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Abstract 

Noiri and Popa introduced upper and lower slightly m-continuous multifunctions 

in topological spaces and study their properties. The purpose of this paper is to 

further characterize upper and lower slightly m-continuous multifunctions.   
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1 Introduction  
The multifunctions play a dominant role in topology and in set valued analysis. By 

a multifunction F:(X,τ)→(Y,σ), we mean a point to set correspondence from (X,τ)  

into (Y,σ) with F(x)≠∅ for all x∈X. For a multifunction F:(X,τ)→(Y,σ), let 

                                                 

 

1 Department of Mathematics, Aditanar College, Tiruchendur-628216 (India),     
  e-mail:ptvelu12@gmail.com 
2 Department of Mathematics, Sriparasakthi College for Women, Courtallam, India,   
  e-mail: rselvi@yahoo.co.in 
 
Article Info: Revised :  March 14, 2011.  Published online :  May 31, 2011 
 
 



152                    On characterizations of slightly m-continuous multifunctions             

F+(B)={x∈X:F(x)⊆B} and F−(B) ={x∈X:F(x)∩B≠∅ } where F+(B) and F−(B) 

denote the upper and lower inverse of a subset B of Y respectively. In particular 

F+(y) ={x∈X:F(x)={y}} and F− (y)={x∈X: y∈F(x)} for each point y∈Y. For each 

A ⊆ X, F(A) =
x

F(x)
A∈
∪ . The purpose of this paper is to characterize for upper and 

lower slightly m-continuous multifunctions.   

 

2  Preliminary Notes 
In this section certain definitions and results are recalled. If A is a subset of a 

topological space X then cl(A) and int(A) denote the closure and interior of A 

respectively in X.  

 

Definition 2.1 Let A be a subset of a topological space X. Then A is called  

(i)     regular open if A = int(cl (A)) and regular closed if A = cl(int(A)), [7] 

(ii)     semi open if A⊆ cl(int(A)) and semi-closed if int(cl(A))⊆A, [3] 

(iii) α–open if A ⊆ int(cl(int(A))) and α-closed if cl(int(cl(A)))⊆A, [5] 

(iv) pre-open if A ⊆ int(cl (A)) and pre-closed if cl(int(A))⊆A, [4] 

(v)      β-open if A⊆cl(int(cl(A))) and β-closed if int(cl(int(A)))⊆A, [1] 

(vi) a p-set if cl(int(A))⊆int(cl(A)), [8]                       

(vii) a q-set if int(cl(A))⊆cl(int(A)). [9] 

β-open sets are also called semi-pre-open sets.[2] 

 

Definition 2.2  A sub family mX of the power set ℘(X) of a non empty set X is 

called a minimal structure (briefly m-structure) on X if ∅∈ mX and X∈mX.. The 

pair  (X, mX) is a minimal structure space on X. Each member of mX is said to be 

mX-open and the complement of an mX-open set is said to be mX-closed. [6].  

 

Definition 2.3 Let X be a non empty set and mX an m-structure on X. For a subset 
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A of  X , the mX-closure of A and the mX-interior of A are defined as follows: 

(i) mX - cl(A) = ∩ { F: A⊆ F, X\ F ∈ mX }, 

(ii) mX - int(A) = ∪{U: U⊆ A, U∈mX }, [6]. 

 

Definition 2.4 Let (X, mX) be a minimal structure space and (Y,σ) be a topological 

space.  A multifunction F:(X, mX) →(Y, σ) is said to be  

(i)   upper slightly m-continuous if for each point x∈X and each clopen set V of 

Y containing F(x), there exists U∈mX containing x such that F(U) ⊆V, 

(ii)    lower slightly m-continuous if for each point x∈X and each clopen set V of  

Y such that F(x)∩V≠∅, there exists U∈mX containing x such that  

F(u)∩V≠∅ for each u∈U. [6] 

 

Lemma 2.5 For a multifunction F:(X, mX)→(Y,σ), the following are equivalent: 

(i)   F is upper slightly m-continuous, 

(ii)  F + (V) = mX - int(F+ (V)) for each V∈CO(Y, σ), 

(iii)  F − (V) = mX - cl(F − (V)) for each V∈CO(Y, σ). [6] 

 

Lemma 2.6 Let F:(X, mX) → (Y, σ) be a multifunction. Then the following are 

equivalent. 

