an unsupervised learning system, there is no supervisor to say what 

the output should be and the output vector must be coded by weight patterns and 

the input data. The objective of SOM is to competitively find the best matching 

winner and adapt the weights between input and output. 

The most widely used technique to solve the cluster boundary identification 
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problem is unified distance matrix (U-matrix). The U-matrix makes a 2-d 

visualization of multi-dimensional data possible using the SOM code-vectors as 

data source. 

 
2.2 Fuzzy SOM 
 
Let XPN denote the input space (matrix), MLN the weight vectors (codebook), dPL 

the Euclidean distance measure, RPL the fuzzy membership function, and hj the 

neighborhood function, where P, N and L are positive integers. 

Step 1: Initialize the weight vectors (codebook). 

Step 2: Compute d, the Euclidean distance measure: 
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where p is a constant integer whose value is arbitrary and dependant on the size of 

the dataset. 

Step 4: Update the weights vector: 
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where, in all cases, t is an indication of time or iteration step, instead of a variable. 

This algorithm runs iteratively for a set number of iterations. The stopping criteria 

used in this work is a fixed training length, where the number of training epochs is 

based on the dimensions of the dataset and number of map units used. The original 

SOM toolbox uses this stopping criterion, and it remains unchanged for the 
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implementation of the MFSOM algorithm.  

At beginning of every iteration, one random input vector is chosen. Subsequently, 

the smallest Euclidean distance of the selected input vector to the codebook is 

chosen as the best matching unit (BMU). This is used for the calculation of the 

simple Gaussian neighborhood function used in the neighborhood function, h, 

where it is given as: 
2
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where cid  is the distance between the BMU and the current map unit, )(tσ  is 

the current neighborhood radius and )(tα is the training rate (non-increasing 

function).  

The training rate )(tα  used is defined as: 
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where 0α  is the initial learning rate, Tα  the final learning rate, t is the iteration 

step and T is the learning length. The learning rate is determined based on the size 

of the dataset. 

 
3  Data Sets  
Prior to data processing, both datasets are first pre-processed. In the first step of 

data preparation, both datasets are edited to retain only the gene labels and sample 

names.  

The brain tumour dataset, comprising of 7070 genes with 69 samples and 5 classes, 

was subjected to thresholding, i.e. forcing the entire data range to within [20, 

16000]. A fold difference filtering was then applied and subsequently, the top 30 

genes with the highest T-Value based upon gene classes for every gene is selected. 

The final dataset contained 145 genes and 69 samples. 

The breast cancer dataset, comprising of 7650 genes with 99 samples, was 



Chun Ho Yi and Yahya Abu Hasan 165 

prepared using the standard deviation, a simple measure of variability, where 

genes with low variability were removed.  From the patient information data, 4 

more variables were added, namely tumour grade, estrogen receptor (ER), nodal 

status and relapse. The final dataset contained 2085 attributes with 99 samples. 

Both datasets were processed using the normal SOM batch algorithm, FSOM, and 

MFSOM. For the MFSOM algorithm, the “fuzziness factor” variable, p, is 

arbitrary. Multiple values of p were attempted, and the value which produced the 

best result was used to compare with the other algorithms. For both datasets, the 

quantisation and topographic error were used as the measure of quality of the 

algorithm. Quantisation error refers to the mapping precision of the algorithm 

while topographic error refers to how well the topology of the input data has been 

preserved during training and how smooth the map is.  

  

4  Experimental Results 
 
In this section, the projections for the normal SOM algorithm and the MFSOM 

algorithm are compared. The component planes of the genes are not included here 

as they are irrelevant for this paper’s work. For the breast cancer dataset, however, 

we include the component planes of the clinical data as it is of interest, due to the 

fact that the analysis can be compared to a previous work. While the quantisation 

and topographic errors of FSOM algorithm are included here for comparison, the 

U-matrices of the FSOM are not, as the visualisations produced are homogeneous 

and impossible to interpret. 

In the initial phase, multiple p values for the MFSOM algorithm were tested to 

determine an optimal value for use in analysis. Table 1 lists the p values attempted 

for both datasets and the resulting quantisation and topographic errors. Figure 1 

and Figure 2 are the plots of the information as found in Table 1. From the graph 

in Figure 1, it is observed that a p value of 25 produces the least quantisation error 

for the brain tumour dataset. In Figure 2, a p value of 45 produces the least 

quantisation error for the breast cancer dataset. Thus, we take the p values of 25 
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and 45 for the brain tumour and breast cancer dataset respectively as optimal, and 

use those values for the MFSOM algorithm when for performing comparisons 

with the other SOM algorithms. 

In Table 2, based on the brain tumour dataset, the quantisation and topographic 

errors for the normal SOM, FSOM and MFSOM algorithms are listed.  In Table 

3 is based on the breast cancer dataset, lists the errors for the 3 different SOM 

algorithms as well. The MFSOM algorithm has shown better quantisation error in 

its training of the datasets. While the topographic errors are higher than the normal 

SOM and FSOM algorithms, nonetheless they are still within a reasonable range 

and are acceptable. 

 

Table 1: Error table of varying p values for MFSOM. 
 

brain tumour (145 genes) breast cancer (2180 genes) p 
quantisation 
error 

topographic 
error 

quantisation 
error 

topographic 
error 

0.1 2.218 0.667 9.198 0.606 
0.5 2.124 0.377 9.171 0.343 
0.9 1.977 0.319 9.141 0.182 
1 1.952 0.217 9.149 0.283 
5 1.123 0.145 8.740 0.040 
10 0.922 0.246 8.127 0.111 
15 0.879 0.362 6.614 0.354 
20 0.850 0.391 6.155 0.424 
25 0.797 0.304 6.010 0.535 
30 0.863 0.203 5.921 0.525 
35 0.872 0.449 5.868 0.495 
40 0.892 0.319 5.900 0.545 
45 0.909 0.377 5.686 0.495 
50 0.871 0.319 5.958 0.414 
55 0.905 0.333 6.018 0.404 
60 0.893 0.246 5.849 0.465 
65 0.884 0.348 5.904 0.606 
70 0.856 0.420 5.865 0.475 
    

 



Chun Ho Yi and Yahya Abu Hasan 167 

Brain tumour dataset

0

0.5

1

1.5

2

2.5

0.1 0.5 0.9 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

p  value

quantisation error topographic error
 

Figure 1: Comparative graph of varying p values for brain tumour dataset. 
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Figure 2: Comparative graph of varying p values for breast cancer dataset. 
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Table 2: Comparison of SOM algorithms for brain tumour dataset. MFSOM uses p value 
of 25 

 
error normal batch SOM FSOM MFSOM 
quantisation 1.320 2.409 0.797 
topographic 0.043 0.000 0.304 
 
Table 3: Comparison of SOM algorithms for breast cancer dataset. MFSOM uses p value 

of 45. 
 
error normal batch SOM FSOM MFSOM 
quantisation 8.029 9.381 5.686 
topographic 0.010 0.061 0.495 
 
 
 
5  Simulation Results 
  

 
Figure 3: U-matrix for brain tumour dataset using MFSOM algorithm (a) and 

normal SOM (b). Colour bars indicating distance between data points. 

 

The U-matrices in Figure 3 show the U-matrix projections for the brain tumour 

dataset. The U-matrix in Figure 3a was made using the MFSOM algorithm. The 

black circled areas, labelled A and B, show clusters while white circled areas 
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show possible clusters. The 2 white dashed circles indicate low distance between 

the surrounding neurons. These can be considered to be trivial clusters as it 

involves very small and negligible areas. However, it must be noted that this 

interpretation is still subjective. 

The U-matrix in Figure3b was processed by normal batch SOM. There are 3 areas 

that can be identified as clusters, and these have been marked in the figure. Cluster 

A and B are separated unambiguously, but cluster B is not clearly defined. Its can 

be extended further downwards, but is entirely dependent on an individual. There 

are also 4 trivial clusters, represented by the dashed white circles. The 3 labelled 

trivial clusters, marked as 1, 2 and 3, are ambiguous as they could easily be 

incorporated into another cluster, with marker 2 to cluster B, marker 3 to cluster C 

and marker 1 to either cluster A or B. Here, we consider smaller distances between 

map units in order for a cluster to be taken into account, and thus removing any 

uncertainty about the membership of the above clusters. 

The result of processing the brain tumour dataset using normal batch SOM and 

MFSOM has been illustrated in Figure 3. It can be seen that while there are some 

similarities, there are also obvious differences. However, differences are to be 

expected when running a different algorithm. Firstly, an entirely different 

U-matrix is to be expected, as the flow of the algorithm is significantly different 

between the normal batch SOM and the MFSOM. In the batch SOM U-matrix, 

there are 3 visible clusters, while the MFSOM had 2 visible clusters and 1 possible 

cluster. In the MFSOM, the status of the 3rd cluster as possible rather than definite 

could be drawn from the conclusion that while there is some correlation between 

those map units, it is not sufficient. Nonetheless, it remains subjective to the 

individual about how close a distance is necessary to count for a cluster. Therefore, 

while in the normal batch SOM, a 3rd cluster is conclusive, it is not in the MFSOM. 