(i)   F is lower slightly m-continuous, 

(ii)   F − (V) = mX - int(F − (V)) for each V∈CO(Y, σ), 

(iii) F + (V) = mX - cl(F+(V)) for each V∈CO(Y,σ) where CO(Y,σ), the    

    collection of all clopen sets of (X,τ). [6]  

 

Lemma 2.7 Let B be subset of X . Then the following are equivalent. 

(i)     B is regular clopen, 

(ii)     B is clopen, 

(iii) B is α-clopen, 
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(iv) B is pre-clopen and a q-set, 

(v)     B is semi-clopen and p-set, 

(vi) B is β-clopen, p-set and a q-set. [ 8]   

 

We use the following notations. 

αCO(Y,σ) (resp. RCO(Y,σ); PCO(Y,σ); q(Y, σ); SCO(Y, σ) ; βCO(Y, σ))denotes 

the collection of all  α-clopen (resp. regular clopen, pre-clopen, semi-clopen, 

β-clopen)sets in (Y,σ).  p(Y, σ) (resp. q(Y,σ) ) denotes the collection of all p-sets 

(resp. q-sets) in (Y, σ). 

 
 
3  Slightly m-continuity 
In this section, upper and lower slightly m-continuous multifunctions are 

characterized by using regular clopen sets, α-clopen sets, pre-clopen sets, 

semi-clopen sets, p-sets, q-sets and β-clopen sets. 

 

Theorem 3.1 For a multifunction F:(X, mX)→(Y,σ), the following are equivalent: 

(i)      F is upper slightly m-continuous, 

(ii)      F+ (V) = mX - int(F+ (V)) for each V∈αCO(Y, σ), 

(iii) F+ (V) = mX - int(F+ (V)) for each V∈RCO(Y, σ), 

(iv) F+ (V) = mX - int(F+ (V)) for each V∈PCO(Y, σ) ∩ q(Y, σ), 

(v)      F+ (V) = mX - int(F+ (V)) for each V∈SCO(Y, σ) ∩ p(Y, σ), 

(vi) F+ (V) = mX - int(F+(V)) for each V∈βCO(Y, σ) ∩ q(Y, σ) ∩p(Y, σ), 

(vii) F − (V) = mX - cl(F – (V)) for each V∈αCO(Y, σ), 

(viii) F − (V) = mX - cl(F – (V)) for each V∈RCO(Y, σ), 

(ix) F − (V) = mX - cl(F − (V)) for each V∈PCO(Y, σ) ∩ q(Y, σ), 

(x)      F − (V) = mX-cl(F − (V)) for each V∈SCO(Y, σ) ∩ p(Y, σ), 

(xi) F − (V) = mX-cl(F – (V)) for each V∈βCO(Y, σ) ∩ q(Y,σ) ∩ p(Y, σ). 
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Proof  

The implications (ii)⇒ (iii) ⇒(iv) ⇒(v) ⇒(vi) ⇒(ii)  follow from Lemma 2.7.   

By using Lemma 2.5 and Lemma 2.7 we see that  

F is upper slightly m-continuous ⇔ F+ (V) = mX-int(F+ (V)) for each V∈CO(Y, σ)         

⇔ F + (V) = mX-int(F+ (V)) for each V∈αCO(Y, σ). This proves (i)⇔ (ii).  

Now the implications (vii)⇒ (viii) ⇒(ix) ⇒(x) ⇒(xi) ⇒(vii) follow from Lemma 

2.7.   

Again by using Lemma 2.5 and Lemma 2.7 it follows that  

F is upper slightly m-continuous ⇔F− (V) = mX-cl(F– (V)) for each V∈CO(Y, σ) 

          ⇔ F − (V) = mX-cl(F – (V))  for each V∈αCO(Y,σ). 

This proves (i) ⇔ (vii).                                               

 

Theorem 3.2 For a multifunction F:(X, mX)→(Y,σ), the following are equivalent: 

(i)      F is lower slightly m-continuous, 

(ii)      F − (V) = mX - int(F − (V)) for each V∈αCO(Y, σ), 

(iii) F − (V) = mX - int(F − (V)) for each V∈RCO(Y, σ), 

(iv) F − (V) = mX - int(F − (V)) for each V∈PCO(Y, σ)∩ q(Y, σ), 

(v)      F − (V) = mX - int(F − (V)) for each V∈SCO(Y,σ)∩ p(Y, σ), 

(vi) F− (V) = mX - int(F− (V)) for each V∈βCO(Y, σ)∩q(Y, σ)∩p(Y, σ), 

(vii) F + (V) = mX - cl(F+ (V)) for each V∈αCO(Y, σ), 

(viii) F + (V) = mX - cl(F+ (V)) for each V∈RCO(Y, σ), 

(ix) F + (V) = mX - cl(F+ (V)) for each V∈PCO(Y, σ)∩ q(Y, σ), 

(x)      F + (V) = mX - cl(F+ (V)) for each V∈SCO(Y, σ)∩ p(Y, σ), 

(xi) F+ (V) = mX - cl(F+ (V)) for each V∈βCO(Y, σ)∩ q(Y, σ)∩p(Y, σ). 

Proof 

The implications (ii)⇒ (iii) ⇒(iv) ⇒(v) ⇒(vi) ⇒(ii)  follow from Lemma 2.7. 

 By using Lemma 2.6 and Lemma 2.7 it is seen that  

F is lower slightly m-continuous⇔F− (V) = mX - int(F− (V)) for each V∈CO(Y, σ)  
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⇔ F − (V) = mX - int(F − (V)) for each V∈αCO(Y, σ),  

This proves (i)⇔(ii). Now the implications (vii)⇒(viii) ⇒(ix) ⇒(x) ⇒(xi) ⇒(vii)  

follow from Lemma 2.6 and Lemma 2.7. 

Again by using Lemma 2.6 and Lemma 2.7 we see that  

F is lower slightly m-continuous⇔F + (V) = mX - cl(F+ (V)) for each V∈CO(Y, σ),  

⇔ F + (V) = mX - cl(F + (V)) for each V∈αCO(Y, σ). 

This proves (i)⇔ (vii).                                               

 

Lemma 3.3 For a multifunction F: (X, mX) → (Y, σ), the following are 

equivalent : 

(i)      F is upper slightly m-continuous, 

(ii)      F+ (int(cl(V))) = mX - int(F+ (int(cl(V))) for each V∈p(Y,σ)∩(Y, σ), 

(iii) F+ (int(cl(V))) = mX- int(F+(cl(int(V))) for each V∈p(Y,σ)∩q(Y, σ), 

(iv) F+ (cl(int(V)))= mX - int(F+(int(cl(V))) for each V∈p(Y,σ)∩q(Y, σ), 

(v)      F+(cl(int(V))) = mX - int(F+(cl(int(V))) for each V∈p(Y,σ)∩q(Y, σ), 

(vi) F−(int(cl(V))) = mX - cl(F−(int(cl(V))) for each V∈p(Y, σ) ∩q(Y,σ), 

(vii) F−(int(cl(V))) = mX - cl(F−(cl (int(V))) for each V∈p(Y,σ)∩q(Y, σ), 

(viii) F− (cl(int(V))) = mX - cl(F−(int(cl(V))) for each V∈p(Y,σ)∩q(Y, σ),  

(ix) F−(cl(int(V))) = mX - cl(F−(cl(int(V))) for each V∈p(Y,σ) ∩q(Y, σ). 

Proof 

Suppose (i) holds. Let V∈p(Y, σ) ∩q(Y, σ). Then cl(int(V))=int(cl(V)). Therefore 

cl(int(V)) and int(cl(V)) are clopen sets in Y. Then from Lemma 2.5 it follows that 

F+(int(cl(V)))=mX - int(F+ (int(cl(V))), F − (int (cl (V))) = mX - cl(F−( int(cl(V))),   

F+(cl(int(V))) = mX - int(F+ (cl(int(V))) and F−(cl(int(V)))= mX - cl(F− (cl(int(V))). 

This proves (i) ⇒(ii), (i) ⇒(vi), (i) ⇒(v) and (i) ⇒(ix).  

Again since  cl(int(V)) = int(cl(V)), it follows that (i) ⇒(iv), (i) ⇒(viii), (i) ⇒(iii) 

and (i) ⇒(vii). The reverse implications follow from the fact that every clopen set 

is both a p-set and a q-set.                                             
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