Furthermore, the clusters in the MFSOM are more unambiguously separated and 

well defined, while it is the inverse for the normal batch SOM. 

Secondly, based solely on the visual aspect, the component planes of the MFSOM 
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do not look as “nice” as the component planes for the batch SOM. It is inevitable 

that with a different algorithm, the component planes, much like the U-matrix, 

would not look the same as the normal batch SOM. A different distribution of map 

units in the U-matrix will result in the genes being represented differently in the 

component planes. The difference in the outlook of the U-matrix and component 

planes is expected as the MFSOM has a higher topographic error. Nonetheless, the 

error remains reasonable, and the mapping is satisfactory. 

This brain tumour dataset was used as a preliminary test for the MFSOM due to 

the small number of genes (145 genes) used in the dataset. It was used to test the 

MFSOM algorithm on a small scale microarray dataset before being used for a 

large dataset. Here, we have seen the feasibility of the MFSOM on a small scale, 

and will proceed to implement it on a larger scale that is characteristic of 

microarray datasets. 

             
Figure 4: U-matrix for breast cancer dataset using MFSOM algorithm (a) and normal 

SOM (b). Colour bars indicating distance between data points. 

 

Figure 4 shows the U-matrices projections for the breast cancer dataset. From the 

MFSOM visualisation in Figure 4a, there are 6 visible clusters marked A to F. 

Clusters C, D, E and F are small clusters, and their inclusion is subjective. There 
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are 2 trivial clusters, as indicated by the dashed white circles. The clusters here are 

unambiguously spaced, and are considered to be very well defined, even for 

clusters D, E and F that are small. The normal SOM visualisation in Figure 4b 

shows a single visible cluster K, a potential cluster L and several trivial clusters. 

The group of trivial clusters are not close enough to be merged into a single 

cluster, but this remains a subjective interpretation. 

 
Figure 5: Component planes of patient info of breast cancer dataset using MFSOM 

(Colour bar indicating approximate values). 

 

From the component planes in Figure 5, it can be seen that Cluster A has grade 2 

tumours, positive estrogen receptor, negative nodal status and negative relapse. 

Cluster B has grade 3 tumours, negative estrogen receptor, uncertain nodal status 

and uncertain relapse. Cluster C has grade 1 nodal status, positive estrogen 

receptor, negative nodal status and negative relapse. Cluster D has grade 3 

tumours and uncertain estrogen receptor, nodal status and relapse values. Cluster 

E has similar characteristics to cluster D but with the exception of having positive 

relapse. Cluster F has similar characteristics to cluster D but with the exception of 

having uncertain grade and estrogen receptor status. This conclusion is derived 



172                                   Microarray Data Mining with Fuzzy SOM  

from the fact that the estrogen receptor, nodal status and relapse attributes are 

Boolean attributes, having positive and negative values only, respectively 

represented by 1 and 0. As for grade, it has the discrete values of 1, 2 or 3, and 

thus the conclusions for the grade values have to be approximate to the nearest 

integer. 

 
5  Conclusion 
 
The difference between the MFSOM algorithm and the normal batch SOM is 

obvious from the projections of the U-matrix and component planes. While the 

normal SOM produced “nice” visuals, it only managed to find one cluster, one 

possible cluster and many trivial clusters. There is ambiguity among the many 

trivial clusters, as it is possible that they are grouped into one cluster, albeit with 

high distance between map units. As for the possible cluster, it is tempting to 

consider it as a cluster as there is only one certain cluster, but the distance between 

map units is rather insufficient. The MFSOM, on the other hand, has 6 well 

defined and unambiguous clusters, even though some of them are small. Also 

from the U-matrix, the 3 small clusters (D, E and F) appear to be somewhat 

correlated by their small inter-cluster distances. The MFSOM produced the same 

number of clusters are found by [7], where 3 clusters are found to be sub-clusters 

of a larger cluster. Cluster A, B and C shows that the estrogen receptor status is 

correlated to the tumour grade, where positive estrogen receptors indicates the 

presence of grade 1 and 2 tumours, while negative estrogen receptors indicate 

grade 3 tumours. This is consistent with the conclusion in [7]. 
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